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In the thirteenth lecture we cover the last two Chapters III.5. Friable inte-
gers. The saddle point method and III.6. Integers free of small prime factors in
G. Tenenbaum’s book [1], up to page 582.

Chapter III.5. Friable integers. The saddle point method

The following are Theorems 5.1 and 5.2 in [1]. We set Ψ(x, y) to be the number
of (natural numbers) n ≤ x with the largest prime factor ≤ y. We define
(x ≥ y ≥ 2)

u :=
log x

log y
and Z :=

log x

log y
log(1 + y/ log x) +

y

log y
log(1 + (log x)/y) .

Theorem 1 For any x ≥ y ≥ 2, Ψ(x, y)� xe−u/2.

Theorem 2 For any x ≥ y ≥ 2,

log(Ψ(x, y)) = Z
(
1 +O

(
1/ log y + 1/ log(log(2x))

))
where the implicit constant is absolute.

The following are Theorem 5.3 and Corollary 5.4 (Ennola, 1969) in [1]. For
(aj) ⊂ (0,+∞) we denote by Nk(z) the number of k-tuples (ν1, . . . , νk) ∈ Nk0
such that ν1a1 + · · ·+ νkak ≤ z.

Theorem 3 For any k ∈ N and z ≥ 0,

zk

k! · a1 . . . ak
< Nk(z) ≤ (z + a1 + · · ·+ ak)k

k! · a1 . . . ak
.

Corollary 4 For 2 ≤ y ≤
√

(log x) log(log x),

Ψ(x, y) =
1

π(y)!

∏
p≤y

log x

log p

(
1 +O

(
y2/(log x)(log y)

))
where the implicit constant is absolute.
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The following are Theorem 5.5, Corollary 5.6 (Buchstab’s identity) and The-
orems 5.7 and 5.8 in [1].

Theorem 5 For any x, y ≥ 1,

Ψ(x, y) = 1 +
∑
p≤y

Ψ(x/p, p) .

Corollary 6 For any x ≥ 1 and z ≥ y ≥ 1,

Ψ(x, y) = Ψ(x, z)−
∑

y<p≤z

Ψ(x/p, p) .

Dickman’s function ρ(u) is defined by ρ(u) = 1 for u ∈ [0, 1] and

ρ(u) = ρ(k)−
∫ u

k

ρ(v − 1)

v
dv

for u ∈ (k, k+ 1], k ∈ N. It satisfies the delay DE uρ′(u) + ρ(u− 1) = 0 (u > 1).

Theorem 7 Dickman’s function ρ(u) has the following properties.

1. For u ≥ 1, ρ(u) =
∫ u
u−1 ρ(v) dv.

2. For u ≥ 0, ρ(u) > 0.

3. For u > 1, ρ′(u) < 0.

4. For u ≥ 0, ρ(u) ≤ 1/Γ(u+ 1).

Theorem 8 For x ≥ y ≥ 2,

Ψ(x, y) = xρ(u) +O(x/ log y)

where the implicit constant is absolute.

The following are Lemma 5.9, Theorem 5.10, Lemmas 5.11 and 5.12, Theo-
rem 5.13 (de Bruijn; Alladi) and Corollaries 5.14 and 5.15 in [1]. For s ∈ C we

set I(s) =
∫ s
0

et−1
t dt.

Lemma 9 . . .

Let

ρ̂(s) :=

∫ +∞

0

e−stρ(t) dt

be the Laplace transform of the Dickman function.

Theorem 10 For s ∈ C, ρ̂(s) = exp(γ + I(−s)).

For u > 0, u 6= 1, we let ξ = ξ(u) be the unique real, non-zero root of
eξ = 1 + uξ, and set ξ(1) := 0.
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Lemma 11 . . .

Lemma 12 . . .

Theorem 13 For u ≥ 1,

ρ(u) =

√
ξ′(u)

2π
eγ−uξ+I(ξ)(1 +O(1/u)) .

