Lecture 1. Summation formulae. Prime numbers. Arithmetic functions

M. Klazar

February 23, 2024

In my lectures I will survey in detail the textbook [9] Introduction to Analytic and Probabilistic Number Theory written by Gérald Tenenbaum. I will mention every Definition, Lemma, Proposition, Corollary and Theorem in the book. For time reasons I cannot cover the sections of (historical) Notes and Exercises. I will prove only tiny selection of results in the book but I do want to prove at least one result in each of the 22 chapters.

I am faithful to the notation used in the book, but not dogmatically. Thus I replace \ln and $\ln _{2}$ with \log and $\log \log$, and $[0,+\infty[$ (and the like) with $[0,+\infty$). I often shorten and abridge statements of theorems.

Let $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{N}_{0}=\{0,1, \ldots\}, \mathbb{Z}$ be the integers and \mathbb{R} and \mathbb{C} be the real and the complex numbers. The letters k, l, m and n range in \mathbb{N} and $x, y \in \mathbb{R}$ and p denotes a prime number. By $k \mid l$ we denote the divisibility relation on \mathbb{Z}. Divisors of $n \in \mathbb{N}$ are always positive. For $x \in \mathbb{R},\lfloor x\rfloor=\max (\mathbb{Z} \cap(-\infty, x])$ is the lower integer part of x; the upper integer part $\lceil x\rceil$ is defined similarly. For any finite set X we denote by $|X| \in \mathbb{N}_{0}$ the number of elements in X.

In the first lecture we cover Chapter I.0. Some tools from real analysis, Chapter I.1. Prime numbers and Chapter I.2. Arithmetic functions, up to page 43.

Chapter I.0. Some tools from real analysis

The following is Theorem 0.1 (Abel's transformation) in [9].
Theorem 1 If $\left(a_{n}\right),\left(b_{n}\right) \subset \mathbb{C}(n=0,1, \ldots)$ then for any $N \in \mathbb{N}_{0}$ and $M \in \mathbb{N}$,

$$
\sum_{N<n \leq N+M} a_{n} b_{n}=A_{N+M} b_{N+M+1}+\sum_{N<n \leq N+M} A_{n}\left(b_{n}-b_{n+1}\right)
$$

where $A_{n}:=\sum_{N<m \leq n} a_{m}(n \geq 0)$. In particular, if

$$
\sup _{N<n \leq N+M}\left|A_{n}\right| \leq A
$$

and if $\left(b_{n}\right)$ is non-negative and non-increasing, then

$$
\left|\sum_{N<n \leq N+M} a_{n} b_{n}\right| \leq A b_{N+1} .
$$

The following is Corollary 0.2 (Abel's convergence criterion or Abel's rule) in [9].

Corollary 2 Let $\left(a_{n}\right) \subset \mathbb{C},\left(b_{n}\right) \subset \mathbb{R}^{+}$be non-increasing $(n=0,1, \ldots)$ and let

$$
\lim _{n \rightarrow \infty} b_{n}=0 \text { and } \sup _{N \geq 0}\left|\sum_{0 \leq n \leq N} a_{n}\right| \leq A
$$

Then the series $\sum_{n \geq 0} a_{n} b_{n}$ converges, and for every $N \in \mathbb{N}_{0}$ we have

$$
\left|\sum_{n>N} a_{n} b_{n}\right| \leq 2 A b_{N+1}
$$

From now the Stieltjes integral is being employed and [9] refers for it to the book [11]. At the end of this Chapter I. 0 I briefly review the definition. The following Abel's summation formula is Theorem 0.3 in [9]. Recall the \mathcal{C}^{k} notation for sets of k times continuously differentiable functions.

Theorem 3 Let $\left(a_{n}\right) \subset \mathbb{C}(n=1,2, \ldots)$ and let

$$
A(t):=\sum_{n \leq t} a_{n} \quad(t>0) .
$$

Then, for any function $b \in \mathcal{C}^{1}([1, x])$, we have

$$
\sum_{1 \leq n \leq x} a_{n} b(n)=A(x) b(x)-\int_{1}^{x} A(t) b^{\prime}(t) \mathrm{d} t
$$

Proof. In [9] this is proven via integration by parts in Stieltjes integrals (the measure $\mathrm{d} A(t)$ appears). I take the integrals to be Riemann and prove the identity by the additivity device which I learned in [10].

