Lecture 5. The function I'. Dirichlet series
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In the fifth lecture we arrive in the second part Complex Analysis Methods of
G. Tenenbaum’s book [8]. We cover Chapter I1.0. The Euler Gamma function
and Chapter I1.1. Generating functions: Dirichlet series, up to page 217.

Chapter I1.0. The Euler Gamma function

The following are Theorems 0.1 (Euler) and 0.2 (Functional equation) and
Corollary 0.3 in [8]. Two equivalent definitions of the function I are due to
L. Euler: for complex numbers s = o + 7,

oo

1 1+1/n . e s—1 —t
;1;[ Trom (s ¢ Z\ N) andF(s)—/O t*"etdt (0>0).

Both by [8, p. 169] and [9, p. 101], the function I' appeared first in a letter of
L. Euler to Ch. Goldbach in 1729.

Theorem 1 Forn € N let
n
Tn(s) = / (1 — t/n)nts_ldt (e >0).
0
Then we have

n°n!
s(s+1)...(s+n)

Tn(s) =

)

and oo
lim '), (s) =T(s) = / t*"te7tdt (0>0).
0

n—oo

Theorem 2 We have
I'(s+1)=sl(s) (0>0).
Corollary 3 For alln € No, I'(n + 1) = nl.

The following is Theorem 0.4 in [8]. Recall that a function f: I — (0, +00),
where I C R is an interval, is logarithmically convex (on I) if the composition
log(f): I — R is a convex function.



Theorem 4 The function I' is logarithmically convex on (0,400).
The following is Theorem 0.5 (Artin) in [8].

Theorem 5 Suppose that ®: (0,+00) — (0,400) is differentiable, logarithmi-
cally conver and that x®(x) = ®(x + 1) for any © > 0. Then for any x > 0,

&(z) = (1) (x).

Theorem 5 is due to Emil Artin (1898-1962) who grew up in Reichenberg in
Bohmen, today Liberec v Cechéch (Czechia). In [7, Appendix C] the references
given for Artin’s theorem are [1, 2].

The following are Theorem 0.6 (Weierstrass) and Corollary 0.7 in [8]. As
usual, s = ¢ + i7 and + is the Euler constant.

Theorem 6 For any o > 0,

1 b Ny
@:SGVS'H(I—FS/.])G /3

j=1
The right side defines an entire continuation of 1/T(s).

This theorem is due to Karl Weierstrafi (1815-1897). [7, Appendix C] gives the
reference [10].

Corollary 7 We have v = —I"(1).

The following are Theorem 0.8 and Corollaries 0.9, 0.10 (Real Stirling’s
formula) and 0.11 (Legendre duplication formula) in [8].

Theorem 8 For any real x,y > 0 the beta function
['(z)'(y)
D(z+y)

Proof. This is the first of two proofs in [8] and goes by change of variables and
the Fubini theorem. The second proof uses Artin’s theorem. From

+oo +oo
I'(2)T(y) = / / ety e  dt du
0 0

we get by introducing the variable v via u = tv and by using the Fubini theorem

that T'(z)I'(y) = OJFOO 0+°° t*=le~tt¥pY¥—le~vt dt dv indeed equals

400 1 400 (t(v + 1))x+y—1e—(v+1)t dd
) v o (’U+ 1)z+y71 v

oo I (z + y) oo y—1 e—1_ dv
= I dyp=T v 1
/0 T 1) dv (a:—HJ)/O (v+1) (v+1) (v+1)2

1
B(z, y) ::/ 1 -t tdt =
0

'z +vy) /0 w? (1 —w)* P dw =T(x +y)B(z, y).



Corollary 9 For any real z,y > 0,

F(m)F(y)_ /2 sin )25 (cos 9)2v 1
7““@_2/0 (sin#)2~ (cos 9)2 1 dv

In particular, T'(3) = /7.
Corollary 10 We have (z € R)

Nx+1)~z% "V2rz (z— +00).
Corollary 11 For any x > 0,

D(z/2) -T((x +1)/2) = V7 - 27T (2).

[7, Appendix C] gives for this duplication formula of Adrien-Marie Legendre
(1752-1833) (for the troubles with his portrait see [6]) the reference [5].

