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I continue my survey of G. Tenenbaum’s book [13]. In the fourth lecture we
cover the last two chapters of part I on elementary methods, Chapter I.6. The
method of van der Corput and Chapter I.7. Diophantine approximation, up to
page 169.

Chapter I.6. The method of van der Corput

In Lecture 1 we encountered estimates of sums with the form
∑
a<n≤b f(n)

where f : [a, b] → R and a < b are in R. The method of van der Corput
concerns with estimates of the related sums in which f : [a, b] → S where S =
{z ∈ C | |z| = 1} is the complex unit circle. It is customary to write them as∑

a<n≤b

e
(
g(n)

)
where g : [a, b] → R and e(t) = exp(2πit), t ∈ R. Johannes van der Corput
(1890–1975) was a Dutch mathematician.

For the next Theorem 6.1 in [13], so called Poisson summation formula, one
can think of L1(R) as of the class of functions f : R → R that are Riemann-
integrable on every interval [−n, n], n ∈ N, and are such that for some constant
c > 0 and every n ∈ N, ∫ n

−n
|f |dt ≤ c .

For any f ∈ L1(R) its Fourier transform is

f̂(ϑ) =

∫ +∞

−∞
f(t) exp(−2πiϑt) dt .

Functions of bounded variation were defined in the first lecture.

Theorem 1 Let f ∈ L1(R). Suppose that the next series converges for every t
and that the 1-periodic function

ϕ(t) =
∑
n∈Z

f(n+ t)
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is continuous at 0 and has on [0, 1] bounded variation. Then the identity

lim
N→∞

∑
|ν|≤N

f̂(ν) = ϕ(0) =
∑
n∈Z

f(n)

holds.

The following are Theorems 6.2 and 6.3 in [13]; recall that e(t) = exp(2πit),
t ∈ R.

Theorem 2 Let a < b be in R, f ∈ C1((a, b)), f ′ be monotonic and of constant
sign on (a, b) and let m = infa<t<b |f ′(t)| > 0. Then∣∣∣∣ ∫ b

a

e
(
f(t)

)
dt

∣∣∣∣ ≤ 1

πm
.

Theorem 3 Let a < b be in R, f ∈ C2((a, b)), f ′′ be of constant sign on (a, b)
and let r = infa<t<b |f ′′(t)| > 0. Then∣∣∣∣ ∫ b

a

e
(
f(t)

)
dt

∣∣∣∣ ≤ 4√
πr

.

The following is Theorem 6.4 in [13].

Theorem 4 Let a < b be in R, f ∈ C1([a, b]), f ′ be monotonic on (a, b) and let
α = infa<t<b f

′(t) and β = supa<t<b f
′(t). Then for every ε > 0,

∑
a<n≤b

e
(
f(n)

)
=

∑
α−ε<ν<β+ε

∫ b

a

e
(
f(t)− νt

)
dt+Oε

(
log(β − α+ 2)

)
.

The following are Theorem 6.5 (van der Corput’s inequality), Lemma 6.6
(Kusmin–Landau) and Theorem 6.7 (Kusmin–Landau inequality) in [13].

Theorem 5 Let a < b be in R, f ∈ C2((a, b)) and let λ = λ(a, b) > 0 be
a constant such that λ� |f ′′| � λ on (a, b). Then∑

a<n≤b

e
(
f(n)

)
� (b− a+ 1)λ1/2 + λ−1/2 .

Lemma 6 Let x1, . . . , xN be N ∈ N real numbers such that ϑ ≤ x2 − x1 ≤
· · · ≤ xN − xN−1 ≤ 1− ϑ for some ϑ ∈ (0, 12 ). Then∣∣∣∣ N∑

n=1

e
(
xn
)∣∣∣∣ ≤ cot(πϑ/2) ≤ 2/(πϑ) .

In the next theorem, ‖ · · · ‖ denotes distance to the nearest integer.
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Theorem 7 Suppose that I ⊂ R is a bounded interval, f ∈ C1(I), f ′ is mono-
tonic on I and ‖f ′‖ ≥ λ > 0 on I. Then∣∣∣∣∑

n∈I
e
(
f(n)

)∣∣∣∣ ≤ 2

πλ
.

