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In the fifth lecture we arrive in the second part Complex Analysis Methods of
G. Tenenbaum’s book [8]. We cover Chapter II.0. The Euler Gamma function
and Chapter II.1. Generating functions: Dirichlet series, up to page 217.

Chapter II.0. The Euler Gamma function

The following are Theorems 0.1 (Euler) and 0.2 (Functional equation) and
Corollary 0.3 in [8]. Two equivalent definitions of the function Γ are due to
L. Euler: for complex numbers s = σ + iτ ,

Γ(s) =
1

s

∞∏
n=1

(1 + 1/n)s

1 + s/n
(s 6∈ Z \ N) and Γ(s) =

∫ +∞

0

ts−1e−t dt (σ > 0) .

Both by [8, p. 169] and [9, p. 101], the function Γ appeared first in a letter of
L. Euler to Ch. Goldbach in 1729.

Theorem 1 For n ∈ N let

Γn(s) =

∫ n

0

(
1− t/n

)n
ts−1dt (σ > 0) .

Then we have

Γn(s) =
nsn!

s(s+ 1) . . . (s+ n)
,

and

lim
n→∞

Γn(s) = Γ(s) =

∫ +∞

0

ts−1e−t dt (σ > 0) .

Theorem 2 We have

Γ(s+ 1) = sΓ(s) (σ > 0) .

Corollary 3 For all n ∈ N0, Γ(n+ 1) = n!.

The following is Theorem 0.4 in [8]. Recall that a function f : I → (0,+∞),
where I ⊂ R is an interval, is logarithmically convex (on I) if the composition
log(f) : I → R is a convex function.

1



Theorem 4 The function Γ is logarithmically convex on (0,+∞).

The following is Theorem 0.5 (Artin) in [8].

Theorem 5 Suppose that Φ: (0,+∞) → (0,+∞) is differentiable, logarithmi-
cally convex and that xΦ(x) = Φ(x+ 1) for any x > 0. Then for any x > 0,

Φ(x) = Φ(1)Γ(x) .

Theorem 5 is due to Emil Artin (1898–1962) who grew up in Reichenberg in
Böhmen, today Liberec v Čechách (Czechia). In [7, Appendix C] the references
given for Artin’s theorem are [1, 2].

The following are Theorem 0.6 (Weierstrass) and Corollary 0.7 in [8]. As
usual, s = σ + iτ and γ is the Euler constant.

Theorem 6 For any σ > 0,

1

Γ(s)
= seγs ·

∞∏
j=1

(
1 + s/j

)
e−s/j .

The right side defines an entire continuation of 1/Γ(s).

This theorem is due to Karl Weierstraß (1815–1897). [7, Appendix C] gives the
reference [10].

Corollary 7 We have γ = −Γ′(1).

The following are Theorem 0.8 and Corollaries 0.9, 0.10 (Real Stirling’s
formula) and 0.11 (Legendre duplication formula) in [8].

Theorem 8 For any real x, y > 0 the beta function

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof. This is the first of two proofs in [8] and goes by change of variables and
the Fubini theorem. The second proof uses Artin’s theorem. From

Γ(x)Γ(y) =

∫ +∞

0

∫ +∞

0

tx−1e−tuy−1e−u dtdu

we get by introducing the variable v via u = tv and by using the Fubini theorem
that Γ(x)Γ(y) =

∫ +∞
0

∫ +∞
0

tx−1e−ttyvy−1e−vt dtdv indeed equals∫ +∞

0

vy−1
∫ +∞

0

(t(v + 1))x+y−1e−(v+1)t

(v + 1)x+y−1
dtdv

=

∫ +∞

0

vy−1Γ(x+ y)

(v + 1)x+y
dv = Γ(x+ y)

∫ +∞

0

(
v
v+1

)y−1( 1
v+1

)x−1 dv

(v + 1)2

= Γ(x+ y)

∫ 1

0

wy−1(1− w)x−1 dw = Γ(x+ y)B(x, y) .