So we prove the more general identity

$$
\sum_{m<n \leq x} a_{n} b(n)=A(x) b(x)-A(m) b(m)-\int_{m}^{x} A(t) b^{\prime}(t)
$$

where $m \in \mathbb{N}, m<x, A(t)$ is as above and $b \in \mathcal{C}^{1}([m, x])$ (in fact, mere differentiability of b on $[m, x]$ suffices). We partition the interval ($m, x]$ in the subintervals $(m, m+1] \cup(m+1, m+2\rfloor \cup \cdots \cup(\lfloor x\rfloor, x\rfloor$ and observe that each side of the identity is additive in this partition (the value of the side over ($m, x]$ equals to the sum of its values over the subintervals). Thus it suffices to prove the
identity only for $x \leq m+1$. The right side then becomes, by the Fundamental Theorem of Calculus,

$$
A(x) b(x)-A(m) b(m)-A(m) \int_{m}^{x} b^{\prime}(t)=(A(x)-A(m)) b(x)
$$

If $x<m+1$ then the last expression is $(A(m)-A(m)) b(x)=0$, and if $x=m+1$ then it is $(A(m+1)-A(m)) b(x)=a_{m+1} b(m+1)$. In both cases it agrees with the value of the sum on the left side of the identity.

The following is Theorem 0.4 (Comparison of a sum and an integral) in [9].
Theorem 4 Let $a<b$ be in \mathbb{Z} and $f:[a, b] \rightarrow \mathbb{R}$ be monotonic. Then for some $\vartheta \in[0,1]$,

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t+\vartheta(f(b)-f(a))
$$

Proof. In [9] this is again proven via integration by parts in Stieltjes integrals (the measure $\mathrm{d}\lfloor t\rfloor$ appears). I give a simpler proof by means of Riemann integrals.

We denote the displayed sum by S. Suppose that f weakly decreases, the other case is similar. For $n \in \mathbb{N} \cap(a, b]$ we have that $f(n-1) \geq \int_{n-1}^{n} f \geq$ $f(n)$. We sum these bounds over the mentioned n and get (by the additivity of integrals) the bound

$$
S+f(a)-f(b) \geq \int_{a}^{b} f \geq S
$$

Thus indeed $\int_{a}^{b} f \geq S \geq \int_{a}^{b} f+f(b)-f(a)$, as required.
The following is Corollary 0.5 in [9].
Corollary 5 For $n \geq 1$, we have $\log n!=n \log n-n+1+\vartheta \log n$, with $\vartheta=$ $\vartheta_{n} \in[0,1]$.

The following is Theorem 0.6 (Second mean value theorem) in [9].
Theorem 6 Let $a<b$ be in $\mathbb{R}, f:[a, b] \rightarrow \mathbb{R}$ be monotonic and $g:[a, b] \rightarrow \mathbb{R}$ be integrable. Then for some $\xi \in[a, b]$,

$$
\int_{a}^{b} f(t) g(t) \mathrm{d} t=f(a) \int_{a}^{\xi} g(t) \mathrm{d} t+f(b) \int_{\xi}^{b} g(t) \mathrm{d} t
$$

The following is Theorem 0.7 (Euler-Maclaurin summation formula) in [9]. The Bernoulli polynomials $b_{r}(x) \in \mathbb{Q}[x]$ and the Bernoulli numbers $B_{r}=b_{r}(0)$, $r \in \mathbb{N}_{0}$, are defined by the expansions

$$
\sum_{r=0}^{\infty} b_{r}(x) \cdot \frac{y^{r}}{r!}=\frac{y \cdot \mathrm{e}^{x y}}{\mathrm{e}^{y}-1} \text { and } \sum_{r=0}^{\infty} \frac{B_{r} y^{r}}{r!}=\frac{y}{\mathrm{e}^{y}-1}
$$

