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Abstract

We give a new proof of the fact that every planar graph
is 5-choosable, and use it to show that every graph drawn in
the plane so that the distance between every pair of crossings
is at least 15 is 5-choosable. At the same time we may allow
some vertices to have lists of size four only, as long as they
are far apart and far from the crossings.

Thomassen [5] gave a strikingly beautiful proof that every planar
graph is 5-choosable. To show this claim, he proved the following
more general statement:
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Theorem 1. Let G be a plane graph with the outer face F , xy an
edge of F , and L a list assignment such that |L(v)| ≥ 5 for v ∈
V (G) \ V (F ), |L(v)| ≥ 3 for v ∈ V (F ) \ {x, y}, |L(x)| = |L(y)| = 1
and L(x) 6= L(y). Then G is L-colorable.

Let us note that the lists of x and y of size 1 give a precoloring
of a path of length 1 in the outer face of G. Unfortunately, this
statement is rather tight, and almost any attempt to alter it (e.g.,
by allowing more than two vertices to be precolored, allowing lists
of size 2 subject to some constraints, allowing some crossings in the
drawing, etc.) fails with infinitely many counterexamples. We give a
proof of a different version of Theorem 1 (see Theorem 6), that turns
out to be more robust with respect to some strengthenings of the
planar 5-choosability theorem. Our proof is inspired by Thomassen’s
proof [6] of 3-choosability of planar graphs of girth 5. Using this
technique, we give the proof of our main result:

Theorem 2. Let G be a graph drawn in the plane with some cross-
ings and let N ⊆ V (G) be a set of vertices such that the distance
between any pair of crossed edges is at least 15, the distance between
any crossing and a vertex in N is at least 13, and the distance be-
tween any two vertices in N is at least 11. Then G is L-colorable for
any list assignment L such that |L(v)| = 4 for v ∈ N and |L(v)| ≥ 5
for v ∈ V (G) \N .

Let us recall that a list assignment L for G is a function that
assigns to each vertex of G a set L(v), called the list of admissible
colors for v. An L-coloring is a choice of a color c(v) ∈ L(v) for
each v ∈ V (G) such that no two adjacent vertices receive the same
color. The graph is k-choosable if it admits an L-coloring for every
list assignment L with |L(v)| ≥ k for every v ∈ V (G).

Our main result, Theorem 2, clearly implies the following special
case.

Theorem 3. Every graph drawn in the plane so that the distance
between every pair of crossings is at least 15 is 5-choosable.
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Some distance condition on the crossings is necessary, even if we
would allow only three crossings, as shown byK6. On the other hand,
it was proved in [4] and independently also in [2] that the distance
requirement is not needed, if we have at most two crossings. The
inductive proof of Theorem 2 involves a stronger inductive hypothesis
that is stated later as Theorem 7 and in particular also implies the
above-mentioned result from [2, 4].

Theorem 4 ([4, 2]). Every graph whose crossing number is at most
two is 5-choosable.

The proof of Theorem 4 is given at the end of the paper. Another
special case of Theorem 2 is the following.

Theorem 5. Let G be a planar graph and N ⊆ V (G) a set of vertices
such that the distance between any pair of vertices in N is at least 11.
Then G is L-colorable for any list assignment L such that |L(v)| = 4
for v ∈ N and |L(v)| ≥ 5 for v ∈ V (G) \N .

The last result is motivated by the result of Voigt [7] showing
that not all planar graphs are 4-choosable. Furthermore, it is related
to the following problem of Albertson [1]:

Problem 1. Does there exist a constant d such that whenever G is
a planar graph with list assignment L that gives a list of size one or
five to each vertex and the distance between any pair of vertices with
list of size one is at least d, then G is L-colorable?

Starting with a similar technique as used in this paper, we were
able to give a positive answer to this problem (which we present in
a separate paper [3]).

