Lecture 3. Selberg's sieve. Extremal orders

M. Klazar

March 8, 2024

I continue my survey of G. Tenenbaum's book [13]. In the third lecture we cover the last three sections of Chapter I.4. Sieve methods, and then Chapter I.5. Extremal orders, up to page 123. I follow notation explained in the first two lectures. As a rule I always (re)state each theorem so that the notation used is clear.

Chapter I.4. Sieve methods - continued

The following Theorems 4.15 and 4.16 (Brun-Titchmarsh) in [13] are obtained by the large sieve.

Theorem 1 Let

$$
C=2 \prod_{p>2}\left(1-(p-1)^{-2}\right)
$$

Then for every constant $c>C$ there is an $x_{0}>0$ such that for every $x>x_{0}$

$$
\mid\{p \leq x \mid p+2 \text { is prime }\} \left\lvert\,<\frac{8 c x}{(\log x)^{2}}\right.
$$

For real x and $a, q \in \mathbb{N}$ we denote by

$$
\pi(x ; a, q)=|\{p \leq x \mid p \equiv a(\bmod q)\}|
$$

the number of primes not exceeding x and lying in the residue class a modulo q.
Theorem 2 For any constant $c>2$ there is a constant $y_{0}>0$ such that for any $a, q \in \mathbb{N}$ and any $x, y>0$ with $y / q>y_{0}$ we have

$$
\pi(x+y ; a, q)-\pi(x ; a, q) \leq \frac{c y}{\varphi(q) \log (y / q)}
$$

(I somewhat altered the statement in [13].) Here $\varphi(\cdot)$ is of course Euler's totient function. In [8, Theorem 3.9] we find this formulation:

Let a and q be integers with $(a, q)=1$, and let x and y be real numbers with $x \geq 0$ and $y \geq 2 q$. Then

$$
\pi(x+y ; a, q)-\pi(x ; a, q) \leq \frac{2 y}{\varphi(q) \log (y / q)}(1+O(1 / \log (y / q)))
$$

By [8], E. C. Titchmarsh obtained this result, with a constant larger than 2, by Brun's method in [15] in 1930.

We proceed to Selberg's sieve which was invented by the Norwegian mathematician Atle Selberg (1917-2007) in [11] in 1947. The following are Definitions 4.17 and 4.18 in [13]. The first one is an interesting extension of multiplicativity of arithmetic functions to several variables.

Definition 3 Let $r \in \mathbb{N}$. We say that $f: \mathbb{N}^{r} \rightarrow \mathbb{C}$ is multiplicative (in Selberg's sense) if the formal Dirichlet series

$$
F\left(s_{1}, \ldots, s_{r}\right)=\sum_{n_{1}, \ldots, n_{r}=1}^{\infty} \frac{f\left(n_{1}, \ldots, n_{r}\right)}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}
$$

expresses as $F\left(s_{1}, \ldots, s_{r}\right)=\prod_{p} F_{p}\left(p^{-s_{1}}, \ldots, p^{-s_{r}}\right)$ where (the formal power series)

$$
F_{p}\left(X_{1}, \ldots, X_{r}\right)=\sum_{\nu_{1}, \ldots, \nu_{r}=0}^{\infty} f_{p}\left(\nu_{1}, \ldots, \nu_{r}\right) X_{1}^{\nu_{1}} \ldots X_{r}^{\nu_{r}} \in \mathbb{C}\left[\left[X_{1}, \ldots, X_{r}\right]\right]
$$

are such that $F_{p}(0, \ldots, 0)=1$ except for finitely many primes p.
We say that f is singular if $f(1, \ldots, 1)=0$, regular if $f(1, \ldots, 1) \neq 0$ and normal if $f(1, \ldots, 1)=1$.

