Lecture 5. The function Γ. Dirichlet series

M. Klazar

March 22, 2024

In the fifth lecture we arrive in the second part Complex Analysis Methods of G. Tenenbaum's book [8]. We cover Chapter II.0. The Euler Gamma function and Chapter II.1. Generating functions: Dirichlet series, up to page 217.

Chapter II.0. The Euler Gamma function

The following are Theorems 0.1 (Euler) and 0.2 (Functional equation) and Corollary 0.3 in [8]. Two equivalent definitions of the function Γ are due to L. Euler: for complex numbers $s=\sigma+i \tau$,

$$
\Gamma(s)=\frac{1}{s} \prod_{n=1}^{\infty} \frac{(1+1 / n)^{s}}{1+s / n} \quad(s \notin \mathbb{Z} \backslash \mathbb{N}) \text { and } \Gamma(s)=\int_{0}^{+\infty} t^{s-1} \mathrm{e}^{-t} \mathrm{~d} t \quad(\sigma>0)
$$

Both by [8, p. 169] and [9, p. 101], the function Γ appeared first in a letter of L. Euler to Ch. Goldbach in 1729.

Theorem 1 For $n \in \mathbb{N}$ let

$$
\Gamma_{n}(s)=\int_{0}^{n}(1-t / n)^{n} t^{s-1} \mathrm{~d} t \quad(\sigma>0)
$$

Then we have

$$
\Gamma_{n}(s)=\frac{n^{s} n!}{s(s+1) \ldots(s+n)}
$$

and

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(s)=\Gamma(s)=\int_{0}^{+\infty} t^{s-1} \mathrm{e}^{-t} \mathrm{~d} t \quad(\sigma>0)
$$

Theorem 2 We have

$$
\Gamma(s+1)=s \Gamma(s) \quad(\sigma>0) .
$$

Corollary 3 For all $n \in \mathbb{N}_{0}, \Gamma(n+1)=n!$.
The following is Theorem 0.4 in [8]. Recall that a function $f: I \rightarrow(0,+\infty)$, where $I \subset \mathbb{R}$ is an interval, is logarithmically convex (on I) if the composition $\log (f): I \rightarrow \mathbb{R}$ is a convex function.

Theorem 4 The function Γ is logarithmically convex on $(0,+\infty)$.
The following is Theorem 0.5 (Artin) in [8].
Theorem 5 Suppose that $\Phi:(0,+\infty) \rightarrow(0,+\infty)$ is differentiable, logarithmically convex and that $x \Phi(x)=\Phi(x+1)$ for any $x>0$. Then for any $x>0$,

$$
\Phi(x)=\Phi(1) \Gamma(x)
$$

Theorem 5 is due to Emil Artin (1898-1962) who grew up in Reichenberg in Böhmen, today Liberec v Cechách (Czechia). In [7, Appendix C] the references given for Artin's theorem are [1, 2].

The following are Theorem 0.6 (Weierstrass) and Corollary 0.7 in [8]. As usual, $s=\sigma+i \tau$ and γ is the Euler constant.

Theorem 6 For any $\sigma>0$,

$$
\frac{1}{\Gamma(s)}=s \mathrm{e}^{\gamma s} \cdot \prod_{j=1}^{\infty}(1+s / j) \mathrm{e}^{-s / j}
$$

The right side defines an entire continuation of $1 / \Gamma(s)$.
This theorem is due to Karl Weierstraß (1815-1897). [7, Appendix C] gives the reference [10].
Corollary 7 We have $\gamma=-\Gamma^{\prime}(1)$.
The following are Theorem 0.8 and Corollaries 0.9, 0.10 (Real Stirling's formula) and 0.11 (Legendre duplication formula) in [8].

