
Lecture 3. Selberg’s sieve. Extremal orders

M. Klazar

March 8, 2024

I continue my survey of G. Tenenbaum’s book [13]. In the third lecture we
cover the last three sections of Chapter I.4. Sieve methods, and then Chapter
I.5. Extremal orders, up to page 123. I follow notation explained in the first two
lectures. As a rule I always (re)state each theorem so that the notation used is
clear.

Chapter I.4. Sieve methods — continued

The following Theorems 4.15 and 4.16 (Brun–Titchmarsh) in [13] are ob-
tained by the large sieve.

Theorem 1 Let
C = 2

∏
p>2

(
1− (p− 1)−2

)
.

Then for every constant c > C there is an x0 > 0 such that for every x > x0

|{p ≤ x | p+ 2 is prime}| < 8cx

(log x)2
.

For real x and a, q ∈ N we denote by

π(x; a, q) = |{p ≤ x | p ≡ a (mod q)}|

the number of primes not exceeding x and lying in the residue class a modulo q.

Theorem 2 For any constant c > 2 there is a constant y0 > 0 such that for
any a, q ∈ N and any x, y > 0 with y/q > y0 we have

π(x+ y; a, q)− π(x; a, q) ≤ cy

ϕ(q) log(y/q)
.

(I somewhat altered the statement in [13].) Here ϕ(·) is of course Euler’s totient
function. In [8, Theorem 3.9] we find this formulation:

Let a and q be integers with (a, q) = 1, and let x and y be real
numbers with x ≥ 0 and y ≥ 2q. Then

π(x+ y; a, q)− π(x; a, q) ≤ 2y

ϕ(q) log(y/q)

(
1 +O(1/ log(y/q))

)
.
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By [8], E. C. Titchmarsh obtained this result, with a constant larger than 2, by
Brun’s method in [15] in 1930.

We proceed to Selberg’s sieve which was invented by the Norwegian math-
ematician Atle Selberg (1917–2007) in [11] in 1947. The following are Defini-
tions 4.17 and 4.18 in [13]. The first one is an interesting extension of multi-
plicativity of arithmetic functions to several variables.

Definition 3 Let r ∈ N. We say that f : Nr → C is multiplicative (in Selberg’s
sense) if the formal Dirichlet series

F (s1, . . . , sr) =

∞∑
n1,...,nr=1

f(n1, . . . , nr)

ns11 . . . nsrr

expresses as F (s1, . . . , sr) =
∏
p Fp(p

−s1 , . . . , p−sr ) where (the formal power
series)

Fp(X1, . . . , Xr) =

∞∑
ν1,...,νr=0

fp(ν1, . . . , νr)X
ν1
1 . . . Xνr

r ∈ C[[X1, . . . , Xr]]

are such that Fp(0, . . . , 0) = 1 except for finitely many primes p.
We say that f is singular if f(1, . . . , 1) = 0, regular if f(1, . . . , 1) 6= 0 and

normal if f(1, . . . , 1) = 1.

In fact only the case r ≤ 2 will be needed.

Definition 4 We call f : N2 → C symmetric if f(m,n) = f(n,m) for every
m,n ∈ N. If f(m,n) = 0 whenever n > m, we call f lower triangular. If in
addition f(m,m) = 1 for every m, we call f normal lower triangular.

This terminology is used in the following three Propositions 4.19–4.21 in [13].
Let t : N2 → C be normal lower triangular. For 1 ≤ n ≤ m we define the inverse
t∗ : N2 → C of t as the solution of the infinite linear system

m∑
k=n

t∗(m, k)t(k, n) = δm,n

(δm,n = 1 for m = n and is 0 else).

Proposition 5 Let t : N2 → C be normal lower triangular. The following hold.

1. If f, g : N→ C satisfy f(m) =
∑m
n=1 t(m,n)g(n) for every m ∈ N, then

g(m) =
∑m
n=1 t

∗(m,n)f(n).

2. If f, g : N → C satisfy f(n) =
∑
m≥n t(m,n)g(m) where for every n ∈ N

the series absolutely converges, then

g(n) =
∑
m≥n t

∗(m,n)f(m)

provided that for every n ∈ N the series absolutely converges.
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Proposition 6 Let t : N2 → C be normal lower triangular and multiplicative.
Then so is its inverse t∗.

The following is a useful special case of Proposition 5.

Proposition 7 Let t : N2 → C be normal lower triangular and multiplicative.
The following hold.

1. If f, g : N→ C satisfy f(m) =
∑
d |m t(m, d)g(d) for every m ∈ N, then

g(m) =
∑
d |m t

∗(m, d)f(d).