In fact only the case $r \leq 2$ will be needed.
Definition 4 We call $f: \mathbb{N}^{2} \rightarrow \mathbb{C}$ symmetric if $f(m, n)=f(n, m)$ for every $m, n \in \mathbb{N}$. If $f(m, n)=0$ whenever $n>m$, we call f lower triangular. If in addition $f(m, m)=1$ for every m, we call f normal lower triangular.

This terminology is used in the following three Propositions 4.19-4.21 in [13]. Let $t: \mathbb{N}^{2} \rightarrow \mathbb{C}$ be normal lower triangular. For $1 \leq n \leq m$ we define the inverse $t^{*}: \mathbb{N}^{2} \rightarrow \mathbb{C}$ of t as the solution of the infinite linear system

$$
\sum_{k=n}^{m} t^{*}(m, k) t(k, n)=\delta_{m, n}
$$

($\delta_{m, n}=1$ for $m=n$ and is 0 else).
Proposition 5 Let $t: \mathbb{N}^{2} \rightarrow \mathbb{C}$ be normal lower triangular. The following hold.

1. If $f, g: \mathbb{N} \rightarrow \mathbb{C}$ satisfy $f(m)=\sum_{n=1}^{m} t(m, n) g(n)$ for every $m \in \mathbb{N}$, then

$$
g(m)=\sum_{n=1}^{m} t^{*}(m, n) f(n)
$$

2. If $f, g: \mathbb{N} \rightarrow \mathbb{C}$ satisfy $f(n)=\sum_{m \geq n} t(m, n) g(m)$ where for every $n \in \mathbb{N}$ the series absolutely converges, then

$$
g(n)=\sum_{m \geq n} t^{*}(m, n) f(m)
$$

provided that for every $n \in \mathbb{N}$ the series absolutely converges.

Proposition 6 Let $t: \mathbb{N}^{2} \rightarrow \mathbb{C}$ be normal lower triangular and multiplicative. Then so is its inverse t^{*}.

The following is a useful special case of Proposition 5.
Proposition 7 Let $t: \mathbb{N}^{2} \rightarrow \mathbb{C}$ be normal lower triangular and multiplicative. The following hold.

1. If $f, g: \mathbb{N} \rightarrow \mathbb{C}$ satisfy $f(m)=\sum_{d \mid m} t(m, d) g(d)$ for every $m \in \mathbb{N}$, then

$$
g(m)=\sum_{d \mid m} t^{*}(m, d) f(d)
$$

2. If $f, g: \mathbb{N} \rightarrow \mathbb{C}$ satisfy $f(n)=\sum_{n \mid m} t(m, n) g(m)$ where for every $n \in \mathbb{N}$ the series absolutely converges, then

$$
g(n)=\sum_{n \mid m} t^{*}(m, n) f(m)
$$

provided that for every $n \in \mathbb{N}$ the series absolutely converges.
Selberg's sieve(s) use quadratic forms. The next is Definition 4.22 in [13].
Definition 8 We call $f: \mathbb{N}^{2} \rightarrow \mathbb{R}$ positive definite if it is symmetric and if

$$
Q=Q\left(x_{1}, x_{2}, \ldots\right)=\sum_{m, n=1}^{\infty} f(m, n) x_{m} x_{n}>0
$$

for any nonzero sequence $\left(x_{n}\right) \subset \mathbb{R}$ satisfying $x_{n}=0$ for $n>n_{0}$.
The next is Proposition 4.23 in [13].
Proposition 9 Let $f: \mathbb{N}^{2} \rightarrow \mathbb{R}$ be positive definite and multiplicative. Then there exist multiplicative functions $g: \mathbb{N} \rightarrow(0,+\infty)$ and $t: \mathbb{N}^{2} \rightarrow \mathbb{R}$ such that $t(m, n)$ is normal lower triangular and for any $m, n \in \mathbb{N}$,

$$
f(m, n)=\sum_{d \mid(m, n)} g(d) \cdot t(m, d) \cdot t(n, d) .
$$

The functions g and t are uniquely determined by this condition.
The next Theorem 4.24 in [13] describes the solution of an optimization problem for quadratic forms that is needed in Selberg's sieve.

