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In my lectures I will survey in detail the textbook [9] Introduction to Analytic
and Probabilistic Number Theory written by Gérald Tenenbaum. I will mention
every Definition, Lemma, Proposition, Corollary and Theorem in the book. For
time reasons I cannot cover the sections of (historical) Notes and Exercises.
I will prove only tiny selection of results in the book but I do want to prove at
least one result in each of the 22 chapters.

I am faithful to the notation used in the book, but not dogmatically. Thus
I replace ln and ln2 with log and log log, and [0,+∞[ (and the like) with [0,+∞).
I often shorten and abridge statements of theorems.

Let N = {1, 2, . . . } and N0 = {0, 1, . . . }, Z be the integers and R and C be the
real and the complex numbers. The letters k, l, m and n range in N and x, y ∈ R
and p denotes a prime number. By k | l we denote the divisibility relation on Z.
Divisors of n ∈ N are always positive. For x ∈ R, bxc = max(Z ∩ (−∞, x]) is
the lower integer part of x; the upper integer part dxe is defined similarly. For
any finite set X we denote by |X| ∈ N0 the number of elements in X.

In the first lecture we cover Chapter I.0. Some tools from real analysis,
Chapter I.1. Prime numbers and Chapter I.2. Arithmetic functions, up to page
43.

Chapter I.0. Some tools from real analysis

The following is Theorem 0.1 (Abel’s transformation) in [9].

Theorem 1 If (an), (bn) ⊂ C (n = 0, 1, . . . ) then for any N ∈ N0 and M ∈ N,∑
N<n≤N+M

anbn = AN+MbN+M+1 +
∑

N<n≤N+M

An(bn − bn+1) ,

where An :=
∑
N<m≤n am (n ≥ 0). In particular, if

sup
N<n≤N+M

|An| ≤ A ,
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and if (bn) is non-negative and non-increasing, then∣∣∣∣ ∑
N<n≤N+M

anbn

∣∣∣∣ ≤ AbN+1 .

The following is Corollary 0.2 (Abel’s convergence criterion or Abel’s rule)
in [9].

Corollary 2 Let (an) ⊂ C, (bn) ⊂ R+ be non-increasing (n = 0, 1, . . . ) and let

lim
n→∞

bn = 0 and sup
N≥0

∣∣∣∣ ∑
0≤n≤N

an

∣∣∣∣ ≤ A .

Then the series
∑
n≥0 anbn converges, and for every N ∈ N0 we have∣∣∣∣ ∑

n>N

anbn

∣∣∣∣ ≤ 2AbN+1 .

From now the Stieltjes integral is being employed and [9] refers for it to
the book [11]. At the end of this Chapter I.0 I briefly review the definition.
The following Abel’s summation formula is Theorem 0.3 in [9]. Recall the Ck
notation for sets of k times continuously differentiable functions.

Theorem 3 Let (an) ⊂ C (n = 1, 2, . . . ) and let

A(t) :=
∑
n≤t

an (t > 0).

Then, for any function b ∈ C1([1, x]), we have∑
1≤n≤x

anb(n) = A(x)b(x)−
∫ x

1

A(t) b′(t) dt.

Proof. In [9] this is proven via integration by parts in Stieltjes integrals (the
measure dA(t) appears). I take the integrals to be Riemann and prove the
identity by the additivity device which I learned in [10].

So we prove the more general identity∑
m<n≤x

anb(n) = A(x)b(x)−A(m)b(m)−
∫ x

m

A(t) b′(t)

where m ∈ N, m < x, A(t) is as above and b ∈ C1([m,x]) (in fact, mere
differentiability of b on [m,x] suffices). We partition the interval (m,x] in the
subintervals (m,m+1]∪(m+1,m+2]∪· · ·∪(bxc, x] and observe that each side of
the identity is additive in this partition (the value of the side over (m,x] equals
to the sum of its values over the subintervals). Thus it suffices to prove the
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identity only for x ≤ m+ 1. The right side then becomes, by the Fundamental
Theorem of Calculus,

A(x)b(x)−A(m)b(m)−A(m)

∫ x

m

b′(t) = (A(x)−A(m))b(x).

