Lecture 4. The method of van der Corput. Diophantine approximation

M. Klazar

March 15, 2024

I continue my survey of G. Tenenbaum's book [13]. In the fourth lecture we cover the last two chapters of part I on elementary methods, Chapter I.6. The method of van der Corput and Chapter I.7. Diophantine approximation, up to page 169.

Chapter I.6. The method of van der Corput

In Lecture 1 we encountered estimates of sums with the form $\sum_{a<n \leq b} f(n)$ where $f:[a, b] \rightarrow \mathbb{R}$ and $a<b$ are in \mathbb{R}. The method of van der Corput concerns with estimates of the related sums in which $f:[a, b] \rightarrow S$ where $S=$ $\{z \in \mathbb{C}||z|=1\}$ is the complex unit circle. It is customary to write them as

$$
\sum_{a<n \leq b} \mathrm{e}(g(n))
$$

where $g:[a, b] \rightarrow \mathbb{R}$ and $\mathrm{e}(t)=\exp (2 \pi i t), t \in \mathbb{R}$. Johannes van der Corput (1890-1975) was a Dutch mathematician.

For the next Theorem 6.1 in [13], so called Poisson summation formula, one can think of $L^{1}(\mathbb{R})$ as of the class of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are Riemannintegrable on every interval $[-n, n], n \in \mathbb{N}$, and are such that for some constant $c>0$ and every $n \in \mathbb{N}$,

$$
\int_{-n}^{n}|f| \mathrm{d} t \leq c
$$

For any $f \in L^{1}(\mathbb{R})$ its Fourier transform is

$$
\widehat{f}(\vartheta)=\int_{-\infty}^{+\infty} f(t) \exp (-2 \pi i \vartheta t) \mathrm{d} t
$$

Functions of bounded variation were defined in the first lecture.
Theorem 1 Let $f \in L^{1}(\mathbb{R})$. Suppose that the next series converges for every t and that the 1-periodic function

$$
\varphi(t)=\sum_{n \in \mathbb{Z}} f(n+t)
$$

is continuous at 0 and has on $[0,1]$ bounded variation. Then the identity

$$
\lim _{N \rightarrow \infty} \sum_{|\nu| \leq N} \widehat{f}(\nu)=\varphi(0)=\sum_{n \in \mathbb{Z}} f(n)
$$

holds.
The following are Theorems 6.2 and 6.3 in [13]; recall that $\mathrm{e}(t)=\exp (2 \pi i t)$, $t \in \mathbb{R}$.

Theorem 2 Let $a<b$ be in $\mathbb{R}, f \in \mathcal{C}^{1}((a, b))$, f^{\prime} be monotonic and of constant sign on (a, b) and let $m=\inf _{a<t<b}\left|f^{\prime}(t)\right|>0$. Then

$$
\left|\int_{a}^{b} \mathrm{e}(f(t)) \mathrm{d} t\right| \leq \frac{1}{\pi m} .
$$

Theorem 3 Let $a<b$ be in $\mathbb{R}, f \in \mathcal{C}^{2}((a, b))$, $f^{\prime \prime}$ be of constant sign on (a, b) and let $r=\inf _{a<t<b}\left|f^{\prime \prime}(t)\right|>0$. Then

$$
\left|\int_{a}^{b} \mathrm{e}(f(t)) \mathrm{d} t\right| \leq \frac{4}{\sqrt{\pi r}}
$$

The following is Theorem 6.4 in [13].
Theorem 4 Let $a<b$ be in $\mathbb{R}, f \in \mathcal{C}^{1}([a, b])$, f^{\prime} be monotonic on (a, b) and let $\alpha=\inf _{a<t<b} f^{\prime}(t)$ and $\beta=\sup _{a<t<b} f^{\prime}(t)$. Then for every $\varepsilon>0$,

$$
\sum_{a<n \leq b} \mathrm{e}(f(n))=\sum_{\alpha-\varepsilon<\nu<\beta+\varepsilon} \int_{a}^{b} \mathrm{e}(f(t)-\nu t) \mathrm{d} t+O_{\varepsilon}(\log (\beta-\alpha+2))
$$

The following are Theorem 6.5 (van der Corput's inequality), Lemma 6.6 (Kusmin-Landau) and Theorem 6.7 (Kusmin-Landau inequality) in [13].