2. If f, g : N → C satisfy f(n) =
∑
n |m t(m,n)g(m) where for every n ∈ N

the series absolutely converges, then

g(n) =
∑
n |m t

∗(m,n)f(m)

provided that for every n ∈ N the series absolutely converges.

Selberg’s sieve(s) use quadratic forms. The next is Definition 4.22 in [13].

Definition 8 We call f : N2 → R positive definite if it is symmetric and if

Q = Q(x1, x2, . . . ) =

∞∑
m,n=1

f(m, n)xmxn > 0

for any nonzero sequence (xn) ⊂ R satisfying xn = 0 for n > n0.

The next is Proposition 4.23 in [13].

Proposition 9 Let f : N2 → R be positive definite and multiplicative. Then
there exist multiplicative functions g : N → (0,+∞) and t : N2 → R such that
t(m,n) is normal lower triangular and for any m,n ∈ N,

f(m, n) =
∑
d | (m,n) g(d) · t(m, d) · t(n, d).

The functions g and t are uniquely determined by this condition.

The next Theorem 4.24 in [13] describes the solution of an optimization
problem for quadratic forms that is needed in Selberg’s sieve.

Theorem 10 Let N ∈ N and let f , g and t be as in the previous proposition.
Then for the constraint x1 = 1 and n > N ⇒ xn = 0 the quadratic form Q in
Definition 8 has the minimum value

Q∗ =
1∑N

m=1 t
∗(m, 1)2/g(m)

,

when xn = Q∗
∑N
m=1 t

∗(m,n)t∗(m, 1)/g(m), n = 1, 2, . . . , N .
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The next Theorem 4.25 in [13] (reformulated by us) concerns the so called
Johnsen–Selberg prime power sieve which originated in [4, 12]. We need for it
some notation. Let A ⊂ Z be a finite tuple of integers (which may be repeated),
z ≥ 2 be real, P ⊂ P and Pz = {p ∈ P | p ≤ z}. For any prime power pν

(ν ∈ N) we are given a set W (pν) ⊂ Z that is a union of infinite arithmetic
progressions of the form m+ pνZ, m ∈ Z; in other words it is a union of several
residue classes modulo pν . We assume that W (pµ) ∩W (pν) = ∅ if µ 6= ν. For
d ∈ N we set W (d) =

⋂
pν ‖ dW (pν), with W (1) = Z. We define

S(A, P, z) = |{a ∈ A | ∀ p ∈ Pz ∀ ν ∈ N : a 6∈W (pν)}|.

For n ∈ N we denote by P+(n) the largest prime factor of n, with P+(1) = 1.

Theorem 11 With this notation we further suppose that X ≥ 0 is real and
that w : N → [0,+∞) is a multiplicative function such that (i) for any p 6∈ Pz
and ν ∈ N, w(pν) = 0, and (ii) for any p ∈ Pz,

∑∞
ν=1 w(pν)/pν < 1. For any

d ∈ N we set rd = |A ∩W (d)| − w(d)X/d. For any p and ν ∈ N0 we define
ϑ(pν) = 1 −

∑ν
µ=1 w(pµ)/pµ (> 0) and consider the normal (i.e., f(1) = 1)

multiplicative function f : N→ [0,+∞) determined by the values (ν ∈ N)

f(pν) =
w(pν)

ϑ(pν)ϑ(pν−1)
.

Finally, for real x, y ≥ 1 let ψf (x, y) =
∑
n≤x,P+(n)≤y f(n)/n. Then for any

D ∈ N, D > 1, one has the upper bound

S(A, P, z) ≤ X

ψf (D, z)
+

∑
m≤D2

P+(m)≤z

3ω(m)|rm|.

This theorem is due to G. Tenenbaum and J. Wu in [14] in 2008.
In the following Theorem 4.26 (Selberg) of [13] the tuple A is an interval of

integers and the notation of the last theorem is used.

Theorem 12 We suppose that A consists of N ∈ N consecutive integers and
that (d ∈ N) the function w(d) := |[0, d)∩W (d)| satisfies conditions (i) and (ii).
Then for any D ∈ N,

S(A, P, z) ≤ N +D2 − 1

ψf (D, z)
.

The next Theorem 4.27, stated in [13] without proof, was obtained in [14] like
Theorem 11 and achieves an upper bound on 1/ψf (D, z). Besides the notation
of Theorem 11 it requires some additional one. First of all, w(d) is as in the
last theorem. For κ, u > 0 let ρκ(u) (the generalized Dickman function) be the
continuous solution of the system

ρκ(u) =
uκ−1

Γ(u)
. . . u ∈ (0, 1] ∧ uρ′κ(u)+(1−κρκ(u))+κρκ(u−1) = 0 . . . u > 1
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where Γ(·) is Euler’s Γ function. For u ≥ 0 let (γ is Euler’s constant)

λκ(u) = e−γκ
∫ +∞

u

ρκ(v) dv and jκ(u) = 1− λκ(u).