Theorem 8 For any real $x, y>0$ the beta function

$$
B(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Proof. This is the first of two proofs in [8] and goes by change of variables and the Fubini theorem. The second proof uses Artin's theorem. From

$$
\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} \int_{0}^{+\infty} t^{x-1} \mathrm{e}^{-t} u^{y-1} \mathrm{e}^{-u} \mathrm{~d} t \mathrm{~d} u
$$

we get by introducing the variable v via $u=t v$ and by using the Fubini theorem that $\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} \int_{0}^{+\infty} t^{x-1} \mathrm{e}^{-t} t^{y} v^{y-1} \mathrm{e}^{-v t} \mathrm{~d} t \mathrm{~d} v$ indeed equals

$$
\begin{aligned}
& \int_{0}^{+\infty} v^{y-1} \int_{0}^{+\infty} \frac{(t(v+1))^{x+y-1} \mathrm{e}^{-(v+1) t}}{(v+1)^{x+y-1}} \mathrm{~d} t \mathrm{~d} v \\
= & \int_{0}^{+\infty} \frac{v^{y-1} \Gamma(x+y)}{(v+1)^{x+y}} \mathrm{~d} v=\Gamma(x+y) \int_{0}^{+\infty}\left(\frac{v}{v+1}\right)^{y-1}\left(\frac{1}{v+1}\right)^{x-1} \frac{\mathrm{~d} v}{(v+1)^{2}} \\
= & \Gamma(x+y) \int_{0}^{1} w^{y-1}(1-w)^{x-1} \mathrm{~d} w=\Gamma(x+y) B(x, y) .
\end{aligned}
$$

Corollary 9 For any real $x, y>0$,

$$
\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=2 \int_{0}^{\pi / 2}(\sin \vartheta)^{2 x-1}(\cos \vartheta)^{2 y-1} \mathrm{~d} \vartheta
$$

In particular, $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
Corollary 10 We have $(x \in \mathbb{R})$

$$
\Gamma(x+1) \sim x^{x} \mathrm{e}^{-x} \sqrt{2 \pi x} \quad(x \rightarrow+\infty)
$$

Corollary 11 For any $x>0$,

$$
\Gamma(x / 2) \cdot \Gamma((x+1) / 2)=\sqrt{\pi} \cdot 2^{1-x} \Gamma(x)
$$

[7, Appendix C] gives for this duplication formula of Adrien-Marie Legendre (1752-1833) (for the troubles with his portrait see [6]) the reference [5].

The following are Theorem 0.12 (Complex Stirling's formula) and Corollaries 0.13 (Behavior in vertical strips), 0.14 (Mellin inversion formula), 0.15 (Reflection formula) and 0.16 (Euler) in [8].

Theorem 12 For any $s \in \mathbb{C} \backslash(-\infty, 0]$,

$$
\log (\Gamma(s))=\left(s-\frac{1}{2}\right) \log s-s+\frac{1}{2} \log (2 \pi)-\int_{0}^{+\infty} B_{1}(t) \frac{\mathrm{d} t}{s+t}
$$

Here Log: $\mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$ is the so called principal branch of the complex logarithm: $\log (r \exp (i \varphi))=\log r+i \varphi$ for any real $r>0$ and $\varphi \in(-\pi, \pi)$. On $(0,+\infty)$ it coincides with the real logarithm log. $B_{1}(t)$ is the 1-periodic extension of the first Bernoulli polynomial $b_{1}(t)=t-\frac{1}{2}:[0,1) \rightarrow \mathbb{R}$, see the Euler-Maclaurin summation in Lecture 1.