Theorem 5 Let $a<b$ be in $\mathbb{R}, f \in \mathcal{C}^{2}((a, b))$ and let $\lambda=\lambda(a, b)>0$ be a constant such that $\lambda \ll\left|f^{\prime \prime}\right| \ll \lambda$ on (a, b). Then

$$
\sum_{a<n \leq b} \mathrm{e}(f(n)) \ll(b-a+1) \lambda^{1 / 2}+\lambda^{-1 / 2} .
$$

Lemma 6 Let x_{1}, \ldots, x_{N} be $N \in \mathbb{N}$ real numbers such that $\vartheta \leq x_{2}-x_{1} \leq$ $\cdots \leq x_{N}-x_{N-1} \leq 1-\vartheta$ for some $\vartheta \in\left(0, \frac{1}{2}\right)$. Then

$$
\left|\sum_{n=1}^{N} \mathrm{e}\left(x_{n}\right)\right| \leq \cot (\pi \vartheta / 2) \leq 2 /(\pi \vartheta) .
$$

In the next theorem, $\|\cdots\|$ denotes distance to the nearest integer.

Theorem 7 Suppose that $I \subset \mathbb{R}$ is a bounded interval, $f \in \mathcal{C}^{1}(I)$, f^{\prime} is monotonic on I and $\left\|f^{\prime}\right\| \geq \lambda>0$ on I. Then

$$
\left|\sum_{n \in I} \mathrm{e}(f(n))\right| \leq \frac{2}{\pi \lambda}
$$

The following are Lemma 6.8 (Weyl-van der Corput), Theorem 6.9 and Theorem 6.10 (van der Corput) in [13]; $[N]=\{1,2, \ldots, N\}$.

Lemma 8 If $N, Q \in \mathbb{N}$ and z_{1}, \ldots, z_{N} are in \mathbb{C} then

$$
\left|\sum_{n=1}^{N} z_{n}\right|^{2} \leq(1+(N-1) / Q) \sum_{\substack{q \in \mathbb{Z} \\|q|<Q}}(1-|q| / Q) \sum_{n, n+q \in[N]} z_{n+q} \overline{z_{n}}
$$

Theorem 9 Let $a, b \in \mathbb{Z}, b-a=N \in \mathbb{N}, I=(a, b], f \in \mathcal{C}^{3}(I)$ and let $\lambda=\lambda(I)>0$ be a constants such that $\lambda \ll\left|f^{\prime \prime \prime}\right| \ll \lambda$ on I. Then

$$
\sum_{n \in I} \mathrm{e}(f(n)) \ll N \lambda^{1 / 6}+N^{1 / 2} \lambda^{-1 / 6}
$$

Theorem 10 Let $N, R \in \mathbb{N}, R \geq 2, I \subset[N+1,2 N]$ be a real interval, let $f \in \mathcal{C}^{R}(I)$ and let $F=F(I)>0$ be a constant such that for every $r \in[R]$, $F N^{-r} \ll\left|f^{(r)}\right| \ll F N^{-r}$ on I. Then, with $u=\frac{1}{2^{R}-2}$ and $v=\frac{R}{2^{R}-2}$,

$$
\sum_{n \in I} \mathrm{e}(f(n)) \ll N\left(N^{u} F^{-v}+F^{-1}\right)
$$

The next Theorem 6.11 (Voronoï, 1903) in [13] is due to G. Voronoï in [14] in 1903; $\tau(n)$ means the number of divisors of $n \in \mathbb{N}$.

Theorem 11 For $x \geq 2$,

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 3} \log x\right)
$$

This is a strengthening of the 1849 result of P. Dirichlet (Theorem 2 in Lecture 2). Georgy F. Voronoy (1868-1908) was a Russian-Ukrainian mathematician, see [12] for more information on his life. In 1922 in [2], J. van der Corput bounded the error more strongly as

$$
O_{\varepsilon}\left(x^{\varepsilon+33 / 100}\right)
$$

The last four results in Chapter I. 6 in [13], Definition 6.12, Theorem 6.13 (Weyl's criterion, 1916) - see [15], Proposition 6.14 and Theorem 6.15 (ErdősTurán, 1948; Rivat-Tenenbaum, 2005) - see [4] and [9], concern equidistribution modulo 1.

