Lecture 3. Selberg’s sieve. Extremal orders
M. Klazar

March 8, 2024

I continue my survey of G. Tenenbaum’s book [13]. In the third lecture we
cover the last three sections of Chapter 1.4. Sieve methods, and then Chapter
L.5. Extremal orders, up to page 123. I follow notation explained in the first two
lectures. As a rule I always (re)state each theorem so that the notation used is
clear.

Chapter 1.4. Sieve methods — continued

The following Theorems 4.15 and 4.16 (Brun—Titchmarsh) in [13] are ob-
tained by the large sieve.

Theorem 1 Let

c=2][a-(p-172).

p>2

Then for every constant ¢ > C' there is an xg > 0 such that for every x > xg

8cx
(logz)?

{p <z |p+2is prime}| <

For real  and a,q € N we denote by

m(x; a,q) ={p < x| p=a(modq)}
the number of primes not exceeding x and lying in the residue class a modulo q.

Theorem 2 For any constant ¢ > 2 there is a constant yo > 0 such that for
any a,q € N and any x,y > 0 with y/q > yo we have

cy
v(q)log(y/q)

(I somewhat altered the statement in [13].) Here o(+) is of course Euler’s totient
function. In [8, Theorem 3.9] we find this formulation:

m(x+y; a, q) —7(x; a, q) <

Let a and ¢ be integers with (a,q) = 1, and let  and y be real
numbers with x > 0 and y > 2¢. Then

s a — T, a 72y
m(x+y; a, q) — n(x; a, q) < @ Tos(0/a) (14+0(1/1og(y/q)))-



By [8], E. C. Titchmarsh obtained this result, with a constant larger than 2, by
Brun’s method in [15] in 1930.

We proceed to Selberg’s sieve which was invented by the Norwegian math-
ematician Atle Selberg (1917-2007) in [11] in 1947. The following are Defini-
tions 4.17 and 4.18 in [13]. The first one is an interesting extension of multi-
plicativity of arithmetic functions to several variables.

Definition 3 Let r € N. We say that f: N* — C is multiplicative (in Selberg’s
sense) if the formal Dirichlet series

expresses as F(s1,...,s,) = Hp Fy(p~*,...,p~°") where (the formal power
series)

Fp(X1, ., Xo) = Y fplvn, o, )XY X € C[[X, .o, X )

V1., V=0

are such that F,(0,...,0) =1 except for finitely many primes p.
We say that f is singular if f(1,...,1) =0, regular if f(1,...,1) # 0 and
normal if f(1,...,1) = 1.

In fact only the case r < 2 will be needed.

Definition 4 We call f: N> — C symmetric if f(m,n) = f(n,m) for every
m,n € N. If f(m,n) = 0 whenever n > m, we call f lower triangular. If in
addition f(m,m) =1 for every m, we call f normal lower triangular.

This terminology is used in the following three Propositions 4.19-4.21 in [13].
Let t: N2 — C be normal lower triangular. For 1 < n < m we define the inverse
t*: N2 — C of t as the solution of the infinite linear system

m

>t (m, k)t(k, n) = 0m,n

k=n
(Om,n =1 for m =n and is 0 else).
Proposition 5 Let t: N> — C be normal lower triangular. The following hold.

1. If f,9: N — C satisfy f(m) =>_"_, t(m,n)g(n) for every m € N, then

n=1
g(m) =325, t*(m,n) f(n).

2. If f,g: N — C satisfy f(n) = >_,,~, t(m,n)g(m) where for every n € N
the series absolutely converges, then

g(n) =3 sy t*(m,n) f(m)

provided that for every n € N the series absolutely converges.



Proposition 6 Let t: N> — C be normal lower triangular and multiplicative.
Then so is its inverse t*.

The following is a useful special case of Proposition 5.

Proposition 7 Let t: N> — C be normal lower triangular and multiplicative.
The following hold.