If x < m+1 then the last expression is (A(m)−A(m))b(x) = 0, and if x = m+1
then it is (A(m+ 1)−A(m))b(x) = am+1b(m+ 1). In both cases it agrees with
the value of the sum on the left side of the identity. 2

The following is Theorem 0.4 (Comparison of a sum and an integral) in [9].

Theorem 4 Let a < b be in Z and f : [a, b]→ R be monotonic. Then for some
ϑ ∈ [0, 1], ∑

a<n≤b

f(n) =

∫ b

a

f(t) dt+ ϑ
(
f(b)− f(a)

)
.

Proof. In [9] this is again proven via integration by parts in Stieltjes integrals
(the measure dbtc appears). I give a simpler proof by means of Riemann inte-
grals.

We denote the displayed sum by S. Suppose that f weakly decreases, the
other case is similar. For n ∈ N ∩ (a, b] we have that f(n − 1) ≥

∫ n
n−1 f ≥

f(n). We sum these bounds over the mentioned n and get (by the additivity of
integrals) the bound

S + f(a)− f(b) ≥
∫ b

a

f ≥ S.

Thus indeed
∫ b
a
f ≥ S ≥

∫ b
a
f + f(b)− f(a), as required. 2

The following is Corollary 0.5 in [9].

Corollary 5 For n ≥ 1, we have log n! = n log n − n + 1 + ϑ log n, with ϑ =
ϑn ∈ [0, 1].

The following is Theorem 0.6 (Second mean value theorem) in [9].

Theorem 6 Let a < b be in R, f : [a, b] → R be monotonic and g : [a, b] → R
be integrable. Then for some ξ ∈ [a, b],∫ b

a

f(t)g(t) dt = f(a)

∫ ξ

a

g(t) dt+ f(b)

∫ b

ξ

g(t) dt.

The following is Theorem 0.7 (Euler–Maclaurin summation formula) in [9].
The Bernoulli polynomials br(x) ∈ Q[x] and the Bernoulli numbers Br = br(0),
r ∈ N0, are defined by the expansions

∞∑
r=0

br(x) · y
r

r!
=
y · exy

ey − 1
and

∞∑
r=0

Bry
r

r!
=

y

ey − 1
.
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So B2i+1 = 0 for i ∈ N and (as stated in [9])

(B0, B1, B2, B4, B6, B8, B10, B12, B14, B16, . . . )

=
(
1, − 1

2 ,
1
6 , −

1
30 ,

1
42 , −

1
30 ,

5
66 , −

691
2730 ,

7
6 , −

3617
510 , . . .

)
.

The function Br(x) : R→ R is defined as the 1-periodic extension of the restric-
tion br(x) | [0, 1).

Theorem 7 If k ∈ N0, a < b are in Z and f ∈ Ck+1([a, b]), then

∑
a<n≤b

f(n) =

∫ b

a

f(t) dt +
∑

0≤r≤k

(−1)r+1Br+1

(r + 1)!
(f (r)(b)− f (r)(a))

+
(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f (k+1)(t) dt.

The following is Theorem 0.8 in [9].

Theorem 8 For n ≥ 1, we have∑
m≤n

1

m
= log n+ γ +

1

2n
− 1

12n2
+

ϑ

60n4
,

where γ is Euler’s constant and ϑ = ϑn ∈ [0, 1].

The Stieltjes integral

We define it after [7, Appendix A]; in [7] it is called the Riemann–Stieltjes
integral. Let a < b be in R and f, g : [a, b] → R. For any tagged partition
P = (a, b) of [a, b], in which a = (a = a0 < a1 < · · · < an = b), n ∈ N, and the
tags are bi ∈ [ai−1, ai], we define (the Stieltjes sum)

S(f, g, P ) =

n∑
i=1

f(bi) · (g(ai)− g(ai−1)).