Corollary 14 For any k ∈ N0 and any real u0 > 1 and u ≥ u0,

ρ(k)(u) = (−1)kξ(u)kρ(u)(1 +O(1/u)) .

Corollary 15 For u ≥ v ≥ 0,

ρ(u− v)� ρ(u)evξ(u)

where the implicit constant is absolute.

The following are Lemma 5.16, Theorem 5.17 (Saias, 1989), Lemma 5.18,
Corollary 5.19 (Hildebrand), Lemma 5.20 and Theorems 5.21 (Hildebrand–
Tenenbaum), 5.22 and 5.23 in [1].

We denote by α = α(x, y) the unique solution of

−ζ ′

ζ
(α, y) =

∑
p≤y

log p

pα − 1
= log x .

Lemma 16 . . .

We denote by (Hε) the domain x > x0(ε) and exp((log(log x))5/3+ε) ≤ y ≤ x
and set Lε(y) := exp((log y)3/5−ε).

Theorem 17 Let ε > 0. For (x, y) in the domain (Hε),

Ψ(x, y) = Λ(x, y)
(
1 +O(1/Lε(y))

)
where Λ(x, y) is the de Bruijn function (defined in (5.28)).

Lemma 18 . . .

Corollary 19 If ε > 0, x ≥ 3 and x ≥ y ≥ exp
(
(log(log x))5/3+ε

)
, then

Ψ(x, y) = xρ(u)
(
1 +O(log(u+ 1)/ log y

)
where the implied constant depends only on ε.

Lemma 20 . . .

We set

ϕy(σ) :=
∑
p≤y

log p

pσ − 1
and ϕ′y(σ) =

dϕy(σ)

dσ
.
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Theorem 21 For x ≥ y ≥ 2,

Ψ(x, y) =
xαζ(α, y)

α
√

2π|φ′y(α)|

(
1 +O(u−1 + y−1 log y)

)
where

|φ′y(α)| = (1 + y−1 log x)(log x)(log y)
(
1 +O(1/ log(u+ 1) + 1/ log y

)
and the implicit constants are absolute. If ε ∈ (0, 12 ) and y ≥ (log x)1+ε then

Ψ(x, y) = xρ(u) exp
(
O(log(u+ 1)/ log y + u/Lε(y))

)
(α = α(x, y) is defined above).

(“We shall not prove this result here.”)

Theorem 22 If x ≥ y ≥ 2, c ≥ 1 and t := (log c)/ log y, then

Ψ(cx, y) = Ψ(x, y)cα(x,y)
(
1 +O((t2 + 1)(u−1 + y−1 log y)

)
where the implicit constant is absolute.

Theorem 23 If x ≥ y ≥ 2 and c ≥ 1, then

Ψ(cx, y) ≤ cαΨ(x, y)
(
1 +O(u−1 + y−1 log y)

)
where the implicit constant is absolute.

The following are Lemmas 5.24 and 5.25 and Theorem 5.26 (Rankin, 1938)
in [1].

Lemma 24 . . .

Lemma 25 . . .

Next j(n) is the Jacobsthal’s function, the largest gap between two integers
coprime to n, P (Z) =

∏
p≤Z p and dn = pn+1 − pn (the gap between the n-th

and the (n+ 1)-st prime).

Theorem 26 For Z ≥ 100,

j(P (Z))� Z · (logZ) · log(log(logZ))

(log(logZ))3
.

In particular, there is a c > 0 such that for infinitely many n,

dn >
c · (log pn) · (log(log pn)) · log(log(log(log pn)))

(log(log(log pn)))2
.
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Chapter III.6. Integers free of small prime factors

Now Φ(x, y) is the number of (natural numbers) n ≤ x with the minimum
prime factor > y. The following are Lemma 6.1 and Theorem 6.2 in [1]. We set
ζ(1, y) =

∏
p≤y

1
1−1/p .

Lemma 27 . . .

Theorem 28 If x ≥ y ≥ 2 then

Φ(x, y) =
x

ζ(1, y)
+O(Ψ(x, y))

where the implicit constant is absolute.