Definition 12 A sequence $\left(u_{n}\right) \subset \mathbb{R}(n \in \mathbb{N})$ is equidistributed modulo 1 if for any real $\alpha, \beta \in[0,1)$ with $\alpha \leq \beta$ we have for $N \rightarrow \infty$ that

$$
\left|\left\{n \in[N] \mid \alpha \leq\left\{u_{n}\right\} \leq \beta\right\}\right|=(\beta-\alpha) N+o(N)
$$

Here $[N]=\{1,2, \ldots, N\}$ and $\{\cdots\}$ is the fractional part function.
Theorem 13 A sequence $\left(u_{n}\right) \subset \mathbb{R}$ is equidistributed modulo 1 iff one the two following equivalent conditions holds.

1. For any function f that is Riemann-integrable on $[0,1]$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(\left\{u_{n}\right\}\right)=\int_{0}^{1} f(x) \mathrm{d} x
$$

2. For any nonzero $h \in \mathbb{Z}$,

$$
\lim _{N \rightarrow \infty} \underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathrm{e}\left(h u_{n}\right)}_{\sigma_{N}(h)}=0
$$

For the next proposition and theorem we also define, for $N \in \mathbb{N}$ and a sequence $\left(u_{n}\right) \subset \mathbb{R}$, the discrepancy D_{N} to be

$$
D_{N}=D_{N}\left(\left(u_{n}\right)\right)=\sup _{I}| |\left\{n \in[N] \mid\left\{u_{n}\right\} \in I\right\}|-|I| \cdot N| / N
$$

where T runs through all subintervals $I \subset[0,1)$. Equidistribution of $\left(u_{n}\right) \bmod -$ ulo 1 is equivalent with $\lim D_{N}=0$.

Proposition 14 For any nonzero $h \in \mathbb{Z}, \sigma_{N}(h) \leq 4|h| D_{N}$.
Theorem 15 For any $H \in \mathbb{N}$,

$$
D_{n} \leq \frac{1}{H+1}+\frac{2}{3} \sum_{h=1}^{H} \frac{\left|\sigma_{N}(h)\right|}{H}
$$

Chapter I.7. Diophantine approximation

The following are Theorem 7.1 (Dirichlet) and Corollary 7.2 in $[13] ;\|\vartheta\|=$ $\min (\{\vartheta-\lfloor\vartheta\rfloor,\lceil\vartheta\rceil-\vartheta\})$ is the distance of $\vartheta \in \mathbb{R}$ to the nearest integer.

Theorem 16 Let $\vartheta \in \mathbb{R}$. For every $Q \in \mathbb{N}$,

$$
\min _{1 \leq q \leq Q}\|q \vartheta\| \leq \frac{1}{Q+1}
$$

Corollary 17 Let $\vartheta \in \mathbb{R}$ and let q run in \mathbb{N}. The following three assertions are equivalent: (i) $\vartheta \in \mathbb{Q}$, (ii) $\exists c=c(\vartheta)>0$ s. t. $\|q \vartheta\|>0 \Rightarrow\|q \vartheta\| \geq c$ and (iii) the double inequality $0<q\|q \vartheta\|<1$ has only finitely many solutions q.

By [11] (from this, by now shabby, booklet this author learned Diophantine approximation in 1980's) the previous theorem is due to P. L. Dirichlet in [3] in 1842.

The following are Theorem 7.3 (Liouville) and Corollary 7.4 in [13]. Recall that $z \in \mathbb{C}$ is called algebraic if $p(z)=0$ for some nonzero polynomial $p \in \mathbb{Q}[x]$, and that else z is called transcendental.