The following are Lemma 6.8 (Weyl–van der Corput), Theorem 6.9 and
Theorem 6.10 (van der Corput) in [13]; [N ] = {1, 2, . . . , N}.

Lemma 8 If N,Q ∈ N and z1, . . . , zN are in C then∣∣∣∣ N∑
n=1

zn

∣∣∣∣2 ≤ (1 + (N − 1)/Q
) ∑
q∈Z
|q|<Q

(1− |q|/Q)
∑

n,n+q∈[N ]

zn+qzn .

Theorem 9 Let a, b ∈ Z, b − a = N ∈ N, I = (a, b], f ∈ C3(I) and let
λ = λ(I) > 0 be a constants such that λ� |f ′′′| � λ on I. Then∑

n∈I
e
(
f(n)

)
� Nλ1/6 +N1/2λ−1/6 .

Theorem 10 Let N,R ∈ N, R ≥ 2, I ⊂ [N + 1, 2N ] be a real interval, let
f ∈ CR(I) and let F = F (I) > 0 be a constant such that for every r ∈ [R],
FN−r � |f (r)| � FN−r on I. Then, with u = 1

2R−2 and v = R
2R−2 ,∑

n∈I
e
(
f(n)

)
� N

(
NuF−v + F−1

)
.

The next Theorem 6.11 (Voronöı, 1903) in [13] is due to G. Voronöı in [14]
in 1903; τ(n) means the number of divisors of n ∈ N.

Theorem 11 For x ≥ 2,∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O
(
x1/3 log x

)
.

This is a strengthening of the 1849 result of P. Dirichlet (Theorem 2 in Lec-
ture 2). Georgy F. Voronoy (1868–1908) was a Russian-Ukrainian mathemati-
cian, see [12] for more information on his life. In 1922 in [2], J. van der Corput
bounded the error more strongly as

Oε
(
xε+33/100

)
.

The last four results in Chapter I.6 in [13], Definition 6.12, Theorem 6.13
(Weyl’s criterion, 1916) — see [15], Proposition 6.14 and Theorem 6.15 (Erdős–
Turán, 1948; Rivat–Tenenbaum, 2005) — see [4] and [9], concern equidistribu-
tion modulo 1.
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Definition 12 A sequence (un) ⊂ R (n ∈ N) is equidistributed modulo 1 if for
any real α, β ∈ [0, 1) with α ≤ β we have for N →∞ that∣∣{n ∈ [N ] | α ≤ {un} ≤ β}

∣∣ = (β − α)N + o(N) .

Here [N ] = {1, 2, . . . , N} and {· · · } is the fractional part function.

Theorem 13 A sequence (un) ⊂ R is equidistributed modulo 1 iff one the two
following equivalent conditions holds.

1. For any function f that is Riemann-integrable on [0, 1],

lim
N→∞

1

N

N∑
n=1

f({un}) =

∫ 1

0

f(x) dx .

2. For any nonzero h ∈ Z,

lim
N→∞

1

N

N∑
n=1

e
(
hun

)
︸ ︷︷ ︸

σN (h)

= 0 .

For the next proposition and theorem we also define, for N ∈ N and a se-
quence (un) ⊂ R, the discrepancy DN to be

DN = DN ((un)) = sup
I

∣∣ |{n ∈ [N ] | {un} ∈ I}| − |I| ·N
∣∣/N ,

where T runs through all subintervals I ⊂ [0, 1). Equidistribution of (un) mod-
ulo 1 is equivalent with limDN = 0.

Proposition 14 For any nonzero h ∈ Z, σN (h) ≤ 4|h|DN .

Theorem 15 For any H ∈ N,

Dn ≤
1

H + 1
+

2

3

H∑
h=1

|σN (h)|
H

.

Chapter I.7. Diophantine approximation

The following are Theorem 7.1 (Dirichlet) and Corollary 7.2 in [13]; ‖ϑ‖ =
min({ϑ− bϑc, dϑe − ϑ}) is the distance of ϑ ∈ R to the nearest integer.

Theorem 16 Let ϑ ∈ R. For every Q ∈ N,

min
1≤q≤Q

‖qϑ‖ ≤ 1

Q+ 1
.
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Corollary 17 Let ϑ ∈ R and let q run in N. The following three assertions are
equivalent: (i) ϑ ∈ Q, (ii) ∃ c = c(ϑ) > 0 s. t. ‖qϑ‖ > 0 ⇒ ‖qϑ‖ ≥ c and (iii)
the double inequality 0 < q‖qϑ‖ < 1 has only finitely many solutions q.