Let H(z) =
∏
p≤z

(
1 −

∑∞
ν=1 w(pν/pν

)
. Finally, besides the conditions (i) and

(ii) of Theorem 11 we introduce condition (iii) (η ∈ (0, 12 ), κ > 0 and r ∈ N):
ϑ(pν) ≥ η for any p ∈ P and ν ∈ N,

∑
p

r∑
ν=1

w(pν)2 log p

p2ν
+
∑
p

∑
ν>r

w(pν)

p(1−η)ν
<∞

and for any t ≥ y ≥ 1,∑
y<p≤t
ν∈[r]

w(pν log p)

pν
≤ κ log(t/y) +O(1).

Theorem 13 Let r,D ∈ N, κ > 0, η ∈ (0, 12 ), v = min
(
{ logD
r log z ,

3 logD
rη log logD}

)
and λ+κ (v) = λκ(v) · v log(1 + v). If the conditions (i) and (iii) hold, then there
exists a constant B such that we have uniformly for 2 ≤ z ≤ D1/r that

1

ψf (D, z)
≤ H(z)

jκ(v)

(
1 +O

(
λ+κ (v) exp((Bv log v)/ log z)/ log z

))
.

In the last eighth section of Chapter I.4 of [13] Selberg’s sieve is applied
to bound the number of natural numbers in an interval that are sums of two
squares. The next Theorem 4.28 in [13] is the well known Euler’s criterion of
quadratic (non) residues. The symbol

(
a
p

)
is Legendre’s symbol.

Theorem 14 For every a ∈ (Z/pZ)∗, we have(
a

p

)
≡ a(p−1)/2 (mod p).

The next Theorem 4.29 (Girard–Fermat) in [13] is a classical result.

Theorem 15 An odd prime number is the sum of two squares if, and only if,
it is congruent to 1 modulo 4.

The next Theorem 4.30 in [13] characterizes numbers expressible as sums of
two squares; vp(n) is the p-adic order of n.

Theorem 16 A positive integer is representable as a sum of two squares if,
and only if, for any prime number p such that p ≡ 3 (mod 4), we have vp(n) ≡
0 (mod 2).
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Finally, the last Theorem 4.31 in Chapter I.4 in [13] gives upper bounds on
the number of natural numbers in an interval that are sums of two squares. We
set

K0 =
1√
2

∏
p≡3 (mod 4)

1√
1− p−2

≈ 0.764

(this is so called Landau–Ramanujan constant).

Theorem 17 There is an absolute constant K > 0 such that for any set I ⊂ N
of N ∈ N consecutive numbers it holds that

ZN = |{n ∈ I | n = l2 +m2 for some l,m ∈ N}| ≤ KN
∏
p≤N

p≡3 (mod 4)

(
1− 1

p

)
.

For N →∞,

ZN ≤ (π + o(1))
K0N√
logN

.

Nothing is said in [13] about the 1908 asymptotics [7] of E. Landau: for
x ≥ 2,

|{n ≤ x | n = l2 +m2 for some l,m ∈ N}| = K0x√
log x

+O
(
x/(log x)3/2

)
.

See [1] for the function field analogue of Landau’s result.
One still finds Theorem 4.32 (Iwaniec) in the Notes to Chapter I.4 in [13]

but we do not quote it and instead mention the excellent and often witty book
[3] on sieves written by J. Friedlander and H. Iwaniec.

Chapter I.5. Extremal orders

The following is Definition 5.1 in [13].

Definition 18 Let f, g : N→ R where g is non-decreasing and eventually posi-
tive. We say that g is a maximal (resp. minimal) order for f if

lim sup
n→∞

f(n)/g(n) = 1 (resp. lim inf
n→∞

f(n)/g(n) = 1).

The following are Theorem 5.2, Corollary 5.3 and Theorem 5.4 in [13]. Recall
that τ(n) =

∑
lm=n 1 is the number of divisors of n. The notation Oε(·) means

that the implicit constant c in the O(·) (see the definition of O in the last lecture)
may depend on ε.

Theorem 19 If f : N → C is multiplicative and such that limpν→∞ f(pν) = 0
then limn→∞ f(n) = 0.
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The assumption on f says that if the sequence (mn) = (m1 < m2 < . . . ) ⊂ N
lists in the increasing order all prime powers, so that

(mn) = (2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, . . . ) ,

then limn→∞ f(mn) = 0. It is easy to see that then this limit holds for any
permutation of (mn).

