Lecture 4. The method of van der Corput.
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March 15, 2024

I continue my survey of G. Tenenbaum’s book [13]. In the fourth lecture we
cover the last two chapters of part I on elementary methods, Chapter 1.6. The
method of van der Corput and Chapter 1.7. Diophantine approximation, up to
page 169.

Chapter 1.6. The method of van der Corput

In Lecture 1 we encountered estimates of sums with the form > _ . f(n)
where f: [a,b] — R and @ < b are in R. The method of van der Corput
concerns with estimates of the related sums in which f: [a,b] — S where S =
{#z € C| |z| = 1} is the complex unit circle. It is customary to write them as

> e(g(n))
a<n<b

where g: [a,b] — R and e(t) = exp(2mit), t € R. Johannes van der Corput
(1890-1975) was a Dutch mathematician.

For the next Theorem 6.1 in [13], so called Poisson summation formula, one
can think of L1(R) as of the class of functions f: R — R that are Riemann-
integrable on every interval [—n,n|, n € N, and are such that for some constant

c¢> 0 and every n € N,
n
/ f]dt < c.
—n

For any f € L*(R) its Fourier transform is
F) = / F(#) exp(—2midt) dt

Functions of bounded variation were defined in the first lecture.

Theorem 1 Let f € LY(R). Suppose that the next series converges for every t
and that the 1-periodic function

p(t) = fln+1)

ne”Z



is continuous at 0 and has on [0,1] bounded variation. Then the identity

Jim 37 ) =e(0)= f(n)

lv|<N nez
holds.

The following are Theorems 6.2 and 6.3 in [13]; recall that e(t) = exp(2wit),
teR.

Theorem 2 Leta < b be in R, f € C((a,b)), f' be monotonic and of constant
sign on (a,b) and let m = inf,cicp |f'(t)] > 0. Then

‘/:e(f(t)) dt‘ < %

Theorem 3 Let a < b be in R, f € C?>((a,b)), f be of constant sign on (a,b)
and let v = infocrep | f(t)] > 0. Then

‘/abe(f(t)) dt‘ < \/%.

The following is Theorem 6.4 in [13].

Theorem 4 Let a < b be in R, f € C'([a,b]), f’ be monotonic on (a,b) and let
a =infocrep f'(t) and B = sup, .,y f'(t). Then for every e >0,

S oe(fm) = > / ) —vt)dt + O (log(f — a+2)).
a<n<b a—e<v<f4e’ @

The following are Theorem 6.5 (van der Corput’s inequality), Lemma 6.6
(Kusmin-Landau) and Theorem 6.7 (Kusmin-Landau inequality) in [13].

Theorem 5 Let a < b be in R, f € C%*((a,b)) and let X = Xa,b) > 0 be
a constant such that A < |f"| < X on (a,b). Then

Z e(f(”)) < (b—a+ 1))\1/2 a2,

a<n<b

Lemma 6 Let x1, ..., xny be N € N real numbers such that 9 < x5 — x1 <
-<ay—an-_1 <1—1 for some 9 € (0,%). Then

3 e(e)

n=1

< cot(md/2) < 2/(md).

In the next theorem, |- - || denotes distance to the nearest integer.



Theorem 7 Suppose that I C R is a bounded interval, f € C*(I), f' is mono-
tonic on I and ||f'|| > A >0 on I. Then

nel

The following are Lemma 6.8 (Weyl-van der Corput), Theorem 6.9 and
Theorem 6.10 (van der Corput) in [13]; [N] ={1,2,...,N}.

Lemma 8 If N,;Q € N and z1, ..., zy are in C then

N
§ Zn
n=1

2

S(I+WN=1/Q) > (1=1dl/Q) Y.  znigZn.
T

Theorem 9 Let a,b € Z, b—a = N € N, I = (a,b], f € C3(I) and let
A=) > 0 be a constants such that X < |f"'| < X on I. Then

Ze(f(n)) < NAV/6 4 N1/2)\-1/6

nel

Theorem 10 Let NR € N, R > 2, I C [N + 1,2N] be a real interval, let
f € CE(I) and let F = F(I) > 0 be a constant such that for every r € [R],
FN" < |f") < FN~" on I. Then, with u = i and v = -

27

> e(f(n)) < N(N“F™"+F1).

The next Theorem 6.11 (Voronoi, 1903) in [13] is due to G. Voronoi in [14]
in 1903; 7(n) means the number of divisors of n € N.