So $B_{2 i+1}=0$ for $i \in \mathbb{N}$ and (as stated in [9])

$$
\begin{aligned}
& \left(B_{0}, B_{1}, B_{2}, B_{4}, B_{6}, B_{8}, B_{10}, B_{12}, B_{14}, B_{16}, \ldots\right) \\
= & \left(1,-\frac{1}{2}, \frac{1}{6},-\frac{1}{30}, \frac{1}{42},-\frac{1}{30}, \frac{5}{66},-\frac{691}{2730}, \frac{7}{6},-\frac{3617}{510}, \ldots\right) .
\end{aligned}
$$

The function $B_{r}(x): \mathbb{R} \rightarrow \mathbb{R}$ is defined as the 1-periodic extension of the restriction $b_{r}(x) \mid[0,1)$.

Theorem 7 If $k \in \mathbb{N}_{0}, a<b$ are in \mathbb{Z} and $f \in \mathcal{C}^{k+1}([a, b])$, then

$$
\begin{aligned}
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d} t & +\sum_{0 \leq r \leq k} \frac{(-1)^{r+1} B_{r+1}}{(r+1)!}\left(f^{(r)}(b)-f^{(r)}(a)\right) \\
& +\frac{(-1)^{k}}{(k+1)!} \int_{a}^{b} B_{k+1}(t) f^{(k+1)}(t) \mathrm{d} t
\end{aligned}
$$

The following is Theorem 0.8 in [9].
Theorem 8 For $n \geq 1$, we have

$$
\sum_{m \leq n} \frac{1}{m}=\log n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{\vartheta}{60 n^{4}},
$$

where γ is Euler's constant and $\vartheta=\vartheta_{n} \in[0,1]$.

The Stieltjes integral

We define it after [7, Appendix A]; in [7] it is called the Riemann-Stieltjes integral. Let $a<b$ be in \mathbb{R} and $f, g:[a, b] \rightarrow \mathbb{R}$. For any tagged partition $P=(\bar{a}, \bar{b})$ of $[a, b]$, in which $\bar{a}=\left(a=a_{0}<a_{1}<\cdots<a_{n}=b\right), n \in \mathbb{N}$, and the tags are $b_{i} \in\left[a_{i-1}, a_{i}\right]$, we define (the Stieltjes sum)

$$
S(f, g, P)=\sum_{i=1}^{n} f\left(b_{i}\right) \cdot\left(g\left(a_{i}\right)-g\left(a_{i-1}\right)\right) .
$$

We also set $\Delta(P)=\max \left(\left\{a_{i}-a_{i-1} \mid i=1, \ldots, n\right\}\right)$.
Definition 9 (the Stieltjes \int) Let a, b, f and g be as above. If there exists an $I \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ such that for every tagged partition P of $[a, b]$ with $\Delta(P)<\delta$ it holds that

$$
|S(f, g, P)-I|<\varepsilon
$$

we say that I is the Stieltjes integral of f over $[a, b]$ with respect to g and denote it by

$$
\int_{a}^{b} f \mathrm{~d} g \quad(:=I) .
$$

Here is the basic existence theorem for SI as given (and proved) in [7].
Theorem $10 \int_{a}^{b} f \mathrm{~d} g$ exists if $f \in \mathcal{C}([a, b])$ and g has bounded variation on $[a, b]$.
The last condition on g means that there exists a $c>0$ such that for any tuple $a_{0}<a_{1}<\cdots<a_{n}$ in $[a, b]$,

$$
\sum_{i=1}^{n}\left|g\left(a_{i}\right)-g\left(a_{i-1}\right)\right|<c .
$$

A few more theorems on SI are stated and proven in [7] but we do not mention them here. The attractive feature of SI is that it encompasses discrete sums of the form we encountered above: if f is continuous on $[a, b]$ then

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(t) \mathrm{d}\lfloor t\rfloor .
$$

Chapter I.1. Prime numbers

The following is Theorem 1.1 (Fundamental theorem of arithmetic) in [9].
Theorem 11 Each natural number >1 can be represented in a unique way, up to the order of the factors, as a product of prime numbers.