Theorem 10 Let $N \in \mathbb{N}$ and let f, g and t be as in the previous proposition. Then for the constraint $x_{1}=1$ and $n>N \Rightarrow x_{n}=0$ the quadratic form Q in Definition 8 has the minimum value

$$
Q^{*}=\frac{1}{\sum_{m=1}^{N} t^{*}(m, 1)^{2} / g(m)}
$$

when $x_{n}=Q^{*} \sum_{m=1}^{N} t^{*}(m, n) t^{*}(m, 1) / g(m), n=1,2, \ldots, N$.

The next Theorem 4.25 in [13] (reformulated by us) concerns the so called Johnsen-Selberg prime power sieve which originated in [4, 12]. We need for it some notation. Let $\mathcal{A} \subset \mathbb{Z}$ be a finite tuple of integers (which may be repeated), $z \geq 2$ be real, $P \subset \mathbb{P}$ and $P_{z}=\{p \in P \mid p \leq z\}$. For any prime power p^{ν} $(\nu \in \mathbb{N})$ we are given a set $W\left(p^{\nu}\right) \subset \mathbb{Z}$ that is a union of infinite arithmetic progressions of the form $m+p^{\nu} \mathbb{Z}, m \in \mathbb{Z}$; in other words it is a union of several residue classes modulo p^{ν}. We assume that $W\left(p^{\mu}\right) \cap W\left(p^{\nu}\right)=\emptyset$ if $\mu \neq \nu$. For $d \in \mathbb{N}$ we set $W(d)=\bigcap_{p^{\nu} \| d} W\left(p^{\nu}\right)$, with $W(1)=\mathbb{Z}$. We define

$$
S(\mathcal{A}, P, z)=\left|\left\{a \in \mathcal{A} \mid \forall p \in P_{z} \forall \nu \in \mathbb{N}: a \notin W\left(p^{\nu}\right)\right\}\right| .
$$

For $n \in \mathbb{N}$ we denote by $P^{+}(n)$ the largest prime factor of n, with $P^{+}(1)=1$.
Theorem 11 With this notation we further suppose that $X \geq 0$ is real and that $w: \mathbb{N} \rightarrow[0,+\infty)$ is a multiplicative function such that (i) for any $p \notin P_{z}$ and $\nu \in \mathbb{N}$, $w\left(p^{\nu}\right)=0$, and (ii) for any $p \in P_{z}, \sum_{\nu=1}^{\infty} w\left(p^{\nu}\right) / p^{\nu}<1$. For any $d \in \mathbb{N}$ we set $r_{d}=|\mathcal{A} \cap W(d)|-w(d) X / d$. For any p and $\nu \in \mathbb{N}_{0}$ we define $\vartheta\left(p^{\nu}\right)=1-\sum_{\mu=1}^{\nu} w\left(p^{\mu}\right) / p^{\mu}(>0)$ and consider the normal (i.e., $f(1)=1$) multiplicative function $f: \mathbb{N} \rightarrow[0,+\infty)$ determined by the values $(\nu \in \mathbb{N})$

$$
f\left(p^{\nu}\right)=\frac{w\left(p^{\nu}\right)}{\vartheta\left(p^{\nu}\right) \vartheta\left(p^{\nu-1}\right)} .
$$

Finally, for real $x, y \geq 1$ let $\psi_{f}(x, y)=\sum_{n \leq x, P^{+}(n) \leq y} f(n) / n$. Then for any $D \in \mathbb{N}, D>1$, one has the upper bound

$$
S(\mathcal{A}, P, z) \leq \frac{X}{\psi_{f}(D, z)}+\sum_{\substack{m \leq D^{2} \\ P^{+}(m) \leq z}} 3^{\omega(m)}\left|r_{m}\right|
$$

This theorem is due to G. Tenenbaum and J. Wu in [14] in 2008.
In the following Theorem 4.26 (Selberg) of [13] the tuple \mathcal{A} is an interval of integers and the notation of the last theorem is used.