We start with giving the proof of the basic statement for planar
graphs in Section 1. In Section 2 we then generalize it by allowing
crossings and 4-lists subject to distance constraints, obtaining the
proof of Theorem 2.
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1 Planar graphs

Let P be a path or a cycle. The length `(P ) of P is the number of its
edges, i.e., a path of length l has l + 1 vertices and a cycle of length
l has l vertices. Given a graph G and a cycle K ⊆ G, an edge uv
of G is a chord of K if u, v ∈ V (K), but uv is not an edge of K.
For an integer k ≥ 2, a path v0v1 . . . vk is a k-chord if v0, vk ∈ K
and v1, . . . , vk−1 6∈ V (K). We define a chord to be a 1-chord. If
G is a plane graph, let IntK(G) be the subgraph of G consisting of
the vertices and edges drawn inside the closed disc bounded by K,
and ExtK(G) the subgraph of G obtained by removing all vertices
and edges drawn inside the open disc bounded by K. In particular,
K = IntK(G) ∩ ExtK(G). Note that each k-chord of K belongs to
exactly one of IntK(G) and ExtK(G). If the cycle K is the outer
face of G and Q is a k-chord of K, let C1 and C2 be the two cycles
in K ∪ Q that contain Q. Then the subgraphs G1 = IntC1(G) and
G2 = IntC2(G) are the Q-components of G.

As we have mentioned earlier, Thomassen’s Theorem 1 does not
extend to the case when we have a precolored path of length two.
However, if we strengthen the condition on the list sizes of the other
vertices on the outer face, such an extension is possible.

Theorem 6. Let G be a plane graph with the outer face F , P a
subpath of F of length at most two and L a list assignment such that
the following conditions are satisfied:

(i) |L(v)| ≥ 5 for v ∈ V (G) \ V (F ),

(ii) |L(v)| ≥ 3 for v ∈ V (F ) \ V (P ),

(iii) |L(v)| = 1 for v ∈ V (P ),

(iv) no two vertices with lists of size three are adjacent in G,

(v) L gives a proper coloring to the subgraph induced by V (P ), and

(vi) if P = uvw has length two and x is a common neighbor of u,
v and w, then L(x) 6= L(u) ∪ L(v) ∪ L(w).

Then G is L-colorable.
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Proof. Suppose for a contradiction that the claim is false, and let G
be a counterexample with |V (G)|+ |E(G)| the smallest possible, and
subject to that, with the longest path P and with the minimum size
of the lists (while satisfying (i)–(vi)). It is clear that G is connected
and that every vertex v ∈ V (G) satisfies deg(v) ≥ |L(v)|.

Furthermore, G is 2-connected: otherwise, let v be a cut-vertex
and let G1 and G2 be subgraphs of G such that G1 ∪ G2 = G,
V (G1) ∩ V (G2) = {v} and |V (G1)|, |V (G2)| > 1. If v ∈ V (P ), then
by the minimality of G there exist L-colorings of G1 and G2, and
these colorings together give an L-coloring of G. Otherwise, we may
assume by symmetry that P ⊆ G1. Consider an L-coloring ϕ of G1.
Let L2 be the list assignment for G2 such that L2(u) = L(u) for u 6= v
and L2(v) = {ϕ(v)}. By the minimality of G, G2 is L2-colorable,
and this coloring together with ϕ gives an L-coloring of G.

Every triangle T inG bounds a face: otherwise, first color the sub-
graph ExtT (G) and then extend the coloring to IntT (G). A similar
argument shows that G contains no separating 4-cycles; otherwise,
consider such a 4-cycle K = k1k2k3k4, and let ϕ be an L-coloring
of ExtK(G). Let G′ = IntK(G). Since K is separating, we have
V (G′) 6= V (K), and since every triangle bounds a face, we conclude
that K has no chord in G′. Let L′ be the list assignment for G′− k1

such that L′(z) = {ϕ(z)} for z ∈ {k2, k3, k4}, L′(z) = L(z) \ {ϕ(k1)}
if z 6∈ {k2, k4} is a neighbor of k1 and L′(z) = L(z) if z is any other
vertex. By the minimality of G, the graph G′ − k1 is L′-colorable,
and this coloring together with ϕ gives an L-coloring of G.