Theorem 11 For x > 2,

Z T(n) =zlogr + (2v — D + O(alcl/3 logz) .

n<z

This is a strengthening of the 1849 result of P. Dirichlet (Theorem 2 in Lec-
ture 2). Georgy F. Voronoy (1868-1908) was a Russian-Ukrainian mathemati-
cian, see [12] for more information on his life. In 1922 in [2], J. van der Corput
bounded the error more strongly as

0. (xe+33/100) _

The last four results in Chapter 1.6 in [13], Definition 6.12, Theorem 6.13
(Weyl’s criterion, 1916) — see [15], Proposition 6.14 and Theorem 6.15 (Erdés—
Turdn, 1948; Rivat—Tenenbaum, 2005) — see [4] and [9], concern equidistribu-
tion modulo 1.



Definition 12 A sequence (u,) C R (n € N) is equidistributed modulo 1 if for
any real o, B € 10,1) with o < 8 we have for N — oo that

[{n e [N]|a<{u.} <B} =(B-a)N+o(N).
Here [N] ={1,2,...,N} and {---} is the fractional part function.

Theorem 13 A sequence (u,) C R is equidistributed modulo 1 iff one the two
following equivalent conditions holds.

1. For any function f that is Riemann-integrable on [0, 1],

N 1
Jim fglf({un}) = [ flz)dx
2. For any nonzero h € 7,
1
i, 7 2 elhua) =0
O’N(h)

For the next proposition and theorem we also define, for N € N and a se-
quence (u,) C R, the discrepancy Dy to be

Dry = D((un)) = sup| |{n € [N] | {u} € I} = |1]- N |/N

where T runs through all subintervals I C [0,1). Equidistribution of (u,,) mod-
ulo 1 is equivalent with lim Dy = 0.

Proposition 14 For any nonzero h € Z, on(h) <4|h|Dy.

Theorem 15 For any H € N,

H
1 2~ low(h)]
Dy, < — 425 2N
_H+1+3h§ H

Chapter 1.7. Diophantine approximation

The following are Theorem 7.1 (Dirichlet) and Corollary 7.2 in [13]; ||¢]| =
min({¢ — [¢], [¢] — ¥}) is the distance of ¢ € R to the nearest integer.

Theorem 16 Let ¢ € R. For every @ € N,

in [lqv] < —
min —_ .
12020 "N =95



Corollary 17 Let ¥ € R and let ¢ run in N. The following three assertions are
equivalent: (i) ¥ € Q, (ii) e =c(V) > 0 s. t. [|¢Y] > 0 = |¢V| > ¢ and (iii)
the double inequality 0 < qllq¥|] < 1 has only finitely many solutions q.

By [11] (from this, by now shabby, booklet this author learned Diophantine
approximation in 1980’s) the previous theorem is due to P. L. Dirichlet in [3] in
1842.

The following are Theorem 7.3 (Liouville) and Corollary 7.4 in [13]. Recall
that z € C is called algebraic if p(z) = 0 for some nonzero polynomial p € Q[z],
and that else z is called transcendental.

Theorem 18 Let ¥ € R be algebraic with degree d > 1. Then there is a constant
¢ =c(¥) > 0 such that for every ¢ € N,

g9 # 0= ||lg|| > c/q* .

Corollary 19 For any integer a > 1 the number

9= Z a *

k>0
is transcendental.

By [11] the last theorem is due to J. Liouville in [7] in 1844.
The following is Proposition 7.5 in [13];

+ o > 3
D)= {a 2 2| vl < min_ ]}

are record holders in the discipline of Diophantine approximation of 9.
Proposition 20 D (9) is finite < ¥ € Q.

The following is Definition 7.6 in [13]. Let {J} = ¢ — |9] € [0,1) be the
fractional part of ¥ € R. We set z(¢) = 0 if {0} < 1, and z(d) =1 else.

Definition 21 For ¢ € R, the finite or infinite sequence
D'(9) = (¢;)j>=0) = (¢;(9))j> 29

is the increasing ordering of DV (V). The sequence D(V) arises from D'(9) by
prefizing it o =1 if 2(9) =0, and go = q1 =1 if z(¥) = 1.

The following is Proposition 7.7 in [13].

Proposition 22 Any sequence D'(9) strictly increases. If k > z(¥) and if
llgx?|| # O then k is not the last index in D'(V) and ||gp?| < 1/qk+1-

The following is Definition 7.8 in [13].



Definition 23 For ¢ € R and k > z(9) we denote by py the integer closest to
qr9. The sequence (pr/qi)k>0 is called the sequence of convergents of 9.

The following are Proposition 7.9, Lemma 7.10, Theorem 7.11 and Corol-
lary 7.12 in [13]; we set ¥ = ¢z — pk.

Proposition 24 If ¥ € Q then ¥ = pi/qr where k is the last index in D(9). If
¥ € R\ Q then limg o0 pr/q = 9.

Lemma 25 For any ¥ € R and any k, if ¥y and V1 are nonzero then they
have opposite signs.