Theorem 12 We suppose that \mathcal{A} consists of $N \in \mathbb{N}$ consecutive integers and that $(d \in \mathbb{N})$ the function $w(d):=|[0, d) \cap W(d)|$ satisfies conditions (i) and (ii). Then for any $D \in \mathbb{N}$,

$$
S(\mathcal{A}, P, z) \leq \frac{N+D^{2}-1}{\psi_{f}(D, z)}
$$

The next Theorem 4.27, stated in [13] without proof, was obtained in [14] like Theorem 11 and achieves an upper bound on $1 / \psi_{f}(D, z)$. Besides the notation of Theorem 11 it requires some additional one. First of all, $w(d)$ is as in the last theorem. For $\kappa, u>0$ let $\rho_{\kappa}(u)$ (the generalized Dickman function) be the continuous solution of the system
$\rho_{\kappa}(u)=\frac{u^{\kappa-1}}{\Gamma(u)} \ldots u \in(0,1] \wedge u \rho_{\kappa}^{\prime}(u)+\left(1-\kappa \rho_{\kappa}(u)\right)+\kappa \rho_{\kappa}(u-1)=0 \ldots u>1$
where $\Gamma(\cdot)$ is Euler's Γ function. For $u \geq 0$ let (γ is Euler's constant)

$$
\lambda_{\kappa}(u)=\mathrm{e}^{-\gamma \kappa} \int_{u}^{+\infty} \rho_{\kappa}(v) \mathrm{d} v \text { and } j_{\kappa}(u)=1-\lambda_{\kappa}(u)
$$

Let $H(z)=\prod_{p \leq z}\left(1-\sum_{\nu=1}^{\infty} w\left(p^{\nu} / p^{\nu}\right)\right.$. Finally, besides the conditions (i) and (ii) of Theorem 11 we introduce condition (iii) $\left(\eta \in\left(0, \frac{1}{2}\right), \kappa>0\right.$ and $\left.r \in \mathbb{N}\right)$: $\vartheta\left(p^{\nu}\right) \geq \eta$ for any $p \in P$ and $\nu \in \mathbb{N}$,

$$
\sum_{p} \sum_{\nu=1}^{r} \frac{w\left(p^{\nu}\right)^{2} \log p}{p^{2 \nu}}+\sum_{p} \sum_{\nu>r} \frac{w\left(p^{\nu}\right)}{p^{(1-\eta) \nu}}<\infty
$$

and for any $t \geq y \geq 1$,

$$
\sum_{\substack{y<p \leq t \\ \nu \in[r]}} \frac{w\left(p^{\nu} \log p\right)}{p^{\nu}} \leq \kappa \log (t / y)+O(1)
$$

Theorem 13 Let $r, D \in \mathbb{N}, \kappa>0, \eta \in\left(0, \frac{1}{2}\right), v=\min \left(\left\{\frac{\log D}{r \log z}, \frac{3 \log D}{r \eta \log \log D}\right\}\right)$ and $\lambda_{\kappa}^{+}(v)=\lambda_{\kappa}(v) \cdot v \log (1+v)$. If the conditions (i) and (iii) hold, then there exists a constant B such that we have uniformly for $2 \leq z \leq D^{1 / r}$ that

$$
\frac{1}{\psi_{f}(D, z)} \leq \frac{H(z)}{j_{\kappa}(v)}\left(1+O\left(\lambda_{\kappa}^{+}(v) \exp ((B v \log v) / \log z) / \log z\right)\right)
$$

In the last eighth section of Chapter I. 4 of [13] Selberg's sieve is applied to bound the number of natural numbers in an interval that are sums of two squares. The next Theorem 4.28 in [13] is the well known Euler's criterion of quadratic (non) residues. The symbol ($\frac{a}{p}$) is Legendre's symbol.