By [11] (from this, by now shabby, booklet this author learned Diophantine
approximation in 1980’s) the previous theorem is due to P. L. Dirichlet in [3] in
1842.

The following are Theorem 7.3 (Liouville) and Corollary 7.4 in [13]. Recall
that z ∈ C is called algebraic if p(z) = 0 for some nonzero polynomial p ∈ Q[x],
and that else z is called transcendental.

Theorem 18 Let ϑ ∈ R be algebraic with degree d ≥ 1. Then there is a constant
c = c(ϑ) > 0 such that for every q ∈ N,

‖qϑ‖ 6= 0⇒ ‖qϑ‖ > c/qd−1 .

Corollary 19 For any integer a > 1 the number

ϑ :=
∑
k≥0

a−k!

is transcendental.

By [11] the last theorem is due to J. Liouville in [7] in 1844.
The following is Proposition 7.5 in [13];

D+(ϑ) := {q ≥ 2 | ‖qϑ‖ < min
1≤m<q

‖mϑ‖}

are record holders in the discipline of Diophantine approximation of ϑ.

Proposition 20 D+(ϑ) is finite ⇐⇒ ϑ ∈ Q.

The following is Definition 7.6 in [13]. Let {ϑ} = ϑ − bϑc ∈ [0, 1) be the
fractional part of ϑ ∈ R. We set z(ϑ) = 0 if {ϑ} ≤ 1

2 , and z(ϑ) = 1 else.

Definition 21 For ϑ ∈ R, the finite or infinite sequence

D′(ϑ) = (qj)j>z(ϑ) = (qj(ϑ))j>z(ϑ)

is the increasing ordering of D+(ϑ). The sequence D(ϑ) arises from D′(ϑ) by
prefixing it q0 = 1 if z(ϑ) = 0, and q0 = q1 = 1 if z(ϑ) = 1.

The following is Proposition 7.7 in [13].

Proposition 22 Any sequence D′(ϑ) strictly increases. If k > z(ϑ) and if
‖qkϑ‖ 6= 0 then k is not the last index in D′(ϑ) and ‖qkϑ‖ ≤ 1/qk+1.

The following is Definition 7.8 in [13].
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Definition 23 For ϑ ∈ R and k > z(ϑ) we denote by pk the integer closest to
qkϑ. The sequence (pk/qk)k≥0 is called the sequence of convergents of ϑ.

The following are Proposition 7.9, Lemma 7.10, Theorem 7.11 and Corol-
lary 7.12 in [13]; we set ϑk = qkϑ− pk.

Proposition 24 If ϑ ∈ Q then ϑ = pk/qk where k is the last index in D(ϑ). If
ϑ ∈ R \Q then limk→∞ pk/qk = ϑ.

Lemma 25 For any ϑ ∈ R and any k, if ϑk and ϑk+1 are nonzero then they
have opposite signs.

Theorem 26 Let ϑ ∈ R. If 1 ≤ k < |D(ϑ)| then

qkpk−1 − pkqk−1 = (−1)k .

Corollary 27 The convergents are in lowest terms: we have (pk, qk) = 1 for
all k ≥ 0.

The following are Theorem 7.13, Definition 7.14, Theorem 7.15, Proposi-
tion 7.16 and Theorem 7.17 in [13]; ϑk is defined above.

Theorem 28 Let ϑ ∈ R, (p−2, q−2) = (0, 1), (p−1, q−1) = (1, 0) and ak =
b−ϑk−2/ϑk−1c for k ∈ N0. Then for k ∈ N0 (assuming ϑk−1 6= 0),

pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2 .

Definition 29 The numbers ak in the previous theorem are called incomplete
quotients (of the continued fraction expansion of ϑ). The numbers αk = −ϑk−2

ϑk−1

are called complete quotients (. . . ).

Theorem 30 Let ϑ ∈ R. We have α0 = ϑ and αk+1 = 1/{αk} for k ∈ N0. For
k < |D(ϑ)| ,

pk
qk

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

ak

=: [a0, a1, . . . , ak] .