1. If f,9: N = C satisfy f(m) = Zd‘mt(m, d)g(d) for every m € N, then
g(m) =34 m t"(m,d) f(d).

2. If f,9: N = C satisfy f(n) = En‘mt(m,n)g(m) where for every n € N
the series absolutely converges, then

9(n) = | t*(m,m) f ()
provided that for every n € N the series absolutely converges.

Selberg’s sieve(s) use quadratic forms. The next is Definition 4.22 in [13].

Definition 8 We call f: N> — R positive definite if it is symmetric and if
Q=Q(x1, x2, ...) = Z f(m, n)xzpmz, >0
m,n=1

for any nonzero sequence (x,) C R satisfying x, = 0 for n > ng.

The next is Proposition 4.23 in [13].

Proposition 9 Let f: N> — R be positive definite and multiplicative. Then
there exist multiplicative functions g: N — (0,+00) and t: N> — R such that
t(m,n) is normal lower triangular and for any m,n € N,

The functions g and t are uniquely determined by this condition.

The next Theorem 4.24 in [13] describes the solution of an optimization
problem for quadratic forms that is needed in Selberg’s sieve.

Theorem 10 Let N € N and let f, g and t be as in the previous proposition.
Then for the constraint 1 =1 and n > N = x,, = 0 the quadratic form Q in
Definition 8 has the minimum value

. 1
¢ Yo t7(m, 1)2/g(m)

when x, = Q* 22:1 t*(m,n)t*(m,1)/g(m), n=1,2,..., N.



The next Theorem 4.25 in [13] (reformulated by us) concerns the so called
Johnsen—Selberg prime power sieve which originated in [4, 12]. We need for it
some notation. Let A C Z be a finite tuple of integers (which may be repeated),
z>2bereal, PC Pand P, = {p € P | p < z}. For any prime power p”
(v € N) we are given a set W(p”) C Z that is a union of infinite arithmetic
progressions of the form m + p”Z, m € Z; in other words it is a union of several
residue classes modulo p”. We assume that W(p*) N W (p*) = 0 if pn # v. For
d € N we set W(d) =, W), with W(1) = Z. We define

S(A, P, z)={ac A|Vpe P,YveN: ag W(p")}|.
For n € N we denote by P*(n) the largest prime factor of n, with P (1) = 1.

Theorem 11 With this notation we further suppose that X > 0 is real and
that w: N — [0, 400) is a multiplicative function such that (i) for any p & P,
and v € N, w(p”) = 0, and (ii) for any p € P,, > o— w(p’)/p” < 1. For any
d € N we set rg = |[ANW(d)| —w(d)X/d. For any p and v € Ny we define
Ip¥) =1 -3 wp)/p" (> 0) and consider the normal (i.e., f(1) = 1)
multiplicative function f: N — [0,4+00) determined by the values (v € N)

w(p”)
I(p)d(pr—1)

Finally, for real z,y > 1 let ¥s(x,y) = Zn<I,P+(n)<y fn)/n. Then for any
D eN, D > 1, one has the upper bound a -

fp") =

X
wf(Dv Z) m<D?
PT(m)<z

This theorem is due to G. Tenenbaum and J. Wu in [14] in 2008.
In the following Theorem 4.26 (Selberg) of [13] the tuple A is an interval of
integers and the notation of the last theorem is used.

Theorem 12 We suppose that A consists of N € N consecutive integers and
that (d € N) the function w(d) := |[0,d) "W (d)| satisfies conditions (i) and (ii).
Then for any D € N,

N+D?*-1

1/]f(D7 Z)

The next Theorem 4.27, stated in [13] without proof, was obtained in [14] like
Theorem 11 and achieves an upper bound on 1/ (D, z). Besides the notation
of Theorem 11 it requires some additional one. First of all, w(d) is as in the
last theorem. For x,u > 0 let p,(u) (the generalized Dickman function) be the
continuous solution of the system

S(A, P, z) <

pe(u) = o uw € (0, 1 Aupl(u)+ (1 —kpe(u) +Eps(u—1)=0 ... u>1



where I'(+) is Euler’s T' function. For u > 0 let (v is Euler’s constant)

+oo
M) = e [T pu0)dv and ufu) = 1= Au(u).