2
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Corollary 9 For any real x, y > 0,

Γ(x)Γ(y)

Γ(x+ y)
= 2

∫ π/2

0

(sinϑ)2x−1(cosϑ)2y−1 dϑ

In particular, Γ( 1
2 ) =

√
π.

Corollary 10 We have (x ∈ R)

Γ(x+ 1) ∼ xxe−x
√

2πx (x→ +∞) .

Corollary 11 For any x > 0,

Γ(x/2) · Γ((x+ 1)/2) =
√
π · 21−xΓ(x) .

[7, Appendix C] gives for this duplication formula of Adrien-Marie Legendre
(1752–1833) (for the troubles with his portrait see [6]) the reference [5].

The following are Theorem 0.12 (Complex Stirling’s formula) and Corol-
laries 0.13 (Behavior in vertical strips), 0.14 (Mellin inversion formula), 0.15
(Reflection formula) and 0.16 (Euler) in [8].

Theorem 12 For any s ∈ C \ (−∞, 0],

Log(Γ(s)) = (s− 1
2 )Log s− s+ 1

2 log(2π)−
∫ +∞

0

B1(t)
dt

s+ t
.

Here Log : C \ (−∞, 0] → C is the so called principal branch of the complex
logarithm: Log

(
r exp(iϕ)

)
= log r + iϕ for any real r > 0 and ϕ ∈ (−π, π).

On (0,+∞) it coincides with the real logarithm log. B1(t) is the 1-periodic
extension of the first Bernoulli polynomial b1(t) = t − 1

2 : [0, 1) → R, see the
Euler–Maclaurin summation in Lecture 1.

Corollary 13 Let σ2 > σ1 be real and hσ(τ) = τ log |τ | − τ + 1
2π(σ − 1

2 )sgnτ .
Then it holds uniformly for σ ∈ [σ1, σ2] and |τ | ≥ 1 that

Γ(s) =
(
1 +O(1/τ)

)√
2π · |τ |σ−1/2e−π|τ |/2eihσ(τ) .

Here as usual s = σ + iτ .

Corollary 14 For any x, σ > 0,

e−x =
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)x−s ds .

Corollary 15 For any s ∈ C \ Z,

Γ(s)Γ(1− s) =
π

sin(πs)
.

3



Corollary 16 For any z ∈ C,

sin(πz)

πz
=

∞∏
n=1

(
1− z2

n2

)
.

The following are Theorem 0.17 (Hankel’s formula) and Corollary 0.18 in
[8]. Hankel’s contour H = H(R) for R ∈ (0, 1) is the submap of

(0, +∞)× [−π, π] 3 (r, ϕ) 7→ r exp(iϕ) = s ∈ C

such that first r runs from +∞ to R and ϕ = −π, then r = R and ϕ runs
from −π to π, and finally r runs from R to +∞ and ϕ = π. See [8, p. 179] for
a picture.

Theorem 17 Let H be a Hankel contour. Then for any z ∈ C,

1

Γ(z)
=

1

2πi

∫
H

s−zes ds .

Corollary 18 For X > 1, let H(X) be the restriction of H obtained by replac-
ing +∞ with X. Then it holds uniformly in z ∈ C that

1

2πi

∫
H(X)

s−zes ds =
1

Γ(z)
+O

(
47|z|Γ(1 + |z|)e−X/2

)
.

Chapter II.1. Generating functions: Dirichlet series

Next in [8] come Definition 1.1 and Theorem 1.2. Recall that ∗ is the Dirich-
let convolution.

Definition 19 Let f : N→ C. The Dirichlet series of f is the function

F (s) =

∞∑
n=1

f(n)

ns

defined for any s ∈ C where this series converges.

Here ns = exp(s log n) where exp z =
∑
n≥0 z

n/n! for any z ∈ C. The real
log x : (0,+∞)→ R is the inverse of the real expx : R→ (0,+∞).