The following are Theorem 0.12 (Complex Stirling’s formula) and Corol-
laries 0.13 (Behavior in vertical strips), 0.14 (Mellin inversion formula), 0.15
(Reflection formula) and 0.16 (Euler) in [8].

Theorem 12 For any s € C\ (—00,0],

de¢
s+t

+oo
Log(I'(s)) = (s — 3)Log s — s + % log(27) — /0 By (t)

Here Log: C\ (—o00,0] — C is the so called principal branch of the complex
logarithm: Log(rexp(ip)) = logr + iy for any real r > 0 and ¢ € (—m,m).
On (0,+00) it coincides with the real logarithm log. Bj(t) is the 1-periodic
extension of the first Bernoulli polynomial by (t) = ¢t — 3: [0,1) — R, see the
Euler—-Maclaurin summation in Lecture 1.

Corollary 13 Let 05 > oy be real and h, (1) = Tlog|t| — 7 + i7(0 — %)sgnr.
Then it holds uniformly for o € [o1,02] and |7| > 1 that

D(s) = (1+O(1/7))V2r - 7|77/ 2e ITI/2eihe (7).
Here as usual s = o + iT.

Corollary 14 For any x,0 > 0,

Y 1 o+i00 .
el = — T(s)z™*ds.

27” o—100

Corollary 15 For any s € C\ Z,

™

T(s)I'(1—s) = Sn(ms)



Corollary 16 For any z € C,
sin(rz) 1 ( 22
EE_TI0-5).

The following are Theorem 0.17 (Hankel’s formula) and Corollary 0.18 in
[8]. Hankel’s contour H = H(R) for R € (0,1) is the submap of

(0, +00) X [—m, 7] 3 (1, p) — rexplip) =s € C

such that first » runs from +oco to R and ¢ = —m, then r = R and ¢ runs
from — to 7, and finally r runs from R to +oo and ¢ = 7. See [8, p. 179] for
a picture.

Theorem 17 Let H be a Hankel contour. Then for any z € C,

1 *L/ s *e®ds
L(z) 27 Jy ’

Corollary 18 For X > 1, let H(X) be the restriction of H obtained by replac-
ing +oo with X. Then it holds uniformly in z € C that

1 1
s %e’ds = ——

— + OAT*IT( + |2])e=X/?) .

Chapter II.1. Generating functions: Dirichlet series

Next in [8] come Definition 1.1 and Theorem 1.2. Recall that « is the Dirich-
let convolution.

Definition 19 Let f: N — C. The Dirichlet series of f is the function

F(s) = Z ffg)
n=1

defined for any s € C where this series converges.

Here n® = exp(slogn) where expz = > ., 2"/n! for any z € C. The real
logz: (0,+0c) — R is the inverse of the real expx: R — (0, +0c0).

Theorem 20 Let s € C and f,g,h: N — C, with respective Dirichlet series
F,G,H. If h = f x g and both F(s) and G(s) absolutely converge, the so does
H(s) and H(s) = F(s)G(s).

Next in [8] come Theorem 1.3 and Proposition 1.4 (Euler’s formula). In the
latter proposition, ((s) =Yoo, 1/n®.



Theorem 21 Let s € C and f: N — C be multiplicative, with the Dirichlet
series F, and let 37 307 | |f(p”)/p"*| < 4+o00. Then

V

Z f(n)/n® absolutely converges and F(s) = Hi

n=1 p v=0

An important special case is the following famous formula. By [9, p. 211],
“In a paper [1] presented in 1737 and published in 1744, Euler reported on his
stunning discovery (...)”. The reference “[1]” is [3] here.

s):1;[<1—p13>1.

In the next theorem, which is not in [8], we handle absolutely convergent
infinite products more generally.

Proposition 22 Foro > 1,

Theorem 23 Suppose that (z,) = (21,22,...) C C is a sequence such that
|z1] + |z2] + - -+ < +oo. Then there is a number z € C such that for every
bijection p: N — N,

nh_)rr;ol:[ 1+ 2,5)) = 2.