We also set ∆(P ) = max({ai − ai−1 | i = 1, . . . , n}).

Definition 9 (the Stieltjes
∫

) Let a, b, f and g be as above. If there exists
an I ∈ R such that for every ε > 0 there is a δ > 0 such that for every tagged
partition P of [a, b] with ∆(P ) < δ it holds that∣∣S(f, g, P )− I

∣∣ < ε,

we say that I is the Stieltjes integral of f over [a, b] with respect to g and denote
it by ∫ b

a

f dg (:= I).
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Here is the basic existence theorem for SI as given (and proved) in [7].

Theorem 10
∫ b
a
fdg exists if f ∈ C([a, b]) and g has bounded variation on [a, b].

The last condition on g means that there exists a c > 0 such that for any tuple
a0 < a1 < · · · < an in [a, b],

n∑
i=1

|g(ai)− g(ai−1)| < c.

A few more theorems on SI are stated and proven in [7] but we do not
mention them here. The attractive feature of SI is that it encompasses discrete
sums of the form we encountered above: if f is continuous on [a, b] then

∑
a<n≤b

f(n) =

∫ b

a

f(t) dbtc.

Chapter I.1. Prime numbers

The following is Theorem 1.1 (Fundamental theorem of arithmetic) in [9].

Theorem 11 Each natural number > 1 can be represented in a unique way, up
to the order of the factors, as a product of prime numbers.

The following is Theorem 1.2 in [9]; π(x) is the number of primes not ex-
ceeding x.

Theorem 12 We have

π(x) >
log log x

log 2
− 1

2
(x ≥ 2).

The following Theorem 1.3 in [9] is an explicit and thus stronger form of the
result x

log x � π(x)� x
log x obtained by P. L. Chebyshev in [3] in 1850 (I found

this reference in [7]).

Theorem 13 For n ≥ 4, we have

(log 2)
n

log n
≤ π(n) ≤

(
log 4 +

8 log log n

log n

)
n

log n
.

The proof (given in [9]) of the following Theorem 1.4 in [9] “was found
independently by Erdős and Kalmár in 1939.”.

Theorem 14 For n ≥ 1, we have∏
p≤n

p ≤ 4n.
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The following is Theorem 1.5 (Nair) in [9]; dn is the least common multiple
of the numbers 1, 2, . . . , n and the reference is to the article [8].

Theorem 15 For n ≥ 7, we have dn ≥ 2n.

The following is Theorem 1.6 in [9]; υp(n) := k ∈ N0 such that pk |n but
pk+1 does not divide n. This result is due to A.-M. Legendre [4].

Theorem 16 For each prime number p, we have

υp(n!) =
∑
k≥1

⌊
n/pk

⌋
(n ≥ 1).

The following is Corollary 1.7 in [9].

Corollary 17 For each prime p, we have

n

p
− 1 < υp(n!) ≤ n

p
+

n

p(p− 1)
(n ≥ 1).

The following Theorem 1.8 (Mertens’ first theorem) in [9] is (by [7]) due to
F. Mertens [5, 6].

Theorem 18 For x ≥ 2, we have∑
p≤x

log p

p
= log x+O(1).

Moreover, the O(1) ∈ (−1− log 4, log 4).

Proof. Let us prove simplified Mertens’ first theorem, without the restriction
on the O(1). For x ≥ 2 and n = bxc,

n log n+O(n)
Cor. 5

= log(n!)

=
∑
p≤x

υp(n!) log p

prev. cor.
= n

∑
p≤x

log p

p
+O(n)

∑
p≤x

log p

p(p− 1)

= n
∑
p≤x

log p

p
+O(n).

Dividing by n and using that log n = log x+O(1/x) we get the result. 2

The following is Theorem 1.9 in [9].
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Theorem 19 Set c0 :=
∑
p

(
log(1/(1− 1/p))− 1

p

)
≈ 0.315718. Then we have,

for x ≥ 2, ∑
p≤x

1

p
= log

(
1
/∏
p≤x

(
1− 1

p

))
− c0 +

ϑ

2(x− 1)

where ϑ = ϑ(x) ∈ (0, 1).