The following is Theorem 1.2 in [9]; $\pi(x)$ is the number of primes not exceeding x.

Theorem 12 We have

$$
\pi(x)>\frac{\log \log x}{\log 2}-\frac{1}{2} \quad(x \geq 2)
$$

The following Theorem 1.3 in [9] is an explicit and thus stronger form of the result $\frac{x}{\log x} \ll \pi(x) \ll \frac{x}{\log x}$ obtained by P. L. Chebyshev in [3] in 1850 (I found this reference in [7]).

Theorem 13 For $n \geq 4$, we have

$$
(\log 2) \frac{n}{\log n} \leq \pi(n) \leq\left(\log 4+\frac{8 \log \log n}{\log n}\right) \frac{n}{\log n}
$$

The proof (given in [9]) of the following Theorem 1.4 in [9] "was found independently by Erdős and Kalmár in 1939.".

Theorem 14 For $n \geq 1$, we have

$$
\prod_{p \leq n} p \leq 4^{n}
$$

The following is Theorem 1.5 (Nair) in [9]; d_{n} is the least common multiple of the numbers $1,2, \ldots, n$ and the reference is to the article [8].

Theorem 15 For $n \geq 7$, we have $d_{n} \geq 2^{n}$.
The following is Theorem 1.6 in [9]; $v_{p}(n):=k \in \mathbb{N}_{0}$ such that $p^{k} \mid n$ but p^{k+1} does not divide n. This result is due to A.-M. Legendre [4].

Theorem 16 For each prime number p, we have

$$
v_{p}(n!)=\sum_{k \geq 1}\left\lfloor n / p^{k}\right\rfloor \quad(n \geq 1) .
$$

The following is Corollary 1.7 in [9].
Corollary 17 For each prime p, we have

$$
\frac{n}{p}-1<v_{p}(n!) \leq \frac{n}{p}+\frac{n}{p(p-1)} \quad(n \geq 1)
$$

The following Theorem 1.8 (Mertens' first theorem) in [9] is (by [7]) due to F. Mertens [5, 6].

Theorem 18 For $x \geq 2$, we have

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Moreover, the $O(1) \in(-1-\log 4, \log 4)$.
Proof. Let us prove simplified Mertens' first theorem, without the restriction on the $O(1)$. For $x \geq 2$ and $n=\lfloor x\rfloor$,

$$
\begin{array}{rll}
n \log n+O(n) & \stackrel{\text { Cor. } 5}{=} & \log (n!) \\
= & \sum_{p \leq x} v_{p}(n!) \log p \\
& \stackrel{\text { prev. }_{=}}{=} \text {cor. } & n \sum_{p \leq x} \frac{\log p}{p}+O(n) \sum_{p \leq x} \frac{\log p}{p(p-1)} \\
= & n \sum_{p \leq x} \frac{\log p}{p}+O(n) .
\end{array}
$$

Dividing by n and using that $\log n=\log x+O(1 / x)$ we get the result.
The following is Theorem 1.9 in [9].

Theorem 19 Set $c_{0}:=\sum_{p}\left(\log (1 /(1-1 / p))-\frac{1}{p}\right) \approx 0.315718$. Then we have, for $x \geq 2$,

$$
\sum_{p \leq x} \frac{1}{p}=\log \left(1 / \prod_{p \leq x}\left(1-\frac{1}{p}\right)\right)-c_{0}+\frac{\vartheta}{2(x-1)}
$$

where $\vartheta=\vartheta(x) \in(0,1)$.
The following Theorem 1.10 in [9] is (by [7]) due to F. Mertens [5, 6].
Theorem 20 There is a constant c_{1} such that, for $x \geq 2$,

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+c_{1}+O(1 / \log x)
$$

In addition, the constant involved in the Landau symbol can be chosen $\leq 2(1+$ $\log 4)<5$.

The following is Theorem 1.11 in [9]; $\mathrm{e}=2.71828 \ldots$ is the Euler number.
Theorem 21 With the constants c_{0} and c_{1} as in Theorems 1.9 and 1.10, we have, for $x \geq 2$,

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\frac{\mathrm{e}^{-\left(c_{0}+c_{1}\right)}}{\log x}(1+O(1 / \log x))
$$

The following Theorem 1.12 (Mertens formula) in [9] is (by [7]) due to F. Mertens $[5,6]$. The constants c_{0} and c_{1} are as in the two previous theorems.