Theorem 26 Let 9 € R. If 1 < k < |D(¥)] then

QkPE—1 — Peqr—1 = (—1)F.

Corollary 27 The convergents are in lowest terms: we have (pg,qr) = 1 for
all k> 0.

The following are Theorem 7.13, Definition 7.14, Theorem 7.15, Proposi-
tion 7.16 and Theorem 7.17 in [13]; ¥4 is defined above.

Theorem 28 Let ¥ € R, (p-2,9-2) = (0,1), (p-1,9-1) = (1,0) and ay, =
| —0k—2/Vk—1] for k € Ng. Then for k € Ny (assuming 9x_1 #0),

Pk = @kPk—1 + Pr—2 and qr = arqr—1 + qp—2 -

Definition 29 The numbers ay in the previous theorem are called incomplete

quotients (of the continued fraction expansion of ¥). The numbers oy, = —Z’;j

are called complete quotients (... ).

Theorem 30 Let ¥ € R. We have ag =¥ and agy1 = 1/{ay} for k € Ny. For
k<D,

Pk 1
— =ap + ::[a’Ovalv""ak’]'
dk 1

a+ —

ag + ————
2 1

ag

Proposition 31 Letk € Ny, ap € R, a1,...,ax_1 >0 and x > 0 be real. Then

TPk—1 + Pk—2
[ag, a1, ..., a1, ] = ——————=
Tqk—1 + qk—2

where (p—2,q—2) = (0,1), (p=1,9-1) = (1,0) and for k € Ny the pairs (pk, qx)
follow the recurrence in Theorem 28.



Theorem 32 Let r/s € Q with s € N be nonzero and in lowest terms. Then

r
- = [ao, ey (IN]
S
wherer = ags+ri1, S = a1r1+7r2, ..., 'TN_2 = AN _1TN_1+"N, TN_1 = GNTN aQTE
divisions with remainders, i.e., 0 <11 <8, 0<ro <ry, ..., 0<ry <ry_1.

The following are Proposition 7.18 and Theorems 7.19-7.21 in [13].

Proposition 33 Let ¥ € R. For k < |D(9)],

k—1 ;
1)

[ao,al,...,ak]:ao—i—é ( ) .
=0 Li+1

Theorem 34 With the convention that ai > 2 when ¥ € Q and k = |D(9)| —1,
the continued fraction expansion is unique, i.e., for each real ¥ the integers a;,
0 < j <k, are uniquely determined by the formula in Theorem 30.

Furthermore, for any (infinite) sequence (an) C Z (n = 0,1,...) such that
aj; > 1 for j > 1, the sequence

([ao, al,...,ak]), k’ZO, 1,...

CONVETgES.

Theorem 35 Let (F)) (k=0,1,...) be the Fibonacci sequence. For all 9 € R

and k € N,
1
qx > Iy = %(9016 - (*Uk/ﬁpk) )

with equality when ¥ = ¢ = (1+/5)/2.

Theorem 36 Let ¥ € R and k € Ny. If ||gp9|| # O then

g Pr_ (=1)*

@ Ge(s1Gk + qr—1)

In particular,

-2l < L

1
<l 2.
) gk qrqk+1

ar(qrs1 + qr

The following are Corollary 7.22, Theorem 7.23 (Lagrange’s criterion), Corol-
lary 7.24 and Theorem 7.25 (Girard-Fermat) in [13].

Corollary 37 If9 € R\ Q then

1 1

- <liminfg||¢Y|| < ——— .
2 + limsupy,_, o, ak g—o0 lim supy,_, . ak




Theorem 38 Let ¢ € R\ Q. Then p/q is a convergent of ¥ iff there exist
integers p' < p, ¢ < q and a real number o > 1 such that qp’ — pq’ = £1 and
_ap+p

ag+q

Corollary 39 For any irrational 9 € R if |9 — p/q| < 1/(2¢®) then p/q is
a convergent of 9.

Theorem 40 Let p be a prime congruent to 1 modulo 4. Then there exist
integers v and s such that p = r? + s2.

Finally, the following are Definition 7.26 and Theorems 7.27 and 7.28 in [13].
Definition 41 We say that 9,9 € R\ Q are equivalent if for some m,n € Ny,
9 = lag, ..., am, o, C1, --.] and ¥ = [bg, ..., by, co, C1, .. .].

Theorem 42 Two numbers 3,9 € R\ Q are equivalent iff

ad+b
¥ =
cl+d
for some integers a, ..., d with ad — bc = 1.

Theorem 43 A number ¥ € R is a quadratic irrationality iff its continued
fraction (expansion) is ultimately periodic.

By [11, p. 26], implication < was proven by L. Euler in [5] in 1737, and the
opposite implication is due to J. L. Lagrange in [6] in 1770.
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