Theorem 14 For every $a \in(\mathbb{Z} / p \mathbb{Z})^{*}$, we have

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

The next Theorem 4.29 (Girard-Fermat) in [13] is a classical result.
Theorem 15 An odd prime number is the sum of two squares if, and only if, it is congruent to 1 modulo 4.

The next Theorem 4.30 in [13] characterizes numbers expressible as sums of two squares; $v_{p}(n)$ is the p-adic order of n.

Theorem 16 A positive integer is representable as a sum of two squares if, and only if, for any prime number p such that $p \equiv 3(\bmod 4)$, we have $v_{p}(n) \equiv$ $0(\bmod 2)$.

Finally, the last Theorem 4.31 in Chapter I. 4 in [13] gives upper bounds on the number of natural numbers in an interval that are sums of two squares. We set

$$
K_{0}=\frac{1}{\sqrt{2}} \prod_{p \equiv 3(\bmod 4)} \frac{1}{\sqrt{1-p^{-2}}} \approx 0.764
$$

(this is so called Landau-Ramanujan constant).
Theorem 17 There is an absolute constant $K>0$ such that for any set $I \subset \mathbb{N}$ of $N \in \mathbb{N}$ consecutive numbers it holds that

$$
Z_{N}=\mid\left\{n \in I \mid n=l^{2}+m^{2} \text { for some } l, m \in \mathbb{N}\right\} \left\lvert\, \leq K N \prod_{\substack{p \leq N \\ p \equiv 3(\bmod 4)}}\left(1-\frac{1}{p}\right)\right.
$$

For $N \rightarrow \infty$,

$$
Z_{N} \leq(\pi+o(1)) \frac{K_{0} N}{\sqrt{\log N}}
$$

Nothing is said in [13] about the 1908 asymptotics [7] of E. Landau: for $x \geq 2$,

$$
\mid\left\{n \leq x \mid n=l^{2}+m^{2} \text { for some } l, m \in \mathbb{N}\right\} \left\lvert\,=\frac{K_{0} x}{\sqrt{\log x}}+O\left(x /(\log x)^{3 / 2}\right) .\right.
$$

See [1] for the function field analogue of Landau's result.
One still finds Theorem 4.32 (Iwaniec) in the Notes to Chapter I. 4 in [13] but we do not quote it and instead mention the excellent and often witty book [3] on sieves written by J. Friedlander and H. Iwaniec.

Chapter I.5. Extremal orders

The following is Definition 5.1 in [13].
Definition 18 Let $f, g: \mathbb{N} \rightarrow \mathbb{R}$ where g is non-decreasing and eventually positive. We say that g is a maximal (resp. minimal) order for f if

$$
\limsup _{n \rightarrow \infty} f(n) / g(n)=1\left(\text { resp. } \liminf _{n \rightarrow \infty} f(n) / g(n)=1\right)
$$

The following are Theorem 5.2, Corollary 5.3 and Theorem 5.4 in [13]. Recall that $\tau(n)=\sum_{l m=n} 1$ is the number of divisors of n. The notation $O_{\varepsilon}(\cdot)$ means that the implicit constant c in the $O(\cdot)$ (see the definition of O in the last lecture) may depend on ε.

Theorem 19 If $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative and such that $\lim _{p^{\nu} \rightarrow \infty} f\left(p^{\nu}\right)=0$ then $\lim _{n \rightarrow \infty} f(n)=0$.

The assumption on f says that if the sequence $\left(m_{n}\right)=\left(m_{1}<m_{2}<\ldots\right) \subset \mathbb{N}$ lists in the increasing order all prime powers, so that

$$
\left(m_{n}\right)=(2,3,4,5,7,8,9,11,13,16,17,19,23, \ldots)
$$

then $\lim _{n \rightarrow \infty} f\left(m_{n}\right)=0$. It is easy to see that then this limit holds for any permutation of $\left(m_{n}\right)$.