Proof. Suppose that f is as stated and that an ε ≤ 1 is given. By q ∈ N we
denote powers of primes. There is a Q = Q(ε) > 0 such that q > Q⇒ |f(q)| ≤ ε.
Let Q1, resp. Q2, be the set of q ≤ Q with |f(q)| ≤ 1, resp. |f(q)| > 1, and let
Q3 be the set of q > Q. Then Q1 ∪ Q2 ∪ Q3 is a partition of all q and every
n ∈ N expresses uniquely as the product

n = n1n2n3 where ni =
∏

q ‖n, q∈Qi

q .

It is clear that the ni are mutually coprime and |f(n1)| ≤ 1. It is also clear that
|f(n2)| ≤ A where A > 0 is an absolute constant (independent of ε) and that if
n3 > 1 then |f(n3)| ≤ ε. Finally, let n0 be such that n > n0 ⇒ n3 > 1. Then

n > n0 ⇒ |f(n)| = |f(n1)| · |f(n2)| · |f(n3)| ≤ 1 ·A · ε = Aε .

This means that lim f(n) = 0. 2

Corollary 20 For any ε > 0 we have τ(n) = Oε(n
ε) (for n ∈ N).

Proof. We apply the previous theorem to the function f(n) = τ(n)/nε. The
assumption of the theorem is satisfied because

f(pν) =
ν + 1

(pν)ε
≤ 1 + 2 log(pν)

(pν)ε

and limpν→∞ f(pν) = 0. 2

Theorem 21 A maximal order for log(τ(n)) is (log 2)(log n)/(log log n).

This theorem is essentially due to S. Ramanujan in [9, 10] in 1915.
The next Theorem 5.5 in [13] deals with the arithmetic functions ω(n) =∑
p |n 1 and Ω(n) =

∑
pν ‖n ν.

Theorem 22 A maximal order for ω(n) is (log n)/(log log n). A maximal order
for Ω(n) is (log n)/(log 2).

The next Theorem 5.6 in [13] deals with Euler’s totient function ϕ(n) =∑
m,m≤n
(m,n)=1

1.
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Theorem 23 A maximal order for ϕ(n) is n. A minimal order is

e−γn

log log n

where γ denotes Euler’s constant.

The maximal order for ϕ(n) is witnessed by primes. By [8] the result on the
minimal order for ϕ(n) is due to E. Landau in [6] in 1903.

Finally, the next last Theorem 5.7 in Chapter I.5 in [13] (with only sketched
proof) deals with the functions σκ(n) =

∑
lm=n l

κ, κ ∈ R.

Theorem 24 The following hold on extremal orders for σκ(n).

1. For κ > 0, a minimal order is nκ.

2. For κ > 1, a maximal order is ζ(κ)nκ.

3. For κ = 1, a maximal order is eγn(log log n).

4. For 0 < κ < 1, we have

σκ(n) ≤ nκ exp
(
(1 + o(1))(1− κ)−1(log n)1−κ/(log log n)

)
and the opposite inequality is satisfied for infinitely many n ∈ N.

We add two more theorems on maximal orders, these are not in [13]. Let
m(n) be the number of ordered factorizations

n = n1n2 . . . nk, ni ≥ 2 ,

of the number n ∈ N. Thus (m(n)) = (0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 8, 1, . . . ) but let
us change m(1) to 1. Let ρ = 1.72684 . . . be the only positive solution of the
equation ζ(s) =

∑
n≥1 n

−s = 2. The appearance of this constant is explained
by the formula

∞∑
n=1

m(n)

ns
=
∞∑
k=0

(ζ(s)− 1)k =
1

1− (ζ(s)− 1)
=

1

2− ζ(s)

for the formal Dirichlet series of (m(n)). The next theorem was obtained in [5].

Theorem 25 (Klazar and Luca, 2007) For every ε > 0,

m(n) <
nρ

exp
(
(log n)1/ρ/(log log n)1+ε

)
holds for every n > n0 = n0(ε). On the other hand, there is a constant c > 0
such that

m(n) >
nρ

exp
(
c((log n)/(log log n))1/ρ

)
holds for infinitely many n ∈ N.
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These bounds on maximal orders for m(n) were strengthened in [2]:

Theorem 26 (Deléglise, Hernane and Nicolas, 2008) For some constants
A,B > 0 one has

log(m(n)) ≤ ρ log n−A(log n)1/ρ/(log log n)

for every large n and

log(m(n)) ≥ ρ log n−B(log n)1/ρ/(log log n)

for infinitely many n.

References

[1] L. Bary-Soroker, Y. Smilansky and A. Wolf, On the function field analogue
of Landau’s theorem on sums of squares, Finite Fields Appl. 39 (2016),
195–215
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