The following Theorem 1.10 in [9] is (by [7]) due to F. Mertens [5, 6].

Theorem 20 There is a constant c1 such that, for x ≥ 2,∑
p≤x

1

p
= log log x+ c1 +O(1/ log x).

In addition, the constant involved in the Landau symbol can be chosen ≤ 2(1 +
log 4) < 5.

The following is Theorem 1.11 in [9]; e = 2.71828 . . . is the Euler number.

Theorem 21 With the constants c0 and c1 as in Theorems 1.9 and 1.10, we
have, for x ≥ 2,

∏
p≤x

(
1− 1

p

)
=

e−(c0+c1)

log x

(
1 +O(1/ log x)

)
.

The following Theorem 1.12 (Mertens formula) in [9] is (by [7]) due to
F. Mertens [5, 6]. The constants c0 and c1 are as in the two previous theo-
rems.

Theorem 22 We have c0 + c1 = γ, where γ denotes Euler’s constant. Thus∏
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 +O(1/ log x)

)
(x ≥ 2).

The following Theorem 1.13 in [9] was (by [7]) obtained by P. L. Chebyshev
in [2] in 1848 by using the zeta function ζ(s); the proof in [9] uses Theorem 1.10
(here Theorem 20).

Theorem 23 We have,

lim inf
x→∞

π(x)

x/ log x
≤ 1 ≤ lim sup

x→∞

π(x)

x/ log x
.

Thus if limx→+∞ π(x)/(x/ log x) exists then it must be 1.

Chapter I.2. Arithmetic functions
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The following is Theorem 2.1 in [9]; τ(n) is the number of divisors of n
and ‖ denotes the maximum divisibility by a prime power. Multiplicativity of
f : N→ C means that f(1) = 1 and f(mn) = f(m)f(n) if m and n are coprime.

Theorem 24 The divisor function is multiplicative. We have

τ(n) =
∏
pν‖n

(ν + 1) (n ≥ 1).

The following is Theorem 2.2 in [9]; the Möbius function µ : N→ {−1, 0, 1}
has values µ(n) = 0 if n is not square-free and µ(n) = (−1)k if n is a product
of k distinct primes.

Theorem 25 The Möbius function is multiplicative.

The following is Definition 2.3 in [9]; arithmetic functions are functions of
the type f : N→ C.

Definition 26 Let f be an arithmetic function. The formal Dirichlet series
associated to f is the formal series

D(f ; s) :=
∑
n≥1

f(n)

ns
.

The following is Theorem 2.4 in [9]. A = (A, 0A, 1A,+, ∗) is the (commuta-
tive unital) ring on the set A of arithmetic functions, in which 0A is the zero
function, 1A is 1 on 1 and 0 elsewhere, + is the pointwise addition and ∗ is the
Dirichlet convolution

(f ∗ g)(n) =
∑
d |n f(d)g(n/d) .

Recall that units in a ring are the invertible elements. E. D. Cashwell and
C. J. Everett proved in [1] in 1959 that the ring A is factorial, enjoys unique
factorization in irreducibles.

Theorem 27 The group G of units in the ring A of arithmetic functions con-
sists of those arithmetic functions f with f(1) 6= 0.

The following is Theorem 2.5 in [9].

Theorem 28 f ∈ A is multiplicative iff

D(f ; s) =
∏
p

(
1 +

∑
ν≥1

f(pν)

pνs

)
.

Let M ⊂ A be the set of multiplicative arithmetic functions. The following
is Theorem 2.6 in [9].

Theorem 29 M is a subgroup of the group of units in A.
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The following is Theorem 2.7 in [9]; σ(n) =
∑
d |n d.

Theorem 30 The function σ(n) is multiplicative.

The following is Theorem 2.8 in [9]; recall that µ is the Möbius function and
1A is the identity in A. By 1 ∈ A we denote the constantly 1 function.