Theorem 20 Let s ∈ C and f, g, h : N → C, with respective Dirichlet series
F,G,H. If h = f ∗ g and both F (s) and G(s) absolutely converge, the so does
H(s) and H(s) = F (s)G(s).

Next in [8] come Theorem 1.3 and Proposition 1.4 (Euler’s formula). In the
latter proposition, ζ(s) =

∑∞
n=1 1/ns.
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Theorem 21 Let s ∈ C and f : N → C be multiplicative, with the Dirichlet
series F , and let

∑
p

∑∞
ν=1 |f(pν)/pνs| < +∞. Then

F (s) =

∞∑
n=1

f(n)/ns absolutely converges and F (s) =
∏
p

∞∑
ν=0

f(pν)

pνs
.

An important special case is the following famous formula. By [9, p. 211],
“In a paper [1] presented in 1737 and published in 1744, Euler reported on his
stunning discovery (. . . )”. The reference “[1]” is [3] here.

Proposition 22 For σ > 1,

ζ(s) =
∏
p

(
1− 1

ps

)−1
.

In the next theorem, which is not in [8], we handle absolutely convergent
infinite products more generally.

Theorem 23 Suppose that (zn) = (z1, z2, . . . ) ⊂ C is a sequence such that
|z1| + |z2| + · · · < +∞. Then there is a number z ∈ C such that for every
bijection ρ : N→ N,

lim
n→∞

n∏
j=1

(
1 + zρ(j)

)
= z .

Proof. We set pn =
∏n
j=1(1 + zj) and show that the sequence (pn) is bounded.

We may assume that all pn 6= 0 because if pn = 0 then 1 + zm = 0 for some
m ≤ n and the theorem trivially holds with z = 0. Since log(1 + x) ≤ x for
every real x ≥ 0, for every n it holds that

|pn| ≤
n∏
j=1

(1 + |zj |) and log(|pn|) ≤
n∑
j=1

log(1 + |zj |) ≤
∞∑
j=1

|zj | .

Thus |pn| ≤ c for every n and a constant c > 0.
We show that the sequence (pn) is Cauchy. Let an ε ∈ (0, 12 ) be given. We

take an n0 such that
∑
n>n0

log(1+ |zn|) ≤ ε. If n > m ≥ 1 then by the triangle
inequality∣∣∣∣ pnpm − 1

∣∣∣∣ =

∣∣∣∣ n∏
j=m+1

(1 + zj)− 1

∣∣∣∣ ≤ n∏
j=m+1

(1 + |zj |)− 1 =: p(m, n)− 1 .

If n > m ≥ n0 then

1 ≤ p(m,n) = exp(log(p(m,n))) ≤ exp(ε) ≤ 1 + 2ε .

For n > m ≥ n0 then |pm − pn| = |pm| · |1 − pn/pm| ≤ 2cε. So (pn) is Cauchy
and the limit lim pn = z exists.
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Let ρ be any permutation of N. We set qn =
∏n
j=1(1 + zρ(j)), assume that

the above selected n0 is so large that also |z − pn0
| ≤ ε, and take an n1 such

that [n0] ⊂ {ρ(j) | j ∈ [n1]}. If n ≥ n1 then by the triangle inequality∣∣∣∣ qnpn0

− 1

∣∣∣∣ =

∣∣∣∣ ∏
j∈X

(1 + zj)− 1

∣∣∣∣ ≤ ∏
j∈X

(1 + |zj |)− 1 =: p(X)− 1 ,

for a finite set X = X(n) ⊂ N such that X ∩ [n0] = ∅. Like before 1 ≤ p(X) ≤
1 + 2ε. Then for any n ≥ n1 we have

|z − qn| ≤ |z − pn0
|+ |pn0

− qn| ≤ ε+ |pn0
| · |1− qn/pn0

| ≤ (2c+ 1)ε

and lim qn = z as well. 2

For the following Theorems 1.5 and 1.6 in [8] we need some notation. For
(an) ⊂ C we set A(t) =

∑
n≤exp t an. The Dirichlet series of (an) then can be

expressed as

F (s) =

∞∑
n=1

an
ns

=

∫ +∞

0−
e−ts dA(t)

— this is the Laplace–Stieltjes transform of A(t). By V we denote the class
of functions f : R → R with bounded variation on any bounded interval. See
Lecture 1 for the required definitions.