Proof. Suppose that f is as stated and that an $\varepsilon \leq 1$ is given. By $q \in \mathbb{N}$ we denote powers of primes. There is a $Q=Q(\varepsilon)>0$ such that $q>Q \Rightarrow|f(q)| \leq \varepsilon$. Let Q_{1}, resp. Q_{2}, be the set of $q \leq Q$ with $|f(q)| \leq 1$, resp. $|f(q)|>1$, and let Q_{3} be the set of $q>Q$. Then $Q_{1} \cup Q_{2} \cup Q_{3}$ is a partition of all q and every $n \in \mathbb{N}$ expresses uniquely as the product

$$
n=n_{1} n_{2} n_{3} \text { where } n_{i}=\prod_{q \| n, q \in Q_{i}} q
$$

It is clear that the n_{i} are mutually coprime and $\left|f\left(n_{1}\right)\right| \leq 1$. It is also clear that $\left|f\left(n_{2}\right)\right| \leq A$ where $A>0$ is an absolute constant (independent of ε) and that if $n_{3}>1$ then $\left|f\left(n_{3}\right)\right| \leq \varepsilon$. Finally, let n_{0} be such that $n>n_{0} \Rightarrow n_{3}>1$. Then

$$
n>n_{0} \Rightarrow|f(n)|=\left|f\left(n_{1}\right)\right| \cdot\left|f\left(n_{2}\right)\right| \cdot\left|f\left(n_{3}\right)\right| \leq 1 \cdot A \cdot \varepsilon=A \varepsilon .
$$

This means that $\lim f(n)=0$.

Corollary 20 For any $\varepsilon>0$ we have $\tau(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)($ for $n \in \mathbb{N})$.
Proof. We apply the previous theorem to the function $f(n)=\tau(n) / n^{\varepsilon}$. The assumption of the theorem is satisfied because

$$
f\left(p^{\nu}\right)=\frac{\nu+1}{\left(p^{\nu}\right)^{\varepsilon}} \leq \frac{1+2 \log \left(p^{\nu}\right)}{\left(p^{\nu}\right)^{\varepsilon}}
$$

and $\lim _{p^{\nu} \rightarrow \infty} f\left(p^{\nu}\right)=0$.

Theorem 21 A maximal order for $\log (\tau(n))$ is $(\log 2)(\log n) /(\log \log n)$.
This theorem is essentially due to S. Ramanujan in $[9,10]$ in 1915.
The next Theorem 5.5 in [13] deals with the arithmetic functions $\omega(n)=$ $\sum_{p \mid n} 1$ and $\Omega(n)=\sum_{p^{\nu} \| n} \nu$.

Theorem 22 A maximal order for $\omega(n)$ is $(\log n) /(\log \log n)$. A maximal order for $\Omega(n)$ is $(\log n) /(\log 2)$.

The next Theorem 5.6 in [13] deals with Euler's totient function $\varphi(n)=$ $\sum_{\substack{m, m \leq n \\(m, n)=1}} 1$

Theorem 23 A maximal order for $\varphi(n)$ is n. A minimal order is

$$
\frac{\mathrm{e}^{-\gamma} n}{\log \log n}
$$

where γ denotes Euler's constant.
The maximal order for $\varphi(n)$ is witnessed by primes. By [8] the result on the minimal order for $\varphi(n)$ is due to E . Landau in [6] in 1903.

Finally, the next last Theorem 5.7 in Chapter I. 5 in [13] (with only sketched proof) deals with the functions $\sigma_{\kappa}(n)=\sum_{l m=n} l^{\kappa}, \kappa \in \mathbb{R}$.

Theorem 24 The following hold on extremal orders for $\sigma_{\kappa}(n)$.