Theorem 18 Let $\vartheta \in \mathbb{R}$ be algebraic with degree $d \geq 1$. Then there is a constant $c=c(\vartheta)>0$ such that for every $q \in \mathbb{N}$,

$$
\|q \vartheta\| \neq 0 \Rightarrow\|q \vartheta\|>c / q^{d-1} .
$$

Corollary 19 For any integer $a>1$ the number

$$
\vartheta:=\sum_{k \geq 0} a^{-k!}
$$

is transcendental.
By [11] the last theorem is due to J. Liouville in [7] in 1844.
The following is Proposition 7.5 in [13];

$$
D^{+}(\vartheta):=\left\{q \geq 2 \mid\|q \vartheta\|<\min _{1 \leq m<q}\|m \vartheta\|\right\}
$$

are record holders in the discipline of Diophantine approximation of ϑ.
Proposition $20 D^{+}(\vartheta)$ is finite $\Longleftrightarrow \vartheta \in \mathbb{Q}$.
The following is Definition 7.6 in [13]. Let $\{\vartheta\}=\vartheta-\lfloor\vartheta\rfloor \in[0,1)$ be the fractional part of $\vartheta \in \mathbb{R}$. We set $z(\vartheta)=0$ if $\{\vartheta\} \leq \frac{1}{2}$, and $z(\vartheta)=1$ else.

Definition 21 For $\vartheta \in \mathbb{R}$, the finite or infinite sequence

$$
D^{\prime}(\vartheta)=\left(q_{j}\right)_{j>z(\vartheta)}=\left(q_{j}(\vartheta)\right)_{j>z(\vartheta)}
$$

is the increasing ordering of $D^{+}(\vartheta)$. The sequence $D(\vartheta)$ arises from $D^{\prime}(\vartheta)$ by prefixing it $q_{0}=1$ if $z(\vartheta)=0$, and $q_{0}=q_{1}=1$ if $z(\vartheta)=1$.

The following is Proposition 7.7 in [13].
Proposition 22 Any sequence $D^{\prime}(\vartheta)$ strictly increases. If $k>z(\vartheta)$ and if $\left\|q_{k} \vartheta\right\| \neq 0$ then k is not the last index in $D^{\prime}(\vartheta)$ and $\left\|q_{k} \vartheta\right\| \leq 1 / q_{k+1}$.

The following is Definition 7.8 in [13].

Definition 23 For $\vartheta \in \mathbb{R}$ and $k>z(\vartheta)$ we denote by p_{k} the integer closest to $q_{k} \vartheta$. The sequence $\left(p_{k} / q_{k}\right)_{k \geq 0}$ is called the sequence of convergents of ϑ.

The following are Proposition 7.9, Lemma 7.10, Theorem 7.11 and Corollary 7.12 in [13]; we set $\vartheta_{k}=q_{k} \vartheta-p_{k}$.

Proposition 24 If $\vartheta \in \mathbb{Q}$ then $\vartheta=p_{k} / q_{k}$ where k is the last index in $D(\vartheta)$. If $\vartheta \in \mathbb{R} \backslash \mathbb{Q}$ then $\lim _{k \rightarrow \infty} p_{k} / q_{k}=\vartheta$.

Lemma 25 For any $\vartheta \in \mathbb{R}$ and any k, if ϑ_{k} and ϑ_{k+1} are nonzero then they have opposite signs.

Theorem 26 Let $\vartheta \in \mathbb{R}$. If $1 \leq k<|D(\vartheta)|$ then

$$
q_{k} p_{k-1}-p_{k} q_{k-1}=(-1)^{k}
$$

Corollary 27 The convergents are in lowest terms: we have $\left(p_{k}, q_{k}\right)=1$ for all $k \geq 0$.

The following are Theorem 7.13, Definition 7.14, Theorem 7.15, Proposition 7.16 and Theorem 7.17 in [13]; ϑ_{k} is defined above.

Theorem 28 Let $\vartheta \in \mathbb{R},\left(p_{-2}, q_{-2}\right)=(0,1),\left(p_{-1}, q_{-1}\right)=(1,0)$ and $a_{k}=$ $\left\lfloor-\vartheta_{k-2} / \vartheta_{k-1}\right\rfloor$ for $k \in \mathbb{N}_{0}$. Then for $k \in \mathbb{N}_{0}$ (assuming $\vartheta_{k-1} \neq 0$),

$$
p_{k}=a_{k} p_{k-1}+p_{k-2} \text { and } q_{k}=a_{k} q_{k-1}+q_{k-2} .
$$

Definition 29 The numbers a_{k} in the previous theorem are called incomplete quotients (of the continued fraction expansion of ϑ). The numbers $\alpha_{k}=-\frac{\vartheta_{k-2}}{\vartheta_{k-1}}$ are called complete quotients (...).