Proof. We set p,, = H?Zl(l + z;) and show that the sequence (p,,) is bounded.
We may assume that all p,, # 0 because if p,, = 0 then 1+ z,, = 0 for some
m < n and the theorem trivially holds with z = 0. Since log(1 + z) < z for
every real x > 0, for every n it holds that

n

ol < JT@+ 3 and Togtlpnl) < 3 tog(1 + 153 < 3 1
j=1 j=1

Jj=1

Thus |p,| < ¢ for every n and a constant ¢ > 0.
We show that the sequence (py) is Cauchy. Let an e € (0, 1) be given. We
take an ng such that > log(1+|zn]) <e. Ifn>m>1 then by the triangle

n>no
inequality
’—1‘ H (1+Zj)—].’< H (14 |z)) —1=:p(m,n)—1.
j=m+1 j=m+1

If n > m > ng then
1 < p(m,n) = exp(log(p(m,n))) < exp(e) <1+ 2.

For n > m > ng then |pm — pu| = [Pm| - |1 = Pn/Pm| < 2ce. So (p,) is Cauchy
and the limit lim p,, = z exists.



Let p be any permutation of N. We set ¢, = []_; (1 4 z,(;)), assume that
the above selected ng is so large that also |z — pnof < ¢, and take an n; such

that [no] C {p(4) | 4 € [n1]}. If n > ny then by the triangle inequality

%_1’:

Png

H<1+zj>—1]s T+ 1) — 1= p(x) — 1,

jex jeX

for a finite set X = X (n) C N such that X N [ng] = (. Like before 1 < p(X) <
1+ 2¢. Then for any n > n; we have

|2 = an| < |2 = Dol + [Pro — anl < €+ [Prol - 11— @n/Pnol < (2c+1)e
and lim ¢, = z as well. O
For the following Theorems 1.5 and 1.6 in [8] we need some notation. For

(an) C C we set A(t) = >, coxps an- The Dirichlet series of (a,) then can be
expressed as

o . 400
Fs)=Y % = / ot dA(?)
n=1 -

— this is the Laplace—Stieltjes transform of A(t). By V we denote the class
of functions f: R — R with bounded variation on any bounded interval. See
Lecture 1 for the required definitions.

Theorem 24 Let A €V and let
+oo
F(s) = / ot dA(t)
0—

be the Laplace—Stieltjes transform of A. The following hold.

1. If the integral converges for s = sqg = oo+ 4719, then it converges on o > o
and the convergence is uniform in any sector S(¥) = {s € C | |arg(s —

s0)| <9}, ¥ €]0,7/2).

2. If the integral converges absolutely for s = sq, then it converges absolutely
and uniformly on o > og.

3. F(s) is holomorphic on the domain of convergence of the integral and for
any k € Ny,

F®F)(s) = / +oo(ft)ke75t dA(t).

Here, as usual, s = o +i7. Let o, (resp. o,) be the infimum of oy € R such that
the given Dirichlet series F(s) (resp. absolutely) converges on the half-plane

o > 0g. We call o, (resp. o,) the abscissa of (resp. absolute) convergence of



Theorem 25 If the integral F(s) in the previous theorem has a holomorphic
extension F(s) from o > o, to some points on 0 = o, then the equality

N 00
F(s) = / e STdA(t)

holds at any point where the integral converges.

The following are Theorems 1.7, 1.8 and 1.9 (Phragmén—Landau), Corol-
lary 1.10 and Theorems 1.11 and 1.12 in [8].

Theorem 26 For any Dirichlet series it holds that 0. < 0, < 0.+ 1.

Theorem 27 If F'(s) = >, <, an/n° vanishes for every large o then a, = 0
for every n. -

Unlike power series which always have a singularity on the boundary of the disc
of convergence, Dirichlet series need not have singularity on ¢ = o, (since this
line is not compact). In the following situations there is a singularity.

Theorem 28 Let A € V and let F(s) be the integral in Theorem 24. If A is
non-decreasing then s = o, is a singularity of F(s).

Corollary 29 If all a,, are real and all a, > 0, than s = o, is a singularity of
F(s) = anl an/n.