Theorem 31 As 1∗µ = 1A, the Möbius function is the (convolutional) inverse
of 1. Explicitly,

∑
d |n µ(d) is 1 if n = 1 and 0 if n > 1.

The following is Theorem 2.9 (First Möbius inversion formula) in [9]; the
variable n ranges in N.

Theorem 32 If f, g ∈ A then

∀n
(
g(n) =

∑
d |n f(n)

)
⇐⇒ ∀n

(
f(n) =

∑
d |n g(d)µ(n/d)

)
.

The following is Theorem 2.10 (Second Möbius inversion formula) in [9]; the
variable x ranges in [1,+∞).

Theorem 33 If F,G : [1,+∞)→ R then

∀x
(
G(x) =

∑
n≤x F (x/n)

)
⇐⇒ ∀x

(
F (x) =

∑
n≤x µ(n)G(x/n)

)
.

The following is Theorem 2.11 in [9]. The von Mangoldt function Λ = µ ∗
log : N → [0,+∞) has values Λ(n) = 0 if n ∈ N is not a prime power and
Λ(pν) = log p. We have the summatory functions

ψ(x) :=
∑
n≤x

Λ(n) and ϑ(x) :=
∑
p≤x

log p

which were introduced by P. L. Chebyshev. Recall that π(x) counts prime
numbers ≤ x.

Theorem 34 For x ≥ 2, we have

ψ(x) = ϑ(x) +O(
√
x) and π(x) =

ϑ(x)

log x
+O

(
x/(log x)2

)
.

The following is Corollary 2.12 in [9].

Corollary 35 Let α ∈ (0, log 2) and β > log 4. For large enough x, we have

αx ≤ ϑ(x) ≤ ψ(x) ≤ βx.

Finally, the following is Theorem 2.13 in [9]. One defines Euler’s totient
function ϕ : N → N by ϕ(n) := |{m | m ≤ n, (m,n) = 1}|; ϕ(n) counts the
natural numbers m not exceeding n and coprime to n.
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Theorem 36 The function ϕ is multiplicative and for every n ∈ N,

ϕ(n) = n
∏
p |n

(
1− 1

p

)
.

Proof. Three proofs are indicated in [9] and we remind the last one which
utilizes the principle of inclusion and exclusion (PIE). For m,n ∈ N we denote
[n] = {1, 2, . . . , n} and Am = {k ∈ [n] | m | k}. We set Pn = {p | p |n}. By PIE,

ϕ(n) =

∣∣∣∣[n] \
⋃
p∈Pn

Ap

∣∣∣∣ =
∑
X⊂Pn

(−1)|X|
∣∣∣∣ ⋂
p∈X

Ap

∣∣∣∣
where for X = ∅ we interpret the intersection as [n]. Since |Aq| = n/q whenever
q is a product of some primes in Pn and for p 6= p′ it holds that p |n ∧ p′ |n
⇐⇒ pp′ |n, the last sum equals∑

X⊂Pn

(−1)|X|
(
n
∏
p∈X

1

p

)
= n

∏
p |n

(
1− 1

p

)

where for X = ∅ and n = 1 the products are defined to be 1. 2
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[4] A.-M. Legendre, Théorie des Nombres, Firmin Didot Frères, Paris 1830.

[5] F. Mertens, Ueber einige asymptotische Gesetze der Zahlentheorie, J. Reine
Angew. Math. 77 (1874), 289–338

[6] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew.
Math. 78 (1874), 46–62

[7] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I.
Classical Theory, Cambridge University Press, Cambridge, UK 2007

[8] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly
89 (1982), 126–129

10



[9] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory,
AMS, Providence, RI 2015 (Third Edition, translated by Patrick D. F. Ion)

[10] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Clarendon
Press, Oxford 1986 (Second Edition, revised by D. R. Heath-Brown)

[11] D. V. Widder, The Laplace Transform, Princeton University Press, Prince-
ton 1941

11