The following are Theorems 6.3 and 6.4, Corollary 6.5 and Theorem 6.6 in
[1].

Theorem 29 For x, y ≥ 1,

Φ(x, y) = 1 +
∑

y<p≤x

∑
ν≥1

Φ(x/pν , p) .

The function ω(u) is the unique continuous solution for u > 1 to the delay
DE

(uω(u))′ = ω(u− 1) (u > 2) ,

with the initial condition uω(u) = 1 for u ∈ [1, 2].

Theorem 30 For x ≥ y ≥ 2,

Φ(x, y) =
xω(u)− y

log y
+O

(
x/(log y)2

)
where the implicit constant is absolute.

Corollary 31 For u ≥ 1,

ω(u) = e−γ +O
(
u−u/2

)
.

Theorem 32 For u ∈ R one has that |ω′(u)| ≤ ρ(u) and for u ≥ 1 it holds that
ω(u) = e−γ +O

(
ρ(u)/ log(u+ 1)

)
.

The following are Theorems 6.7 and 6.8 and Corollary 6.9 in [1]. Now

ω̂(s) :=

∫ +∞

0

e−suω(u) du

is the Laplace transform of ω(u).
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Theorem 33 The function ω̂(s) extends to C \ {0} to a meromorphic function

1 + ω̂(s) =
1

sρ̂(s)
.

When s 6∈ (−∞, 0) then 1 + ω̂(s) = eJ(s) (J(s) =
∫ +∞
0

e−s−t dt/(s+ t)).

Let H(u) = exp(u/ log2(u+ 2)) (u ≥ 0).

Theorem 34 For an absolute constant a > 0 and u ≥ 0 we have that ω(u) −
e−γ � ρ(u)H(u)−a and the same bound holds for ω′(u).

Corollary 35 For j ∈ N and u ≥ 0,

ω(j)(u)� ρ(j)(u)H(u)−a .

The following are Theorem 6.10, Lemmas 6.11–13, Corollaries 6.14–6.16 and
Theorem 6.17 in [1]. Let

Yε(y) := exp((log y)3/2−ε), E(x, y) := H(u)−cLε(y)−1 + Y −1ε .

Also,

µy(u) :=

∫ +∞

0

ω(u− v)y−v dv, W (x, y) := xµy(u)
ey log y

ζ(1, y)
.

Theorem 36 For any ε > 0 and x ≥ y ≥ 2 we have Φ(x, y) − W (x, y) �
Ψ(x, y)E(x, y) in Hε and � Ψ(x, y) outside Hε.

Lemma 37 . . .

Lemma 38 . . .

Lemma 39 . . .

Corollary 40 For ε > 0 and (x, y) ∈ Hε,

Φ(x, y)− x

ζ(1, y)
� xρ(u)

log y

(
H(u)−c5 + Y −1ε

)
.

Corollary 41 For ε > 0 and (x, y) ∈ Hε,

Φ(x, y) = (xω(u)− y)
eγ

ζ(1, y)
+O

(
xρ(u)(H(u)−c6 + Y −1ε )/(log y)2

)
.

Corollary 42 For x ≥ 2y ≥ 5,

Φ(x, y) =
eγ(xω(u)− y)

ζ(1, y)

(
1 +O(e−u/3/ log y)

)
where the implicit constant is absolute.
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Theorem 43 Let n ∈ N and y ∈ R with n ≥ y ≥ 2. Then for any ε > 0,

K(n, y)�ε ρ(u)2(1+ε)u + n−1+ε

where u := log n/ log y. For any ε > 0, the approximation

K(n, y) = Ξ(u)
(
1 +O

(
(log(u+ 1) + 2−u log(log y))/ log y

))
+ O

(
ρ(u/2)2/ exp((log y)3/2−ε)

)
holds uniformly in the domain n ≥ 3, exp(log(log n)5/3+ε) ≤ y ≤ n.

Here K(n, y) is so called Kubilius gauge and

Ξ(u) =
1

2

∫
R
|ω(v)− e−γ |ρ(u− v) dv + ρ(u)/2 .
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