Proposition 31 Let k ∈ N0, a0 ∈ R, a1, . . . , ak−1 > 0 and x > 0 be real. Then

[a0, a1, . . . , ak−1, x] =
xpk−1 + pk−2
xqk−1 + qk−2

where (p−2, q−2) = (0, 1), (p−1, q−1) = (1, 0) and for k ∈ N0 the pairs (pk, qk)
follow the recurrence in Theorem 28.
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Theorem 32 Let r/s ∈ Q with s ∈ N be nonzero and in lowest terms. Then

r

s
= [a0, . . . , aN ]

where r = a0s+r1, s = a1r1+r2, . . . , rN−2 = aN−1rN−1+rN , rN−1 = aNrN are
divisions with remainders, i.e., 0 ≤ r1 < s, 0 ≤ r2 < r1, . . . , 0 ≤ rN < rN−1.

The following are Proposition 7.18 and Theorems 7.19–7.21 in [13].

Proposition 33 Let ϑ ∈ R. For k < |D(ϑ)|,

[a0, a1, . . . , ak] = a0 +

k−1∑
j=0

(−1)j

qjqj+1
.

Theorem 34 With the convention that ak ≥ 2 when ϑ ∈ Q and k = |D(ϑ)|−1,
the continued fraction expansion is unique, i.e., for each real ϑ the integers aj,
0 ≤ j ≤ k, are uniquely determined by the formula in Theorem 30.

Furthermore, for any (infinite) sequence (an) ⊂ Z (n = 0, 1, . . . ) such that
aj ≥ 1 for j ≥ 1, the sequence(

[a0, a1, . . . , ak]
)
, k = 0, 1, . . . ,

converges.

Theorem 35 Let (Fk) (k = 0, 1, . . . ) be the Fibonacci sequence. For all ϑ ∈ R
and k ∈ N,

qk ≥ Fk =
1√
5

(
ϕk − (−1)k/ϕk

)
,

with equality when ϑ = ϕ = (1 +
√

5)/2.

Theorem 36 Let ϑ ∈ R and k ∈ N0. If ‖qkϑ‖ 6= 0 then

ϑ− pk
qk

=
(−1)k

qk(αk+1qk + qk−1)
.

In particular,
1

qk(qk+1 + qk)
<
∣∣∣ϑ− pk

qk

∣∣∣ ≤ 1

qkqk+1
.

The following are Corollary 7.22, Theorem 7.23 (Lagrange’s criterion), Corol-
lary 7.24 and Theorem 7.25 (Girard–Fermat) in [13].

Corollary 37 If ϑ ∈ R \Q then

1

2 + lim supk→∞ ak
≤ lim inf

q→∞
q‖qϑ‖ ≤ 1

lim supk→∞ ak
.
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Theorem 38 Let ϑ ∈ R \ Q. Then p/q is a convergent of ϑ iff there exist
integers p′ < p, q′ < q and a real number α > 1 such that qp′ − pq′ = ±1 and

ϑ =
αp+ p′

αq + q′
.

Corollary 39 For any irrational ϑ ∈ R if |ϑ − p/q| < 1/(2q2) then p/q is
a convergent of ϑ.

Theorem 40 Let p be a prime congruent to 1 modulo 4. Then there exist
integers r and s such that p = r2 + s2.

Finally, the following are Definition 7.26 and Theorems 7.27 and 7.28 in [13].

Definition 41 We say that ϑ, ϑ′ ∈ R \Q are equivalent if for some m,n ∈ N0,

ϑ = [a0, . . . , am, c0, c1, . . . ] and ϑ′ = [b0, . . . , bn, c0, c1, . . . ] .

Theorem 42 Two numbers ϑ, ϑ′ ∈ R \Q are equivalent iff

ϑ′ =
aϑ+ b

cϑ+ d

for some integers a, . . . , d with ad− bc = ±1.

Theorem 43 A number ϑ ∈ R is a quadratic irrationality iff its continued
fraction (expansion) is ultimately periodic.

By [11, p. 26], implication ⇐ was proven by L. Euler in [5] in 1737, and the
opposite implication is due to J. L. Lagrange in [6] in 1770.
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[14] G. Voronöı, Sur un problème de calcul des fonctions asymptotiques, J. reine
angew. Math. 126 (1903), 241–282
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