Since G is 2-connected, its outer face is bounded by a cycle, which
we denote by F as well. Next, we show that F has no chords. Other-
wise, let uv be a chord of F and let G1 and G2 be the uv-components
of G. If P ⊆ G1, then we first color G1 and then extend the color-
ing to G2. The case that P ⊆ G2 is symmetric. It follows that P
has length two and all the chords of F are incident with its middle
vertex. Let P = z1uz2, where zi ∈ V (Gi) for i ∈ {1, 2}. Let ϕ be
an L-coloring of G1 and let L2 be the list assignment for G2 such
that L2(z) = L(z) for z 6= v and L2(v) = {ϕ(v)}. Since G is not
L-colorable, G2 is not L2-colorable. By the minimality of G, either
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v is adjacent to z2, or u, v and z2 have a common neighbor w with
list of size three (which means, in particular, that w ∈ V (F )). Since
every chord of G is incident with u, the edge vz2 or vw belongs to
F . Since every triangle bounds a face, we conclude that v has de-
gree two in G2. By symmetry, v has degree two in G1 as well, and
thus v has degree three in G. It follows that |L(v)| = 3, and thus
v cannot be adjacent to any other vertex with list of size three. In
particular, we cannot have the case with the vertex w. We conclude
that v is adjacent to z1 and z2 and V (G) = {u, v, z1, z2}. However,
L(v) 6= L(u)∪L(z1)∪L(z2) by (vi), and thus G is L-colorable. This
contradiction proves that F has no chords.

Similarly, we have the following property:

(1) Let uvw be a 2-chord of F and let G1 and G2 be uvw-components
of G. If P ⊆ G1, then either u and w are adjacent and G2 is equal
to the triangle uvw, or there exists a vertex x such that V (G2) =
{u, v, w, x}, |L(x)| = 3 and x is adjacent to u, v and w.

If `(P ) < 2, then it is easy to see that we can precolor 2 − `(P )
more vertices of F without violating (vi). Thus, we may assume
that `(P ) = 2. Let P = p0p1p2. Suppose that p0, p1 and p2 have a
common neighbor v. If v ∈ V (F ), then V (G) = {p0, p1, p2, v} and G
is L-colorable. If v 6∈ V (F ), then v has degree at most four in G by
(1) and thus deg(v) < |L(v)|, which is a contradiction. Therefore,
p0, p1 and p2 have no common neighbor.

Furthermore, `(F ) ≥ 6: If `(F ) = 3, then we remove one vertex of
F and remove its color from the lists of all its neighbors, and observe
that the resulting graph is a smaller counterexample to Theorem 6.
In the case when `(F ) = 4, then similarly color and remove the
vertex of V (F ) \ V (P ). Finally, suppose that `(F ) = 5. Let ϕ
be an arbitrary L-coloring of F = p2p1p0v1v2. Remove v1 and v2
from G and remove their colors according to ϕ from the lists of their
neighbors, obtaining a graph G′ with the list assignment L′. Since
every triangle in G bounds a face, at most one vertex in G′ has list
of size three. Since p0, p1 and p2 have no common neighbor and
p0 is not adjacent to p2, G′ with the list assignment L′ is a smaller
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counterexample to Theorem 6, which is a contradiction.
Let F = p2p1p0v1v2v3v4 . . .. If `(F ) = 6, then we set v4 = p2.

We may assume that |L(v1)| = 3 or |L(v2)| = 3, since otherwise
we can remove a color from the list of v1. Let us consider a set
X ⊆ V (F ) \ V (P ) and a partial L-coloring ϕ of X that are defined
as follows:

(X1) If |L(v1)| = 3 and |L(v3)| 6= 3, then X = {v1} and ϕ(v1) ∈
L(v1) \ L(p0) is chosen arbitrarily.

(X2) If |L(v1)| = 3 and |L(v3)| = 3, then X = {v1, v2} and ϕ is
chosen so that ϕ(v2) ∈ L(v2)\L(v3) and ϕ(v1) ∈ L(v1)\(L(p0)∪
{ϕ(v2)}).

(X3) If |L(v2)| = 3, and either |L(v4)| 6= 3 or |L(v3)| ≥ 5, then
X = {v2} and ϕ(v2) ∈ L(v2) is chosen arbitrarily.