Corollary 13 Let $\sigma_{2}>\sigma_{1}$ be real and $h_{\sigma}(\tau)=\tau \log |\tau|-\tau+\frac{1}{2} \pi\left(\sigma-\frac{1}{2}\right) \operatorname{sgn} \tau$. Then it holds uniformly for $\sigma \in\left[\sigma_{1}, \sigma_{2}\right]$ and $|\tau| \geq 1$ that

$$
\Gamma(s)=(1+O(1 / \tau)) \sqrt{2 \pi} \cdot|\tau|^{\sigma-1 / 2} \mathrm{e}^{-\pi|\tau| / 2} \mathrm{e}^{i h_{\sigma}(\tau)}
$$

Here as usual $s=\sigma+i \tau$.
Corollary 14 For any $x, \sigma>0$,

$$
\mathrm{e}^{-x}=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Gamma(s) x^{-s} \mathrm{~d} s
$$

Corollary 15 For any $s \in \mathbb{C} \backslash \mathbb{Z}$,

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

Corollary 16 For any $z \in C$,

$$
\frac{\sin (\pi z)}{\pi z}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

The following are Theorem 0.17 (Hankel's formula) and Corollary 0.18 in [8]. Hankel's contour $H=H(R)$ for $R \in(0,1)$ is the submap of

$$
(0,+\infty) \times[-\pi, \pi] \ni(r, \varphi) \mapsto r \exp (i \varphi)=s \in \mathbb{C}
$$

such that first r runs from $+\infty$ to R and $\varphi=-\pi$, then $r=R$ and φ runs from $-\pi$ to π, and finally r runs from R to $+\infty$ and $\varphi=\pi$. See [8, p. 179] for a picture.

Theorem 17 Let H be a Hankel contour. Then for any $z \in \mathbb{C}$,

$$
\frac{1}{\Gamma(z)}=\frac{1}{2 \pi i} \int_{H} s^{-z} \mathrm{e}^{s} \mathrm{~d} s
$$

Corollary 18 For $X>1$, let $H(X)$ be the restriction of H obtained by replacing $+\infty$ with X. Then it holds uniformly in $z \in \mathbb{C}$ that

$$
\frac{1}{2 \pi i} \int_{H(X)} s^{-z} \mathrm{e}^{s} \mathrm{~d} s=\frac{1}{\Gamma(z)}+O\left(47^{|z|} \Gamma(1+|z|) \mathrm{e}^{-X / 2}\right)
$$

Chapter II.1. Generating functions: Dirichlet series

Next in [8] come Definition 1.1 and Theorem 1.2. Recall that $*$ is the Dirichlet convolution.

Definition 19 Let $f: \mathbb{N} \rightarrow \mathbb{C}$. The Dirichlet series of f is the function

$$
F(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

defined for any $s \in \mathbb{C}$ where this series converges.
Here $n^{s}=\exp (s \log n)$ where $\exp z=\sum_{n \geq 0} z^{n} / n$! for any $z \in \mathbb{C}$. The real $\log x:(0,+\infty) \rightarrow \mathbb{R}$ is the inverse of the real $\exp x: \mathbb{R} \rightarrow(0,+\infty)$.

Theorem 20 Let $s \in \mathbb{C}$ and $f, g, h: \mathbb{N} \rightarrow \mathbb{C}$, with respective Dirichlet series F, G, H. If $h=f * g$ and both $F(s)$ and $G(s)$ absolutely converge, the so does $H(s)$ and $H(s)=F(s) G(s)$.

Next in [8] come Theorem 1.3 and Proposition 1.4 (Euler's formula). In the latter proposition, $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$.

Theorem 21 Let $s \in \mathbb{C}$ and $f: \mathbb{N} \rightarrow \mathbb{C}$ be multiplicative, with the Dirichlet series F, and let $\sum_{p} \sum_{\nu=1}^{\infty}\left|f\left(p^{\nu}\right) / p^{\nu s}\right|<+\infty$. Then

$$
F(s)=\sum_{n=1}^{\infty} f(n) / n^{s} \text { absolutely converges and } F(s)=\prod_{p} \sum_{\nu=0}^{\infty} \frac{f\left(p^{\nu}\right)}{p^{\nu s}} .
$$

An important special case is the following famous formula. By [9, p. 211], "In a paper [1] presented in 1737 and published in 1744, Euler reported on his stunning discovery (...)". The reference "[1]" is [3] here.