1. For $\kappa>0$, a minimal order is n^{κ}.
2. For $\kappa>1$, a maximal order is $\zeta(\kappa) n^{\kappa}$.
3. For $\kappa=1$, a maximal order is $\mathrm{e}^{\gamma} n(\log \log n)$.
4. For $0<\kappa<1$, we have

$$
\sigma_{\kappa}(n) \leq n^{\kappa} \exp \left((1+o(1))(1-\kappa)^{-1}(\log n)^{1-\kappa} /(\log \log n)\right)
$$

and the opposite inequality is satisfied for infinitely many $n \in \mathbb{N}$.
We add two more theorems on maximal orders, these are not in [13]. Let $m(n)$ be the number of ordered factorizations

$$
n=n_{1} n_{2} \ldots n_{k}, n_{i} \geq 2
$$

of the number $n \in \mathbb{N}$. Thus $(m(n))=(0,1,1,2,1,3,1,3,2,3,1,8,1, \ldots)$ but let us change $m(1)$ to 1 . Let $\rho=1.72684 \ldots$ be the only positive solution of the equation $\zeta(s)=\sum_{n \geq 1} n^{-s}=2$. The appearance of this constant is explained by the formula

$$
\sum_{n=1}^{\infty} \frac{m(n)}{n^{s}}=\sum_{k=0}^{\infty}(\zeta(s)-1)^{k}=\frac{1}{1-(\zeta(s)-1)}=\frac{1}{2-\zeta(s)}
$$

for the formal Dirichlet series of $(m(n))$. The next theorem was obtained in [5].
Theorem 25 (Klazar and Luca, 2007) For every $\varepsilon>0$,

$$
m(n)<\frac{n^{\rho}}{\exp \left((\log n)^{1 / \rho} /(\log \log n)^{1+\varepsilon}\right)}
$$

holds for every $n>n_{0}=n_{0}(\varepsilon)$. On the other hand, there is a constant $c>0$ such that

$$
m(n)>\frac{n^{\rho}}{\exp \left(c((\log n) /(\log \log n))^{1 / \rho}\right)}
$$

holds for infinitely many $n \in \mathbb{N}$.

These bounds on maximal orders for $m(n)$ were strengthened in [2]:
Theorem 26 (Deléglise, Hernane and Nicolas, 2008) For some constants $A, B>0$ one has

$$
\log (m(n)) \leq \rho \log n-A(\log n)^{1 / \rho} /(\log \log n)
$$

for every large n and

$$
\log (m(n)) \geq \rho \log n-B(\log n)^{1 / \rho} /(\log \log n)
$$

for infinitely many n.

References

[1] L. Bary-Soroker, Y. Smilansky and A. Wolf, On the function field analogue of Landau's theorem on sums of squares, Finite Fields Appl. 39 (2016), 195-215
[2] M. Deléglise, M. O. Hernane and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction de Kalmár, J. Number Theory 128 (2008), 16761719
[3] J. Friedlander and H. Iwaniec, Opera de Cribro, American Mathematical Society, Providence, Rhode Island 2010
[4] J. Johnsen, On the large sieve method in $G F(q, x)$, Mathematika 18 (1971), 172-184
[5] M. Klazar and F. Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, J. Number Theory 124 (2007), 470-490
[6] E. Landau, Über den Verlauf der zahlentheoretischen Funktion $\varphi(x)$, Arch. Math. Phys. 5 (1903), 86-91
[7] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. 13 (1908), 305-312
[8] H. L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, UK 2007
[9] S. Ramanujan, On the number of divisors of a number, J. Indian Math. Soc. 7 (1915), 131-133
[10] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409
[11] A. Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Trondhjem 19 (1947), 64-67
[12] A. Selberg, Remarks on multiplicative functions, 232-241. In: Number theory day, (Proc. Conf., Rockefeller Univ., New York 1976), Springer, Berlin 1977
[13] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition)
[14] G. Tenenbaum and J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, 3, Compositio Math. 144 (2008), 339-376
[15] E. C. Titchmarsh, A divisor problem, Rend. Circ. Math. Palermo 54 (1930), 414-429