Theorem 22 We have $c_{0}+c_{1}=\gamma$, where γ denotes Euler's constant. Thus

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\frac{\mathrm{e}^{-\gamma}}{\log x}(1+O(1 / \log x)) \quad(x \geq 2)
$$

The following Theorem 1.13 in [9] was (by [7]) obtained by P. L. Chebyshev in [2] in 1848 by using the zeta function $\zeta(s)$; the proof in [9] uses Theorem 1.10 (here Theorem 20).

Theorem 23 We have,

$$
\liminf _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x} \leq 1 \leq \limsup _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}
$$

Thus if $\lim _{x \rightarrow+\infty} \pi(x) /(x / \log x)$ exists then it must be 1 .

Chapter I.2. Arithmetic functions

The following is Theorem 2.1 in [9]; $\tau(n)$ is the number of divisors of n and $\|$ denotes the maximum divisibility by a prime power. Multiplicativity of $f: \mathbb{N} \rightarrow \mathbb{C}$ means that $f(1)=1$ and $f(m n)=f(m) f(n)$ if m and n are coprime.

Theorem 24 The divisor function is multiplicative. We have

$$
\tau(n)=\prod_{p^{\nu} \| n}(\nu+1) \quad(n \geq 1)
$$

The following is Theorem 2.2 in [9]; the Möbius function $\mu: \mathbb{N} \rightarrow\{-1,0,1\}$ has values $\mu(n)=0$ if n is not square-free and $\mu(n)=(-1)^{k}$ if n is a product of k distinct primes.

Theorem 25 The Möbius function is multiplicative.
The following is Definition 2.3 in [9]; arithmetic functions are functions of the type $f: \mathbb{N} \rightarrow \mathbb{C}$.

Definition 26 Let f be an arithmetic function. The formal Dirichlet series associated to f is the formal series

$$
D(f ; s):=\sum_{n \geq 1} \frac{f(n)}{n^{s}} .
$$

The following is Theorem 2.4 in [9]. $\mathbb{A}=\left(A, 0_{A}, 1_{A},+, *\right)$ is the (commutative unital) ring on the set A of arithmetic functions, in which 0_{A} is the zero function, 1_{A} is 1 on 1 and 0 elsewhere, + is the pointwise addition and $*$ is the Dirichlet convolution

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Recall that units in a ring are the invertible elements. E. D. Cashwell and C. J. Everett proved in [1] in 1959 that the ring \mathbb{A} is factorial, enjoys unique factorization in irreducibles.

Theorem 27 The group \mathbb{G} of units in the ring \mathbb{A} of arithmetic functions consists of those arithmetic functions f with $f(1) \neq 0$.

The following is Theorem 2.5 in [9].
Theorem $28 f \in A$ is multiplicative iff

$$
D(f ; s)=\prod_{p}\left(1+\sum_{\nu \geq 1} \frac{f\left(p^{\nu}\right)}{p^{\nu s}}\right) .
$$

Let $M \subset A$ be the set of multiplicative arithmetic functions. The following is Theorem 2.6 in [9].

Theorem $29 M$ is a subgroup of the group of units in \mathbb{A}.

The following is Theorem 2.7 in $[9] ; \sigma(n)=\sum_{d \mid n} d$.
Theorem 30 The function $\sigma(n)$ is multiplicative.
The following is Theorem 2.8 in [9]; recall that μ is the Möbius function and 1_{A} is the identity in \mathbb{A}. By $\mathbf{1} \in A$ we denote the constantly 1 function.

Theorem 31 As $\mathbf{1} * \mu=1_{A}$, the Möbius function is the (convolutional) inverse of 1. Explicitly, $\sum_{d \mid n} \mu(d)$ is 1 if $n=1$ and 0 if $n>1$.

The following is Theorem 2.9 (First Möbius inversion formula) in [9]; the variable n ranges in \mathbb{N}.