Proposition 22 For $\sigma>1$,

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

In the next theorem, which is not in [8], we handle absolutely convergent infinite products more generally.

Theorem 23 Suppose that $\left(z_{n}\right)=\left(z_{1}, z_{2}, \ldots\right) \subset \mathbb{C}$ is a sequence such that $\left|z_{1}\right|+\left|z_{2}\right|+\cdots<+\infty$. Then there is a number $z \in \mathbb{C}$ such that for every bijection $\rho: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{n}\left(1+z_{\rho(j)}\right)=z
$$

Proof. We set $p_{n}=\prod_{j=1}^{n}\left(1+z_{j}\right)$ and show that the sequence $\left(p_{n}\right)$ is bounded. We may assume that all $p_{n} \neq 0$ because if $p_{n}=0$ then $1+z_{m}=0$ for some $m \leq n$ and the theorem trivially holds with $z=0$. Since $\log (1+x) \leq x$ for every real $x \geq 0$, for every n it holds that

$$
\left|p_{n}\right| \leq \prod_{j=1}^{n}\left(1+\left|z_{j}\right|\right) \text { and } \log \left(\left|p_{n}\right|\right) \leq \sum_{j=1}^{n} \log \left(1+\left|z_{j}\right|\right) \leq \sum_{j=1}^{\infty}\left|z_{j}\right|
$$

Thus $\left|p_{n}\right| \leq c$ for every n and a constant $c>0$.
We show that the sequence $\left(p_{n}\right)$ is Cauchy. Let an $\varepsilon \in\left(0, \frac{1}{2}\right)$ be given. We take an n_{0} such that $\sum_{n>n_{0}} \log \left(1+\left|z_{n}\right|\right) \leq \varepsilon$. If $n>m \geq 1$ then by the triangle inequality

$$
\left|\frac{p_{n}}{p_{m}}-1\right|=\left|\prod_{j=m+1}^{n}\left(1+z_{j}\right)-1\right| \leq \prod_{j=m+1}^{n}\left(1+\left|z_{j}\right|\right)-1=: p(m, n)-1
$$

If $n>m \geq n_{0}$ then

$$
1 \leq p(m, n)=\exp (\log (p(m, n))) \leq \exp (\varepsilon) \leq 1+2 \varepsilon
$$

For $n>m \geq n_{0}$ then $\left|p_{m}-p_{n}\right|=\left|p_{m}\right| \cdot\left|1-p_{n} / p_{m}\right| \leq 2 c \varepsilon$. So $\left(p_{n}\right)$ is Cauchy and the $\operatorname{limit} \lim p_{n}=z$ exists.

Let ρ be any permutation of \mathbb{N}. We set $q_{n}=\prod_{j=1}^{n}\left(1+z_{\rho(j)}\right)$, assume that the above selected n_{0} is so large that also $\left|z-p_{n_{0}}\right| \leq \varepsilon$, and take an n_{1} such that $\left[n_{0}\right] \subset\left\{\rho(j) \mid j \in\left[n_{1}\right]\right\}$. If $n \geq n_{1}$ then by the triangle inequality

$$
\left|\frac{q_{n}}{p_{n_{0}}}-1\right|=\left|\prod_{j \in X}\left(1+z_{j}\right)-1\right| \leq \prod_{j \in X}\left(1+\left|z_{j}\right|\right)-1=: p(X)-1,
$$

for a finite set $X=X(n) \subset \mathbb{N}$ such that $X \cap\left[n_{0}\right]=\emptyset$. Like before $1 \leq p(X) \leq$ $1+2 \varepsilon$. Then for any $n \geq n_{1}$ we have

$$
\left|z-q_{n}\right| \leq\left|z-p_{n_{0}}\right|+\left|p_{n_{0}}-q_{n}\right| \leq \varepsilon+\left|p_{n_{0}}\right| \cdot\left|1-q_{n} / p_{n_{0}}\right| \leq(2 c+1) \varepsilon
$$

and $\lim q_{n}=z$ as well.
For the following Theorems 1.5 and 1.6 in [8] we need some notation. For $\left(a_{n}\right) \subset \mathbb{C}$ we set $A(t)=\sum_{n \leq \exp t} a_{n}$. The Dirichlet series of $\left(a_{n}\right)$ then can be expressed as