Theorem 30 Let $\vartheta \in \mathbb{R}$. We have $\alpha_{0}=\vartheta$ and $\alpha_{k+1}=1 /\left\{\alpha_{k}\right\}$ for $k \in \mathbb{N}_{0}$. For $k<|D(\vartheta)|$,

$$
\frac{p_{k}}{q_{k}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{k}}}}}=:\left[a_{0}, a_{1}, \ldots, a_{k}\right] .
$$

Proposition 31 Let $k \in \mathbb{N}_{0}, a_{0} \in \mathbb{R}, a_{1}, \ldots, a_{k-1}>0$ and $x>0$ be real. Then

$$
\left[a_{0}, a_{1}, \ldots, a_{k-1}, x\right]=\frac{x p_{k-1}+p_{k-2}}{x q_{k-1}+q_{k-2}}
$$

where $\left(p_{-2}, q_{-2}\right)=(0,1),\left(p_{-1}, q_{-1}\right)=(1,0)$ and for $k \in \mathbb{N}_{0}$ the pairs $\left(p_{k}, q_{k}\right)$ follow the recurrence in Theorem 28.

Theorem 32 Let $r / s \in \mathbb{Q}$ with $s \in \mathbb{N}$ be nonzero and in lowest terms. Then

$$
\frac{r}{s}=\left[a_{0}, \ldots, a_{N}\right]
$$

where $r=a_{0} s+r_{1}, s=a_{1} r_{1}+r_{2}, \ldots, r_{N-2}=a_{N-1} r_{N-1}+r_{N}, r_{N-1}=a_{N} r_{N}$ are divisions with remainders, i.e., $0 \leq r_{1}<s, 0 \leq r_{2}<r_{1}, \ldots, 0 \leq r_{N}<r_{N-1}$.

The following are Proposition 7.18 and Theorems 7.19-7.21 in [13].
Proposition 33 Let $\vartheta \in \mathbb{R}$. For $k<|D(\vartheta)|$,

$$
\left[a_{0}, a_{1}, \ldots, a_{k}\right]=a_{0}+\sum_{j=0}^{k-1} \frac{(-1)^{j}}{q_{j} q_{j+1}} .
$$

Theorem 34 With the convention that $a_{k} \geq 2$ when $\vartheta \in \mathbb{Q}$ and $k=|D(\vartheta)|-1$, the continued fraction expansion is unique, i.e., for each real ϑ the integers a_{j}, $0 \leq j \leq k$, are uniquely determined by the formula in Theorem 30.

Furthermore, for any (infinite) sequence $\left(a_{n}\right) \subset \mathbb{Z}(n=0,1, \ldots)$ such that $a_{j} \geq 1$ for $j \geq 1$, the sequence

$$
\left(\left[a_{0}, a_{1}, \ldots, a_{k}\right]\right), k=0,1, \ldots
$$

converges.
Theorem 35 Let $\left(F_{k}\right)(k=0,1, \ldots)$ be the Fibonacci sequence. For all $\vartheta \in \mathbb{R}$ and $k \in \mathbb{N}$,

$$
q_{k} \geq F_{k}=\frac{1}{\sqrt{5}}\left(\varphi^{k}-(-1)^{k} / \varphi^{k}\right)
$$

with equality when $\vartheta=\varphi=(1+\sqrt{5}) / 2$.
Theorem 36 Let $\vartheta \in \mathbb{R}$ and $k \in \mathbb{N}_{0}$. If $\left\|q_{k} \vartheta\right\| \neq 0$ then

$$
\vartheta-\frac{p_{k}}{q_{k}}=\frac{(-1)^{k}}{q_{k}\left(\alpha_{k+1} q_{k}+q_{k-1}\right)} .
$$

In particular,

$$
\frac{1}{q_{k}\left(q_{k+1}+q_{k}\right)}<\left|\vartheta-\frac{p_{k}}{q_{k}}\right| \leq \frac{1}{q_{k} q_{k+1}}
$$

The following are Corollary 7.22, Theorem 7.23 (Lagrange's criterion), Corollary 7.24 and Theorem 7.25 (Girard-Fermat) in [13].