Theorem 32 If $f, g \in A$ then

$$
\forall n\left(g(n)=\sum_{d \mid n} f(n)\right) \Longleftrightarrow \forall n\left(f(n)=\sum_{d \mid n} g(d) \mu(n / d)\right)
$$

The following is Theorem 2.10 (Second Möbius inversion formula) in [9]; the variable x ranges in $[1,+\infty)$.

Theorem 33 If $F, G:[1,+\infty) \rightarrow \mathbb{R}$ then

$$
\forall x\left(G(x)=\sum_{n \leq x} F(x / n)\right) \Longleftrightarrow \forall x\left(F(x)=\sum_{n \leq x} \mu(n) G(x / n)\right)
$$

The following is Theorem 2.11 in [9]. The von Mangoldt function $\Lambda=\mu *$ $\log : \mathbb{N} \rightarrow[0,+\infty)$ has values $\Lambda(n)=0$ if $n \in \mathbb{N}$ is not a prime power and $\Lambda\left(p^{\nu}\right)=\log p$. We have the summatory functions

$$
\psi(x):=\sum_{n \leq x} \Lambda(n) \text { and } \vartheta(x):=\sum_{p \leq x} \log p
$$

which were introduced by P. L. Chebyshev. Recall that $\pi(x)$ counts prime numbers $\leq x$.

Theorem 34 For $x \geq 2$, we have

$$
\psi(x)=\vartheta(x)+O(\sqrt{x}) \text { and } \pi(x)=\frac{\vartheta(x)}{\log x}+O\left(x /(\log x)^{2}\right) .
$$

The following is Corollary 2.12 in [9].
Corollary 35 Let $\alpha \in(0, \log 2)$ and $\beta>\log 4$. For large enough x, we have

$$
\alpha x \leq \vartheta(x) \leq \psi(x) \leq \beta x .
$$

Finally, the following is Theorem 2.13 in [9]. One defines Euler's totient function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ by $\varphi(n):=|\{m \mid m \leq n,(m, n)=1\}| ; \varphi(n)$ counts the natural numbers m not exceeding n and coprime to n.

Theorem 36 The function φ is multiplicative and for every $n \in \mathbb{N}$,

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Proof. Three proofs are indicated in [9] and we remind the last one which utilizes the principle of inclusion and exclusion (PIE). For $m, n \in \mathbb{N}$ we denote $[n]=\{1,2, \ldots, n\}$ and $A_{m}=\{k \in[n]|m| k\}$. We set $P_{n}=\{p|p| n\}$. By PIE,

$$
\varphi(n)=\left|[n] \backslash \bigcup_{p \in P_{n}} A_{p}\right|=\sum_{X \subset P_{n}}(-1)^{|X|}\left|\bigcap_{p \in X} A_{p}\right|
$$

where for $X=\emptyset$ we interpret the intersection as $[n]$. Since $\left|A_{q}\right|=n / q$ whenever q is a product of some primes in P_{n} and for $p \neq p^{\prime}$ it holds that $p\left|n \wedge p^{\prime}\right| n$ $\Longleftrightarrow p p^{\prime} \mid n$, the last sum equals

$$
\sum_{X \subset P_{n}}(-1)^{|X|}\left(n \prod_{p \in X} \frac{1}{p}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where for $X=\emptyset$ and $n=1$ the products are defined to be 1 .

References

[1] E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975-985
[2] P.L. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donné, Mem. Acad. Sci. St. Petersburg 6 (1848), 1-19
[3] P. L. Chebyshev, Mémoire sur nombres premiers, Mem. Acad. Sci. St. Petersburg 7 (1850), 17-33
[4] A.-M. Legendre, Théorie des Nombres, Firmin Didot Frères, Paris 1830.
[5] F. Mertens, Ueber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289-338
[6] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46-62
[7] H. L. Montgomery and R.C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, UK 2007
[8] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126-129
[9] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition, translated by Patrick D. F. Ion)
[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Clarendon Press, Oxford 1986 (Second Edition, revised by D. R. Heath-Brown)
[11] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton 1941