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\int_{0-}^{+\infty} \mathrm{e}^{-t s} \mathrm{~d} A(t)
$$

- this is the Laplace-Stieltjes transform of $A(t)$. By \mathcal{V} we denote the class of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with bounded variation on any bounded interval. See Lecture 1 for the required definitions.

Theorem 24 Let $A \in \mathcal{V}$ and let

$$
F(s)=\int_{0-}^{+\infty} \mathrm{e}^{-s t} \mathrm{~d} A(t)
$$

be the Laplace-Stieltjes transform of A. The following hold.

1. If the integral converges for $s=s_{0}=\sigma_{0}+i \tau_{0}$, then it converges on $\sigma>\sigma_{0}$ and the convergence is uniform in any sector $S(\vartheta)=\{s \in \mathbb{C}| | \arg (s-$ $\left.\left.s_{0}\right) \mid \leq \vartheta\right\}, \vartheta \in[0, \pi / 2)$.
2. If the integral converges absolutely for $s=s_{0}$, then it converges absolutely and uniformly on $\sigma \geq \sigma_{0}$.
3. $F(s)$ is holomorphic on the domain of convergence of the integral and for any $k \in \mathbb{N}_{0}$,

$$
F^{(k)}(s)=\int_{0-}^{+\infty}(-t)^{k} \mathrm{e}^{-s t} \mathrm{~d} A(t)
$$

Here, as usual, $s=\sigma+i \tau$. Let σ_{c} (resp. σ_{a}) be the infimum of $\sigma_{0} \in \mathbb{R}$ such that the given Dirichlet series $F(s)$ (resp. absolutely) converges on the half-plane $\sigma>\sigma_{0}$. We call σ_{c} (resp. σ_{a}) the abscissa of (resp. absolute) convergence of $F(s)$.

Theorem 25 If the integral $F(s)$ in the previous theorem has a holomorphic extension $\widetilde{F}(s)$ from $\sigma>\sigma_{c}$ to some points on $\sigma=\sigma_{c}$, then the equality

$$
\widetilde{F}(s)=\int_{0^{-}}^{+\infty} \mathrm{e}^{-s t} \mathrm{~d} A(t)
$$

holds at any point where the integral converges.
The following are Theorems 1.7, 1.8 and 1.9 (Phragmén-Landau), Corollary 1.10 and Theorems 1.11 and 1.12 in [8].

Theorem 26 For any Dirichlet series it holds that $\sigma_{c} \leq \sigma_{a} \leq \sigma_{c}+1$.
Theorem 27 If $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ vanishes for every large σ then $a_{n}=0$ for every n.

Unlike power series which always have a singularity on the boundary of the disc of convergence, Dirichlet series need not have singularity on $\sigma=\sigma_{c}$ (since this line is not compact). In the following situations there is a singularity.

Theorem 28 Let $A \in \mathcal{V}$ and let $F(s)$ be the integral in Theorem 24. If A is non-decreasing then $s=\sigma_{c}$ is a singularity of $F(s)$.

Corollary 29 If all a_{n} are real and all $a_{n} \geq 0$, than $s=\sigma_{c}$ is a singularity of $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$.