Let H(z) =[],<., (1 =302, w(p/p¥). Finally, besides the conditions (i) and
(ii) of Theorem 11 we introduce condition (iii) (n € (0,3), K > 0 and r € N):
J(p¥) > nfor any p € P and v € N,

Sy weTsr sy )

p v=1 pu>r

and for any t >y > 1,

V]
3 w(piuogp) < klog(t/y) + O(1).
y<p<t p
ve(r]

Theorem 13 Let r,D € N, k > 0, n € (0,3), v = min ({j‘ngz, mﬁgﬁf;l)})

and AT (v) = Ao (v) -vlog(l 4+ v). If the conditions (i) and (iii) hold, then there
exists a constant B such that we have uniformly for 2 < z < DY/ that

1A

¥5(D, 2) = j(v)

In the last eighth section of Chapter 1.4 of [13] Selberg’s sieve is applied
to bound the number of natural numbers in an interval that are sums of two
squares. The next Theorem 4.28 in [13] is the well known Euler’s criterion of
quadratic (non) residues. The symbol (%) is Legendre’s symbol.

(1+O(N} (v) exp((Bulogv)/log z)/log 2)).

Theorem 14 For every a € (Z/pZ)*, we have

(a) = aP~1/2 (mod p).

p

The next Theorem 4.29 (Girard-Fermat) in [13] is a classical result.

Theorem 15 An odd prime number is the sum of two squares if, and only if,
it is congruent to 1 modulo 4.

The next Theorem 4.30 in [13] characterizes numbers expressible as sums of
two squares; v,(n) is the p-adic order of n.

Theorem 16 A positive integer is representable as a sum of two squares if,
and only if, for any prime number p such that p = 3 (mod 4), we have v,(n) =
0 (mod 2).



Finally, the last Theorem 4.31 in Chapter 1.4 in [13] gives upper bounds on
the number of natural numbers in an interval that are sums of two squares. We
set 1 1

Ky=— H — =~ 0.764

\/ipES (mod4) V 1 _p_2

(this is so called Landau—Ramanujan constant).

Theorem 17 There is an absolute constant K > 0 such that for any set I C N
of N € N consecutive numbers it holds that

1
Zy =|{ne€l|n=101>+m? for somel,me N} < KN H (1—7).
p<N P
p=3 (mod 4)

For N — oo,
KoN

VIog N’

Nothing is said in [13] about the 1908 asymptotics [7] of E. Landau: for
x> 2,

Zn < (m+0(1))

K()(t
Viegz

See [1] for the function field analogue of Landau’s result.

One still finds Theorem 4.32 (Iwaniec) in the Notes to Chapter 1.4 in [13]
but we do not quote it and instead mention the excellent and often witty book
[3] on sieves written by J. Friedlander and H. Iwaniec.

{n <z | n =12+ m? for some I,m € N}| = + O(x/(log:c)3/2) .

Chapter 1.5. Extremal orders

The following is Definition 5.1 in [13].

Definition 18 Let f,g: N — R where g is non-decreasing and eventually posi-
tive. We say that g is a mazimal (resp. minimal) order for f if

limsup f(n)/g(n) =1 (resp. liminf f(n)/g(n) =1).
n—00 n—00
The following are Theorem 5.2, Corollary 5.3 and Theorem 5.4 in [13]. Recall
that 7(n) =>_,,,_, 1 is the number of divisors of n. The notation O.(-) means
that the implicit constant ¢ in the O(-) (see the definition of O in the last lecture)
may depend on ¢.

Theorem 19 If f: N — C is multiplicative and such that limy o f(p¥) =0
then lim, .~ f(n) = 0.



The assumption on f says that if the sequence (m,) = (m; < ms < ...) CN
lists in the increasing order all prime powers, so that

(mn) = (2,3,4,5,7,8,9,11, 13, 16, 17, 19, 23, ...),

then lim, o f(m,) = 0. It is easy to see that then this limit holds for any
permutation of (my,).

