
Lecture 6. Summation formulae. The Riemann

zeta function

M. Klazar

April 5, 2024

In the sixth lecture we cover Chapter II.2. Summation formulae and Chapter
II.3. The Riemann zeta function, up to page 261, in [5].

Chapter II.2. Summation formulae

The following are Theorem 2.1 (Perron’s formula), Lemma 2.2, Theorem 2.3
(First effective Perron formula), Corollary 2.4 (Second effective Perron formula),
Theorem 2.5, Lemma 2.6 and Theorem 2.7 in [5].

Recall that σc and σa are abscissas of convergence and of absolute conver-
gence of a Dirichlet series F (s) =

∑
n≥1 an/n

s. For real x we define A∗(x) =∑
n<x an + ax/2 where ax = 0 if x 6∈ N.

Theorem 1 For κ > max({0, σc}) and x > 0,

A∗(x) =
1

2πi

∫ κ+i∞

κ−i∞
F (s)xs

ds

s

where the
∫

conditionally converges if x 6∈ N0 and converges “in the sense of
Cauchy’s principal value” if x ∈ N0.

Lemma 2 Let h(x) = 0 for x ∈ (0, 1), 1
2 for x = 1 and 1 for x > 1. Then for

any κ, T, T ′ > 0,∣∣∣∣h(x)−
∫ κ+iT

κ−iT ′
xs

ds

s

∣∣∣∣ ≤ xκ

2π| log x|
· (1/T + 1/T ′) . . . x 6= 1

and ∣∣∣∣h(1)−
∫ κ+iT

κ−iT

ds

s

∣∣∣∣ ≤ κ

T + κ
.

Theorem 3 For any κ > max({0, σa}) and T, x ≥ 1,

A(x) =
∑
n≤x

an =
1

2πi

∫ κ+iT

κ−iT
F (s)xs

ds

s
+O

(
xκ
∑
n≥1

|an|
nκ(1 + T | log(x/n)|)

)
.
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Corollary 4 Let F (s) =
∑
n≥1 an/n

s have finite σa. Suppose that for a real

α ≥ 0 we have that
∑
n≥1 |an|n−σ � (σ − σa)−α for σ ∈ (σs, σa + 1] and that

|an| ≤ B(n) for n ∈ N and a non-decreasing function B. Then for x, T ≥ 2,
σ ≤ σa and κ = σa − σ + 1/ log x,

∑
n≤x

an
ns

=
1

2πi

∫ κ+iT

κ−iT
F (s+ w)xw

dw

w

+ O
(
xσa−σ(logα x)/T + (B(2x)/xσ)(1 + x(log T )/T )

)
.

Theorem 5 For any κ > max({0, σc}) and x ≥ 1,

∑
n≤x

an log(x/n) =
1

2πi

∫ κ+i∞

κ−i∞
F (s)xs

ds

s2

and ∫ x

0

A(t) dt =
1

2πi

∫ κ+i∞

κ−i∞
F (s)xs+1 ds

s(s+ 1)
.

In the next lemma the function h is as in Lemma 2

Lemma 6 For any δ > 0 there exists a = a(δ), b = b(δ) ∈ C such that with (s ∈
C and y > 0) wδ(s) = 1/s+a/(s+1)+b/(s+2) and gδ(y) = h(y)(1+a/y+b/y2)
we have uniformly for y, κ > 0 that

1

2πi

∫ κ+iδ

κ−iδ
wδ(s)y

s ds = gδ(y) +O
(
yκ/(1 + log2 y) + κyκ

)
.

Theorem 7 Let F (s) =
∑
n≥1 an/n

s converge for σ > 1 and be such that∑
n≤x |an| � x · b(x) for x ≥ 2 and a non-decreasing function b(x). Then for

κ = κx = 1/ log x,

∑
n≤x

an
n

=
1

2πi

∫ κx+iδ

κx−iδ
F (s+ 1)wδ(s)x

s ds+O(b∗(x))

where b∗(x) = κx
∫∞
1
b(t)/t1+κx dt.

The following are Theorems 2.8 and 2.9 in [5]. For the function µ see the
chapter on Dirichlet series.

Theorem 8 Let F (s) =
∑
n≥1 an/n

s have finite abscissa σc. If σ0 ∈ R is such
that F (s) has an analytic extension satisfying µ(σ) = 0 for σ > σ0 then σc ≤ σ0.