This corollary is usually called the Landau theorem, after the German mathematician Edmund Landau (1877-1938), and is the analogue of the VivantiPringsheim theorem that for any power series with nonnegative coefficients the radius of convergence is a singularity of the associated function. The reference given in [7] for the Landau theorem is [4]. Lars E. Phragmén (1863-1937) was a Swedish mathematician. If $U \subset \mathbb{C}$ is an open set, $z_{0} \in \partial U$ and $f: U \rightarrow \mathbb{C}$ is holomorphic, then we say that z_{0} is a singularity of f if f cannot be holomorphically extended to any neighborhood of z_{0}.

From the Phragmén-Landau theorem one deduces the following two oscillation theorems.

Theorem 30 If $A:(1,+\infty) \rightarrow \mathbb{R}$ is locally bounded and measurable, the integral

$$
H(s)=\int_{1}^{+\infty} \frac{A(t)}{t^{s+1}} \mathrm{~d} t
$$

has a finite abscissa of convergence σ_{c} and $H(s)$ has a holomorphic extension to $s=\sigma_{c}$, then for each $\varepsilon>0$ we have

$$
A(x)=\Omega_{ \pm}\left(x^{\sigma_{c}-\varepsilon}\right) .
$$

Theorem 31 Let $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ with real a_{n} have finite abscissa of convergence. Let a real $\sigma_{0}>0$ be such that $F(s)$ has holomorphic extension that includes the half-line $\left[\sigma_{0},+\infty\right)$ and has a pole on $\sigma=\sigma_{0}$. Then we have

$$
\sum_{n \leq x} a_{n}=\Omega_{ \pm}\left(x^{\sigma_{0}}\right)
$$

Here if $f, g: M \rightarrow \mathbb{R}$, where $M \subset \mathbb{R}$ has the limit point $+\infty$ and $g>0$ on M, we write that $f=\Omega_{+}(g)$, resp. $f=\Omega_{-}(g)$, if $\limsup _{x \rightarrow+\infty} f(x) / g(x)>0$, resp. $\liminf _{x \rightarrow+\infty} f(x) / g(x)<0$.

The following are Theorems 1.13 and 1.14 in [8]. Let $A \in \mathcal{V}, A(0 \pm)=0$ and

$$
F(s)=\int_{0^{-}}^{+\infty} \mathrm{e}^{-s t} \mathrm{~d} A(t)
$$

Theorem 32 Let σ_{c} be the abscissa of convergence of the above integral. The following hold.

1. For $\delta \in \mathbb{R}, A(x) \ll \mathrm{e}^{\delta x} \Rightarrow \sigma_{c} \leq \delta$.
2. If the above integral converges for $s=s_{0}$ with $\sigma_{0}>0 \Rightarrow A(x)=o\left(\mathrm{e}^{\sigma_{0} x}\right)$ $(x \rightarrow+\infty)$.
3. (...) with $\sigma_{0}<0 \Rightarrow A(x)=\alpha+o\left(\mathrm{e}^{\sigma_{0} x}\right)(x \rightarrow+\infty)$ for some $\alpha \in \mathbb{R}$.

Theorem 33 Let $\kappa=\lim \sup _{x \rightarrow+\infty} x^{-1} \log (|A(x)|)$. The following hold.

1. $\kappa \neq 0 \Rightarrow \sigma_{c}=\kappa$.
2. If $\kappa=0$ then either finite $\lim _{x \rightarrow+\infty} A(x)$ does not exist and $\sigma_{c}=0$, or this limit is $\alpha \in \mathbb{R}$ and $\sigma_{c}=\lim \sup _{x \rightarrow+\infty} x^{-1} \log (|A(x)-\alpha|) \leq 0$.

The following are Theorems 1.15 and 1.16 in [8].
Theorem 34 For $n \in \mathbb{N}$ we denote by $k(n)$ the product of prime divisors of n. Then for every $\varepsilon>0$, the bound

$$
N(x, y):=|\{n \leq x \mid k(n) \leq y\}|<_{\varepsilon} y x^{\varepsilon}
$$

holds uniformly for $x \geq y \geq 1$.
Theorem 35 The bound

$$
N(x, y) \ll y(\log y) \exp (\sqrt{8 \log (x / y)})
$$

holds uniformly for $x \geq y \geq 2$.
The following are Theorem 1.17, Lemma 1.18 (Dirichlet), Theorems 1.19, 1.20 and 1.21, and Corollary 1.22 in [8]. Her $\zeta(s)=\sum_{n \geq 1} 1 / n^{s}$ is the zetafunction.