This corollary is usually called the Landau theorem, after the German math-
ematician Fdmund Landau (1877-1938), and is the analogue of the Vivanti—
Pringsheim theorem that for any power series with nonnegative coefficients the
radius of convergence is a singularity of the associated function. The reference
given in [7] for the Landau theorem is [4]. Lars E. Phragmén (1865-1937) was
a Swedish mathematician. If U C C is an open set, zg € OU and f: U — C is
holomorphic, then we say that zy is a singularity of f if f cannot be holomor-
phically extended to any neighborhood of zj.

From the Phragmén—Landau theorem one deduces the following two oscilla-
tion theorems.

Theorem 30 If A: (1,+00) — R is locally bounded and measurable, the inte-

gral
oo A(t)
H(s) = /1 pr dt

has a finite abscissa of convergence o. and H(s) has a holomorphic extension
to s = o, then for each € > 0 we have

Az) = Q4 (27°77) .



Theorem 31 Let F(s) =), <, an/n® with real a,, have finite abscissa of con-
vergence. Let a real og > 0 be such that F(s) has holomorphic extension that
includes the half-line [0y, +00) and has a pole on o = o¢. Then we have

Z an = Q4 (x"o) .

n<z

Here if f,g: M — R, where M C R has the limit point +0co0 and g > 0 on M,
we write that f = Q4 (g), resp. f = Q_(g), if limsup,_,, . f(z)/g(x) > 0, resp.

liminf, 4o f(z)/g(z) <O0.
The following are Theorems 1.13 and 1.14 in [8]. Let A € V, A(0£) = 0 and

+o00
Fls) = / o=t dA(t)

Theorem 32 Let o, be the abscissa of convergence of the above integral. The
following hold.

1. For § € R, A(z) < &% = 0. < 4.

2. If the above integral converges for s = so with o9 > 0 = A(z) = o(e”"‘”)
(x — +00).

3. (...) with oy <0 = A(z) = a+ 0(e”") (x — +o0) for some o € R.
Theorem 33 Let k = limsup,_, , . x~ ' log(|A(z)|). The following hold.
1. k#0 = 0. = k.

2. If Kk = 0 then either finite lim,_, o, A(x) does not exist and o, = 0, or
this limit is « € R and o, = limsup,_, = log(|A(z) — a|) < 0.

The following are Theorems 1.15 and 1.16 in [8].

Theorem 34 For n € N we denote by k(n) the product of prime divisors of n.
Then for every € > 0, the bound

N(z,y) = {n <z [k(n) <y} < ya®
holds uniformly for x >y > 1.
Theorem 35 The bound
N(z, y) < y(logy) exp (/8log(z/y))
holds uniformly for x >y > 2.

The following are Theorem 1.17, Lemma 1.18 (Dirichlet), Theorems 1.19,
1.20 and 1.21, and Corollary 1.22 in [8]. Her ((s) = Y, 1/n® is the zeta-
function. -



Theorem 36 For every real T > 0 there is a real T > T such that
sup ({|¢(o +iT)| | 0 > 1}) > loglog(3 4 7)/10.
This is proven by means of the next lemma.

Lemma 37 Let N,D € Nand ay, ..., ay be inR. Then for every Q € N\ {1}
there exist ¢ € N with D < q¢ < DQY such that

1<1/Q.
max flgagll <1/@Q

Theorem 38 Let F(s) = >, -, an/n° have finite o., and let oy > o. and
€ >0. Then for |7| > 1 the bound (s = o +iT)

F(s) < |r|t=(o—oe)+e
holds uniformly for o € [0, 0. + 1].

If D C Cis adomain (an open connected set) and F': D — C is holomorphic,
we say that F is of finite order on D if F(s) < |7|4 (7| > 1) on D for some
A>0(s=0+ir). By p(o) = pr(c) we then denote the infimum

inf ({¢ € R| F(s) < |r]* for s=0 +ir € D and |7] > 1}).

Theorem 39 Let F(s) be a function of finite order in the vertical strip o1 <
o < 0oy. Then the function p(s) is convex in this interval. In particular, it is
continuous on (01,02).

Theorem 40 For any Dirichlet series F(s), u(o) = 0 for o > o,. Moreover,
w(o) is non-increasing.

Corollary 41 Let F(s) be a Dirichlet series and let oy < 4. If F(s) has finite
order for every o > o then u(o,) = 0.
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