Proof. Suppose that f is as stated and that an € < 1 is given. By ¢ € N we
denote powers of primes. Thereisa @ = Q(g) > Osuch that ¢ > Q = |f(¢)| < e.
Let Q1, resp. Q2, be the set of ¢ < @ with |f(q)| <1, resp. |f(q)| > 1, and let
@3 be the set of ¢ > Q. Then Q1 U Q2 U Q3 is a partition of all ¢ and every
n € N expresses uniquely as the product

n = ningons where n; = H q.
qlln,q€Q;

It is clear that the n; are mutually coprime and |f(n1)| < 1. It is also clear that
|f(n2)| < A where A > 0 is an absolute constant (independent of €) and that if
n3 > 1 then |f(n3)| < e. Finally, let ng be such that n > ng = ng > 1. Then

n>ng = |f(n)| = |f(n)l - [f(n2)] - [f(ns)| < 1-A-e = Ae.

This means that lim f(n) = 0. O

Corollary 20 For any € > 0 we have 7(n) = O.(n®) (forn € N).

Proof. We apply the previous theorem to the function f(n) = 7(n)/n°. The
assumption of the theorem is satisfied because

v+1 < 1+ 2log(p¥)
()= = ()

and limpyy o f(p¥) = 0. ]

f(p") =

Theorem 21 A mazimal order for log(7(n)) is (log2)(logn)/(loglogn).

This theorem is essentially due to S. Ramanujan in [9, 10] in 1915.
The next Theorem 5.5 in [13] deals with the arithmetic functions w(n) =

Ypinland Q(n) =532, v.

Theorem 22 A mazimal order for w(n) is (logn)/(loglogn). A maximal order
for Q(n) is (logn)/(log2).

The next Theorem 5.6 in [13] deals with Euler’s totient function ¢(n) =
Zm,mgn 1.

(m,n)=1



Theorem 23 A mazimal order for ¢(n) is n. A minimal order is
e n
loglogn

where v denotes Fuler’s constant.

The maximal order for p(n) is witnessed by primes. By [8] the result on the
minimal order for ¢(n) is due to E. Landau in [6] in 1903.

Finally, the next last Theorem 5.7 in Chapter 1.5 in [13] (with only sketched
proof) deals with the functions o.(n) =>_,,_,, ", k € R.

Theorem 24 The following hold on extremal orders for o.(n).
1. For k > 0, a minimal order is n".
2. For k> 1, a mazimal order is ((k)n".
3. For k =1, a mazimal order is e’n(loglogn).
4. For 0 < k <1, we have
o (n) < n"exp ((1+0(1))(1 - x)~'(logn)' ~*/(loglogn))
and the opposite inequality is satisfied for infinitely many n € N.

We add two more theorems on maximal orders, these are not in [13]. Let
m(n) be the number of ordered factorizations

n=ninz...ng, ni22,

of the number n € N. Thus (m(n)) =(0,1,1,2,1,3,1,3,2,3,1,8,1,...) but let
us change m(1) to 1. Let p = 1.72684 ... be the only positive solution of the
equation ((s) = Y, -, n ® = 2. The appearance of this constant is explained
by the formula B

00m<n)_00 §)— 1)k — 1 . 1
B DU e e GO R Raey

for the formal Dirichlet series of (m(n)). The next theorem was obtained in [5].

Theorem 25 (Klazar and Luca, 2007) For every e > 0,
nP

<
exp ((logn)'/?/(loglog n)'+<)

holds for every n > ng = ng(e). On the other hand, there is a constant ¢ > 0
such that

np
exp (c((log n)/(loglog n))l/f))
holds for infinitely many n € N.

m(n) >




These bounds on maximal orders for m(n) were strengthened in [2]:

Theorem 26 (Deléglise, Hernane and Nicolas, 2008) For some constants
A, B > 0 one has

log(m(n)) < plogn — A(logn)'/?/(loglogn)

for every large n and

log(m(n)) > plogn — B(logn)'/?/(loglogn)

for infinitely many n.
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