Theorem 36 For every real $T>0$ there is a real $\tau>T$ such that

$$
\sup (\{|\zeta(\sigma+i \tau)| \mid \sigma>1\}) \geq \log \log (3+\tau) / 10
$$

This is proven by means of the next lemma.
Lemma 37 Let $N, D \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{N}$ be in \mathbb{R}. Then for every $Q \in \mathbb{N} \backslash\{1\}$ there exist $q \in \mathbb{N}$ with $D \leq q \leq D Q^{N}$ such that

$$
\max _{1 \leq j \leq N}\left\|q \alpha_{j}\right\| \leq 1 / Q
$$

Theorem 38 Let $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ have finite σ_{c}, and let $\sigma_{0}>\sigma_{c}$ and $\varepsilon>0$. Then for $|\tau| \geq 1$ the bound $(s=\sigma+i \tau)$

$$
F(s) \ll|\tau|^{1-\left(\sigma-\sigma_{c}\right)+\varepsilon}
$$

holds uniformly for $\sigma \in\left[\sigma_{0}, \sigma_{c}+1\right]$.
If $D \subset \mathbb{C}$ is a domain (an open connected set) and $F: D \rightarrow \mathbb{C}$ is holomorphic, we say that F is of finite order on D if $F(s) \ll|\tau|^{A}(|\tau| \geq 1)$ on D for some $A>0(s=\sigma+i \tau)$. By $\mu(\sigma)=\mu_{F}(\sigma)$ we then denote the infimum

$$
\inf \left(\left\{\left.\xi \in \mathbb{R}|F(s) \ll| \tau\right|^{\xi} \text { for } s=\sigma+i \tau \in D \text { and }|\tau| \geq 1\right\}\right) .
$$

Theorem 39 Let $F(s)$ be a function of finite order in the vertical strip $\sigma_{1} \leq$ $\sigma \leq \sigma_{2}$. Then the function $\mu(s)$ is convex in this interval. In particular, it is continuous on (σ_{1}, σ_{2}).

Theorem 40 For any Dirichlet series $F(s), \mu(\sigma)=0$ for $\sigma>\sigma_{a}$. Moreover, $\mu(\sigma)$ is non-increasing.

Corollary 41 Let $F(s)$ be a Dirichlet series and let $\sigma_{0}<\sigma_{a}$. If $F(s)$ has finite order for every $\sigma>\sigma_{0}$ then $\mu\left(\sigma_{a}\right)=0$.

References

[1] E. Artin, Einführung in der Theorie der Gamma-Funktion, Teubner, Leipzig 1931
[2] E. Artin, The Gamma Function, Holt, Reinhart and Winston, New York 1964
[3] L. Euler, Opera Omnia, I-14, 216-.
[4] E. Landau, Über einen Satz von Tschebyschev, Math. Ann. 61 (1905), 527-550
[5] A.-M. Legendre, Recherches sur diverse sortes d'intégrales définies, Mémoires de l'Institut de France 10 (1809), 416-509
[6] Mistaken portrait, https://en.wikipedia.org/wiki/Adrien-Marie_ Legendre\#Mistaken_portrait
[7] H. L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, UK 2007
[8] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition. Translated by Patrick D. F. Fion)
[9] V.S. Varadarajan, Euler through Time: A New Look at Old Themes, AMS, Provience, RI 2006
[10] K. Weierstrass, Über die Theorie der analytischen Fakultäten, J. Reine Angew. Math. 51 (1856), 1-60