Theorem 24 Let A ∈ V and let

F (s) =

∫ +∞

0−
e−st dA(t)

be the Laplace–Stieltjes transform of A. The following hold.

1. If the integral converges for s = s0 = σ0 + iτ0, then it converges on σ > σ0
and the convergence is uniform in any sector S(ϑ) = {s ∈ C | | arg(s −
s0)| ≤ ϑ}, ϑ ∈ [0, π/2).

2. If the integral converges absolutely for s = s0, then it converges absolutely
and uniformly on σ ≥ σ0.

3. F (s) is holomorphic on the domain of convergence of the integral and for
any k ∈ N0,

F (k)(s) =

∫ +∞

0−
(−t)ke−st dA(t) .

Here, as usual, s = σ+ iτ . Let σc (resp. σa) be the infimum of σ0 ∈ R such that
the given Dirichlet series F (s) (resp. absolutely) converges on the half-plane
σ > σ0. We call σc (resp. σa) the abscissa of (resp. absolute) convergence of
F (s).
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Theorem 25 If the integral F (s) in the previous theorem has a holomorphic

extension F̃ (s) from σ > σc to some points on σ = σc, then the equality

F̃ (s) =

∫ +∞

0−
e−st dA(t)

holds at any point where the integral converges.

The following are Theorems 1.7, 1.8 and 1.9 (Phragmén–Landau), Corol-
lary 1.10 and Theorems 1.11 and 1.12 in [8].

Theorem 26 For any Dirichlet series it holds that σc ≤ σa ≤ σc + 1.

Theorem 27 If F (s) =
∑
n≥1 an/n

s vanishes for every large σ then an = 0
for every n.

Unlike power series which always have a singularity on the boundary of the disc
of convergence, Dirichlet series need not have singularity on σ = σc (since this
line is not compact). In the following situations there is a singularity.

Theorem 28 Let A ∈ V and let F (s) be the integral in Theorem 24. If A is
non-decreasing then s = σc is a singularity of F (s).

Corollary 29 If all an are real and all an ≥ 0, than s = σc is a singularity of
F (s) =

∑
n≥1 an/n

s.

This corollary is usually called the Landau theorem, after the German math-
ematician Edmund Landau (1877–1938), and is the analogue of the Vivanti–
Pringsheim theorem that for any power series with nonnegative coefficients the
radius of convergence is a singularity of the associated function. The reference
given in [7] for the Landau theorem is [4]. Lars E. Phragmén (1863–1937) was
a Swedish mathematician. If U ⊂ C is an open set, z0 ∈ ∂U and f : U → C is
holomorphic, then we say that z0 is a singularity of f if f cannot be holomor-
phically extended to any neighborhood of z0.

From the Phragmén–Landau theorem one deduces the following two oscilla-
tion theorems.

Theorem 30 If A : (1,+∞) → R is locally bounded and measurable, the inte-
gral

H(s) =

∫ +∞

1

A(t)

ts+1
dt

has a finite abscissa of convergence σc and H(s) has a holomorphic extension
to s = σc, then for each ε > 0 we have

A(x) = Ω±
(
xσc−ε

)
.
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Theorem 31 Let F (s) =
∑
n≥1 an/n

s with real an have finite abscissa of con-
vergence. Let a real σ0 > 0 be such that F (s) has holomorphic extension that
includes the half-line [σ0,+∞) and has a pole on σ = σ0. Then we have∑

n≤x

an = Ω±
(
xσ0
)
.