(X4) If |L(v2)| = 3, |L(v3)| = 4 and |L(v4)| = 3, then:

(X4a) If v1, v2 and v3 do not have a common neighbor or |L(v1)| ≥
5, then X = {v2, v3} and ϕ is chosen so that ϕ(v3) ∈
L(v3) \ L(v4) and ϕ(v2) ∈ L(v2) \ {ϕ(v3)}.

(X4b) If v1, v2 and v3 have a common neighbor and |L(v1)| = 4,
then X = {v1, v2, v3} and ϕ is chosen so that ϕ(v3) ∈
L(v3)\L(v4), ϕ(v1) ∈ L(v1)\L(p0) and either at least one
of ϕ(v1) and ϕ(v3) does not belong to L(v2), or ϕ(v1) =
ϕ(v3). The vertex v2 is left uncolored.

For later reference, Figure 1 shows the subcases used in the definition
of X and ϕ.

Let G′ = G−X and let L′ be the list assignment obtained from
L by removing the colors of the vertices of X according to ϕ from
the lists of their neighbors (if a vertex of X is not colored according
to ϕ, we do not remove any colors for it). Observe that any L′-
coloring of G′ can be extended to an L-coloring of G, thus G′ is not
L′-colorable. By the minimality of G, this implies that G′ violates
the assumptions of Theorem 6. Since F has no chords, the choice of
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(X1)

p0 v1 v2 v3

(X2)

p0 v1 v2 v3

(X3)

p0 v1 v2 v3 v4

(X3)

p0 v1 v2 v3 v4

(X4a)

p0 v1 v2 v3 v4

(X4a)

p0 v1 v2 v3 v4

(X4b)

p0 v1 v2 v3 v4

Figure 1: Subcases in the definition of X. Triangle vertices represent
lists of size 3, square vertices list of size ≥ 4. Encircled vertices are
in X.
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X and ϕ implies that every vertex of V (G′) \ V (P ) has list of size
at least three. Since p0 is not adjacent to p2 and p0, p1 and p2 do
not have a common neighbor in G, it follows that the conditions (v)
and (vi) are satisfied by G′ with the list assignment L′. We conclude
that (iv) is false, i.e., G′ contains adjacent vertices u and v such that
|L′(u)| = |L′(v)| = 3.

Since F has no chords, the choice of X ensures that at most one
of u and v belongs to V (F ); hence, we can assume that v 6∈ V (F )
and v has two neighbors in X. In particular, X was chosen according
to the cases (X2) or (X4). Since G contains no separating cycles of
length at most 4, we conclude that u has at most one neighbor in X,
and thus u ∈ V (F ). Let x ∈ X be the neighbor of v such that the
distance between u and x in F − P is as large as possible. By (1)
applied to the 2-chord xvu, we conclude that the xvu-component of
G that does not contain P consists of xvu and a vertex z adjacent
to x, v and u with |L(z)| = 3. It follows that |L(u)| > 3, and
since |L′(u)| = 3, we have z ∈ X and |L(u)| = 4. The inspection
of the choice of X shows that (X4) holds, i.e., u = v1, z = v2 and
x = v3. However, note that the condition of (X4b) holds; hence
u ∈ X, contrary to the assumption that u ∈ V (G′). This completes
the proof of Theorem 6.

2 Near-planar graphs

In this section, we aim to show that graphs drawn in the plane with
crossings far apart are 5-choosable. For the purposes of the induction,
it will be useful to allow other kinds of irregularities (adjacent vertices
with list of size three, as well as vertices with list of size four not
incident with the outer face, which arise when some vertices incident
with a crossing are colored and their color is removed from the lists
of their neighbors), subject to distance constraints.

Let us first introduce some terminology. Let G be a graph. For
two subgraphs H1, H2 ⊆ G, the distance d(H1, H2) between H1 and
H2 is the minimum of the distances between the vertices of H1 and
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H2, i.e., the minimum k such that there exists a path v0v1 . . . vk in
G with v0 ∈ V (H1) and vk ∈ V (H2). A drawing G of G in the plane
consists of a set V = {pv | v ∈ V (G)} of distinct points in the plane
and a set of simple polygonal curves E = {ce | e ∈ E(G)} such that

• if uv ∈ E(G), then pu and pv are the endpoints of cuv,

• no internal point of any ce ∈ E belongs to V, and

• at most two of the curves in E contain any point that does not
belong to V, and any two curves in E have at most one point
in common.