This theorem is due to E. Landau [2] in 1909.

Theorem 9 Let F (s) =
∑
n≥1 an/n

s converge for σ > 1, have an analytic
extension to a neighborhood of s = 1 and

∑
n≤x an = o(x) (x → +∞), then

F (1) converges.
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This theorem is due to M. Riesz [4] in 1909.
Finally, the following are Theorem 2.10 and Corollaries 2.11 and 2.12 in [5].

Theorem 10 Let F (s) =
∑
n≥1 an/n

s have σa =: σ1 and G(s) =
∑
n≥1 bn/n

s

have σa =: σ2. Then for any α > σ1 and β > σ2,

lim
T→∞

1

2T

∫ T

−T
F (α+ iτ)G(β − iτ) dτ =

∞∑
n=1

anbn
nα+β

.

Corollary 11 For any σ > σa,

lim
T→∞

1

2T

∫ T

−T
|F (s)|2 dτ =

∞∑
n=1

|an|2

n2σ
.

Corollary 12 For any σ > σa,

lim
T→∞

1

2T

∫ T

−T
F (s)ns dτ = an .

Chapter II.3. The Riemann zeta function

This chapter is devoted to the function (Dirichlet series)

ζ(s) =

∞∑
n=1

1

ns
, σ > 1 .

Next in [5] come Theorems 3.1 and 3.2.

Theorem 13 ζ(s) extends to ζ(s) = 1
s−1 + f(s) with entire f : C→ C.

Theorem 14 For n ∈ N0,

ζ(−n) = (−1)n
Bn+1

n+ 1

where Bn are the Bernoulli numbers defined in Lecture 1. Hence ζ(−2n) = 0
for n ∈ N.

Next in [5] come Theorems 3.3 and 3.4.

Theorem 15 For any s ∈ C \ {1},

ζ(s) = 2sπs−1 sin(πs/2) · Γ(1− s) · ζ(1− s) .

Several proofs of the functional equation for ζ(s) can be found in [6].
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Theorem 16 For any n ∈ N,

ζ(2n) = (−1)n−122n−1
B2n

(2n)!
π2n .

The following are Theorem 3.5, Lemma 3.6, Corollary 3.7, Theorems 3.8 and
3.9 and Corollary 3.10 in [5]; s = σ + iτ .

Theorem 17 Let σ0 > 0 and δ ∈ (0, 1). Then it holds uniformly for σ ≥ σ0,
x ≥ 1 and 0 < |τ | ≤ (1− δ)2πx that

ζ(s) =
∑
n≤x

1

ns
− x1−s

1− s
+O(1/xσ) .

This theorem is due to G. H. Hardy and J. E. Littlewood [1] in 1921. The proof
uses the next lemma.

Lemma 18 For any σ > 0 and N ∈ N,

ζ(s) =
∑
n≤N

1

ns
− N1−s

1− s
− s

∫ +∞

N

{t}
ts+1

dt .

Corollary 19 For τ ≥ 1 it holds that ζ( 1
2 + iτ)� τ1/6 log τ .

Theorem 20 For ζ(s) we have the bound µ(σ) ≤ (1 − σ)/3 for σ ∈ [ 12 , 1] and
µ(σ) ≤ (3− 4σ)/6 for σ ∈ [0, 12 ].

Theorem 21 For any α ∈ (0, 1), σ ≥ α and |τ | ≥ 1,

|ζ(s)| ≤ 3|τ |1−α

2α(1− α)
.

In particular, for any c > 0, |τ | ≥ 2 and σ ≥ 1− c/ log(|τ |),

ζ(s)� log(|τ |) .

Corollary 22 For any c > 0, k ∈ N0, |τ | ≥ 2 and σ ≥ 1− c/ log(|τ |),

ζ(k)(s)�
(

log(|τ |)
)k+1

.

The following are Theorem 3.11 (Mertens), Corollary 3.12, Theorem 3.13
and Corollary 3.14 in [5].

Theorem 23 Let F (s) =
∑
n≥1 an/n

s have an ≥ 0 and σc ∈ R. Then for any
σ > σc,

3F (σ) + 4re(F (σ + iτ)) + re(F (σ + 2iτ)) ≥ 0.