Corollary 37 If $\vartheta \in \mathbb{R} \backslash \mathbb{Q}$ then

$$
\frac{1}{2+\limsup }{ }_{k \rightarrow \infty} a_{k} \quad \leq \liminf _{q \rightarrow \infty} q\|q \vartheta\| \leq \frac{1}{\limsup _{k \rightarrow \infty} a_{k}}
$$

Theorem 38 Let $\vartheta \in \mathbb{R} \backslash \mathbb{Q}$. Then p / q is a convergent of ϑ iff there exist integers $p^{\prime}<p, q^{\prime}<q$ and a real number $\alpha>1$ such that $q p^{\prime}-p q^{\prime}= \pm 1$ and

$$
\vartheta=\frac{\alpha p+p^{\prime}}{\alpha q+q^{\prime}} .
$$

Corollary 39 For any irrational $\vartheta \in \mathbb{R}$ if $|\vartheta-p / q|<1 /\left(2 q^{2}\right)$ then p / q is a convergent of ϑ.

Theorem 40 Let p be a prime congruent to 1 modulo 4. Then there exist integers r and s such that $p=r^{2}+s^{2}$.

Finally, the following are Definition 7.26 and Theorems 7.27 and 7.28 in [13].
Definition 41 We say that $\vartheta, \vartheta^{\prime} \in \mathbb{R} \backslash \mathbb{Q}$ are equivalent if for some $m, n \in \mathbb{N}_{0}$,

$$
\vartheta=\left[a_{0}, \ldots, a_{m}, c_{0}, c_{1}, \ldots\right] \text { and } \vartheta^{\prime}=\left[b_{0}, \ldots, b_{n}, c_{0}, c_{1}, \ldots\right] .
$$

Theorem 42 Two numbers $\vartheta, \vartheta^{\prime} \in \mathbb{R} \backslash \mathbb{Q}$ are equivalent iff

$$
\vartheta^{\prime}=\frac{a \vartheta+b}{c \vartheta+d}
$$

for some integers a, \ldots, d with $a d-b c= \pm 1$.
Theorem $43 A$ number $\vartheta \in \mathbb{R}$ is a quadratic irrationality iff its continued fraction (expansion) is ultimately periodic.

By [11, p. 26], implication \Leftarrow was proven by L. Euler in [5] in 1737, and the opposite implication is due to J. L. Lagrange in [6] in 1770.

References

[1] J. G. van der Corput, Zahlentheoretische Abschätzungen, Math. Ann. 8? (1921), 53-79
[2] J. G. van der Corput, Verschärferung der Abschätzung beim Teilproblem, Math. Ann. 87 (1922), 39-65
[3] L. G. P. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen, S. B. Preuss. Akad. Wiss. (1842), 93-95
[4] P. Erdős and P. Turán, On a problem in the theory of uniform distribution I, II, Indag. Math 10 (1948), 370-378, 406-413
[5] L. Euler, De fractionibus continuis, Comentarii Acad. Sci. Imperiali Petropoloitanae 9 (1737)
[6] J. L. Lagrange, Addition au memoire la resolution des equations numeriques, Mem. Berl. 24 (1770)
[7] J. Liouville, Sur des classes très-étendues de quantités dont la irrationelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 883-885 \& 910-911
[8] H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, UK 2007
[9] J. Rivat and G. Tenenbaum, Constantes d'Erdős-Turán, The Ramanujan J. 9 (2005), 111-121
[10] W. M. Schmidt, Diophantine Approximation, Springer-Verlag, Berlin 1980
[11] V. Shmidt, Diofantovy priblizheniya, Mir, Moskva 1983 (translation of [10] by V. G. Chirsky, revised by A. B. Shidlovsky)
[12] H. Syta and Rien van de Weygaert, Life and Times of Georgy Voronoi, arXiv:0912.3269, 2009, 30 pp.
[13] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition)
[14] G. Voronoï, Sur un problème de calcul des fonctions asymptotiques, J. reine angew. Math. 126 (1903), 241-282
[15] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-404