A crossing of G is a point in the plane that belongs to two of the
curves in E , but not to V. An edge e is incident with the crossing x
if x ∈ ce. An edge e is crossed if it is incident with some crossing,
and non-crossed otherwise. For a crossing x, we define Gx to be
the graph consisting of the two edges incident with x. Two vertices
of G are crossing-adjacent if they belong to Gx for some crossing
x and are not adjacent in Gx. Removal of

⋃ E splits the plane into
several connected subsets, which we call faces of G. By a slight abuse
of terminology, we sometimes identify a face with its boundary and
hence speak about the vertices, edges and crossings of the face.

Let G be a drawing of a graph G, let P be a path of length at
most three contained in the boundary of the outer face F of G (where
in particular, no edge of P is crossed), N a subset of V (G) and M a
subset of E(G), and let L be a list assignment for G. We say that L
is (P,N,M)-valid if the following conditions are satisfied:

(S) |L(v)| ≥ 5 for v ∈ V (G) \ (V (F ) ∪ N), |L(v)| ≥ 3 for v ∈
V (F ) \ V (P ) and |L(v)| = 1 for v ∈ V (P ),

(N) |L(v)| ≥ 4 for v ∈ N \ V (F ),

(M) if |L(u)| = |L(v)| = 3 and u and v are adjacent, then uv ∈M ,

(P) L gives a proper coloring to the subgraph induced by V (P ),

10



r(H) = 4

e

P

r(e) = 3

v ∈ N

r(v) = 2

e ∈ M

r(e) = 0

Figure 2: Special subgraphs and their ranks

(T) if a vertex v has three neighbors w1, w2, w3 in V (P ), then
L(v) 6= L(w1) ∪ L(w2) ∪ L(w3), and

(C) if x is a crossing and Gx contains a vertex with list of size three,
then all other vertices of Gx have lists of size 1 or ≥ 5.

We define some subgraphs H of G to be special, and assign a rank
r(H) to each such subgraph (see Figure 2). Specifically, H is special
if it falls into one of the following cases:

• H consists of the two edges incident with a crossing. In this
case, its rank is 4.

• P has length three and H consists of the middle edge of P ; the
rank of H is 3.

• H is equal to a vertex of N , and r(H) = 2.

• H is equal to an edge of M , and r(H) = 0.

The drawing G is (P,N,M)-distant if d(H1, H2) ≥ r(H1)+r(H2)+7
for every pair H1 6= H2 of special subgraphs of G. We shall occa-
sionally refer to the (P,N,M)-distant requirement as the distance
condition. The purpose of the introduced rank function is the fol-
lowing. In our inductive arguments, we will occasionally construct
a smaller graph G′ and introduce a new special subgraph H ′ in a
vicinity of a special subgraph H that would no longer exist in G′.
If H ′ has smaller rank than H, the distance condition for special
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OM1 OM2 ON1 ON2

ON3 OC1 OC2 OC3

OC4 OC5 OP1 OP2

OP3 OP4 OP5 OP6

Figure 3: The obstructions used in Theorem 7
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subgraphs in G′ would still hold, and the induction hypothesis can
be applied.

A subgraph O ⊆ G is an obstruction if O is isomorphic to one of
the graphs drawn in Figure 3 and sizes of the lists of its vertices match
those prescribed by the figure, where the full-circle vertices have list
of size one, triangle vertices have list of size three, square vertices
have list of size four and pentagonal vertices have list of size five. Let
us remark that if the distance condition holds, then G can contain
at most one of the obstructions. For further reference we exhibit in
Figure 4 all possible list assignments for which the obstructions are
not colorable. In particular, observe that the following holds:

(2) Let H be one of the obstructions and let Q be the path in H
consisting of full-circle vertices. Suppose that Q has length two and
that H is neither OM1 nor OC1. Let q be the middle vertex of Q
and let L be a list assignment such that each vertex v drawn by a k-
gon has |L(v)| = k, while the vertices of Q have lists consisting of all
possible colors. Then there exists a color b such that every L-coloring
ψ of Q with ψ(q) 6= b extends to an L-coloring of H.