Here if f, g : M → R, where M ⊂ R has the limit point +∞ and g > 0 on M ,
we write that f = Ω+(g), resp. f = Ω−(g), if lim supx→+∞ f(x)/g(x) > 0, resp.
lim infx→+∞ f(x)/g(x) < 0.

The following are Theorems 1.13 and 1.14 in [8]. Let A ∈ V, A(0±) = 0 and

F (s) =

∫ +∞

0−
e−st dA(t)

Theorem 32 Let σc be the abscissa of convergence of the above integral. The
following hold.

1. For δ ∈ R, A(x)� eδx ⇒ σc ≤ δ.

2. If the above integral converges for s = s0 with σ0 > 0 ⇒ A(x) = o
(
eσ0x

)
(x→ +∞).

3. (. . . ) with σ0 < 0 ⇒ A(x) = α+ o
(
eσ0x

)
(x→ +∞) for some α ∈ R.

Theorem 33 Let κ = lim supx→+∞ x−1 log(|A(x)|). The following hold.

1. κ 6= 0 ⇒ σc = κ.

2. If κ = 0 then either finite limx→+∞A(x) does not exist and σc = 0, or
this limit is α ∈ R and σc = lim supx→+∞ x−1 log(|A(x)− α|) ≤ 0.

The following are Theorems 1.15 and 1.16 in [8].

Theorem 34 For n ∈ N we denote by k(n) the product of prime divisors of n.
Then for every ε > 0, the bound

N(x, y) := |{n ≤ x | k(n) ≤ y}| �ε yx
ε

holds uniformly for x ≥ y ≥ 1.

Theorem 35 The bound

N(x, y)� y(log y) exp
(√

8 log(x/y)
)

holds uniformly for x ≥ y ≥ 2.

The following are Theorem 1.17, Lemma 1.18 (Dirichlet), Theorems 1.19,
1.20 and 1.21, and Corollary 1.22 in [8]. Her ζ(s) =

∑
n≥1 1/ns is the zeta-

function.
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Theorem 36 For every real T > 0 there is a real τ > T such that

sup
(
{|ζ(σ + iτ)| | σ > 1}

)
≥ log log(3 + τ)/10 .

This is proven by means of the next lemma.

Lemma 37 Let N,D ∈ N and α1, . . . , αN be in R. Then for every Q ∈ N\{1}
there exist q ∈ N with D ≤ q ≤ DQN such that

max
1≤j≤N

‖qαj‖ ≤ 1/Q .

Theorem 38 Let F (s) =
∑
n≥1 an/n

s have finite σc, and let σ0 > σc and
ε > 0. Then for |τ | ≥ 1 the bound (s = σ + iτ)

F (s)� |τ |1−(σ−σc)+ε

holds uniformly for σ ∈ [σ0, σc + 1].

If D ⊂ C is a domain (an open connected set) and F : D → C is holomorphic,
we say that F is of finite order on D if F (s) � |τ |A (|τ | ≥ 1) on D for some
A > 0 (s = σ + iτ). By µ(σ) = µF (σ) we then denote the infimum

inf
(
{ξ ∈ R | F (s)� |τ |ξ for s = σ + iτ ∈ D and |τ | ≥ 1}

)
.

Theorem 39 Let F (s) be a function of finite order in the vertical strip σ1 ≤
σ ≤ σ2. Then the function µ(s) is convex in this interval. In particular, it is
continuous on (σ1, σ2).

Theorem 40 For any Dirichlet series F (s), µ(σ) = 0 for σ > σa. Moreover,
µ(σ) is non-increasing.

Corollary 41 Let F (s) be a Dirichlet series and let σ0 < σa. If F (s) has finite
order for every σ > σ0 then µ(σa) = 0.
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