Proof. The left side is
∑
n≥1 anV (τ log n)/nσ where V (ϑ) = 3 + 4 cosϑ +

cos(2ϑ) = 2(1 + cosϑ)2 ≥ 0. 2
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Corollary 24 For any σ > 1,

ζ(σ)3 · |ζ(σ + iτ)|4 · |ζ(σ + 2iτ)| ≥ 1 .

Proof. Apply the theorem to the Dirichlet series (σ > 1)

F (s) = log(ζ(s)) = −
∑
p

(1− p−s) =
∑
n≥2

Λ(n)

ns log n
.

2

Theorem 25 ζ(s) 6= 0 for σ ≥ 1.

Proof. For contrary, let ζ(1 + iτ0) = 0. Then τ0 6= 0 and ζ(s) is holomorphic in
a neighborhood of 1 + iτ0. Thus for σ > 1, ζ(σ + iτ0) � σ − 1. On the other
hand, for σ > 1 we have that ζ(σ) � 1/(σ − 1) and ζ(σ + 2iτ0) � 1 (s = 1 is
a simple pole). Hence for σ > 1,

ζ(σ)3 · |ζ(σ + iτ0)|4 · |ζ(σ + 2iτ0)| � σ − 1

which contradicts the corollary. 2

Corollary 26 In the halfplane σ ≤ 0 the only zeros of ζ(s) are in s = −2n for
n ∈ N.

The following are Theorems 3.15 (Jensen’s formula) and 3.16 (Real part
lemma, Borel–Carathéodory) and Corollary 3.17 in [5].

Theorem 27 Let R > 0 and F (s) be holomorphic for |s| ≤ R with F (0) = 1.
Then ∫ R

0

|{s ∈ C | |s| ≤ r ∧ F (s) = 0}|
r

dr =
1

2π

∫ 2π

0

log
(
|F (Reiϑ)|

)
dϑ .

Theorem 28 Let R > 0 and F (s) be holomorphic for |s| ≤ R with F (0) = 0.
If max|s|=R re(F (s)) ≤ A then for any k ∈ N0 and s with |s| < R,

∣∣F (k)(s)
∣∣ ≤ 2AR · k!

(R− |s|)k+1
.

Corollary 29 Let R > 0, F (s) be holomorphic for |s| ≤ R with F (0) = 1 and
let |F (s)| ≤ M for |s| = R. Let Z be the finite sequence of zeros of F (s) in
|s| ≤ R/2, each counted with its multiplicity. Then for any s ∈ C with |s| < R/2,∣∣∣∣F ′(s)F (s)

−
∑
ρ∈Z

1

s− ρ

∣∣∣∣ ≤ 4R logM

(R− 2|s|)2
.
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The following are Theorems 3.18 and 3.19 in [5]. Let

ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s) .

The non-trivial zeros of ζ(s) are denoted as ρ = β + iγ. For T > 0 we denote
by N(T ) the number of ρ (counted with multiplicity) with 0 ≤ γ ≤ T .

Theorem 30 For T ≥ 2,

N(T + 1)−N(T )� log T .

Theorem 31 For T ≥ 2,

N(T ) = (T/2π) log(T/2π)− T/2π +O(log T ) .

This asymptotics had been conjectured by B. Riemann and was proven by H. von
Mangoldt [3] in 1895.

Finally, the following are Theorems 3.20 (Hadamard product formula), 3.21
and 3.22 in [5].

Theorem 32 For a = 1
2 log(4π)− 1

2γ−1, b = log(2π)− 1
2γ−1 and every s ∈ C,

ξ(s) = eas
∏
ρ

(1− s/ρ)es/ρ and ζ(s) =
ebs

2(s− 1)
· 1

Γ(s/2 + 1)

∏
ρ

(1− s/ρ)es/ρ

(s 6= 1).

Theorem 33 There is a c > 0 such that σ ≥ 1− c/ log(2 + |τ |) ⇒ ζ(s) 6= 0.

Theorem 34 There is a c > 0 such that if |τ | ≥ 3 and σ ≥ 1− c/ log(|τ |) then

ζ ′(s)

ζ(s)
,

1

ζ(s)
� log(|τ |) and | log ζ(s)| ≤ log log(|τ |) +O(1) .
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