We prove the following claim, which obviously implies our main
result, Theorem 2.

Theorem 7. Let G be a graph drawn in the plane, P a path of length
at most three contained in the boundary of the outer face F of G and
L a list assignment for G. Suppose that there exist sets N ⊆ V (G)
and M ⊆ E(G) such that L is (P,N,M)-valid and the drawing of G
is (P,N,M)-distant. If

(O) every obstruction in G is L-colorable,

then G is L-colorable.

Before giving the proof of this statement, let us give a quick out-
line. Essentially, we follow the proof of Theorem 6. First, we show
that the outer face of a hypothetical minimal counterexample G has
no chords and then we also restrict its 2-chords. This is somewhat
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a

b

c

bcxabx

OM1

a

b

c

cxyaxy

OM2

abcxy

a

b

c

acy

ON1

abcy

a

b

c

bcxyaxy

ON2

abxy

a

b

c

bcz

bxyz

axy

ON3

abxy

a

b

c

cxyabxy

OC1

abcxy

a

b

c

cxyzaxyz

OC2

bcxyz

abxyz

a

b

c

bcu

uxyz

axyz

OC3

buxyz

abxyz

a

b

c

bcv

vxyz

abu

uxyz

OC4

bvxyzbuxyz a

b

c

acd

OC5

abxyz bcxyz

dcxyzadxyz

a b c d

abcd

OP1

a b c d

cdxabcx

OP2

a b c d

cdybcxyabx

OP3

a b c d

cdxyaxy

OP4

abcxy

a b c d

cdzcxyzaxy

OP5

abcxy

a b c d

adx

OP6

abcdx

Figure 4: The lists for which the obstructions cannot be colored.
Colors represented by different letters may be equal to each other if
they do not occur in the same list for a particular obstruction.
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more complicated due to the presence of crossings and the condition
(O). Next, we find the set X and its partial coloring ϕ defined in
the same way as in the proof of Theorem 6, and use it to construct
the graph G′ with the list assignment L′. By the minimality of G,
we conclude that G′ violates one of the assumptions of the theorem.
A straightforward case analysis shows that (O) holds, and the con-
ditions (S), (P) and (T) follow in the same way as in the proof of
Theorem 6; but (M), (N) and (C) can be violated in ways which do
not enable us to obtain a contradiction directly. However, we observe
that in such a case, there is a special subgraph S near to X. In this
situation, we apply the symmetric argument on the other side of the
path P , and obtain another set X ′ and a special subgraph S′ close to
it. By the distance condition, we have S = S′, and thus there exists
a short path from X to X ′ passing through S. In this situation, we
consider all the possible combinations of X, X ′ and their positions
relatively to S, and obtain a contradiction similarly to the way we
deal with 2-chords.

Let us note that the assumption (C) is a product of a some-
what delicate tradeoff. We believe the claim still essentially holds
even without this assumption, and avoiding it would greatly reduce
the number of possible bad cases and simplify the last part of the
proof. However, the list of obstructions in (O) would be significantly
larger, making the first part of the proof longer and more compli-
cated. Moreover, if we omit (C) completely, then there exists an
obstruction with a precolored path of length one (see Figure 5(a)),
which would be a major problem (we could not easily get rid of
chords of F ). One could consider excluding Figure 5(a) by forbid-
ding vertices with lists of sizes three or four joined by a crossed edge.
This would still simplify the last part of the proof a lot. However, in
addition to having more than 10 new obstructions, we do not see a
way how to reduce the 2-chord depicted in Figure 5(b), which would
need to be dealt with somehow.

Proof of Theorem 7. We follow the outline of the proof of Theorem 6.
We assume that G is a counterexample to Theorem 7 with |V (G)|+

15



(a) (b)

Figure 5: Why is condition (C) needed?

|E(G)| as small as possible, and subject to that, with the minimum
sizes of its lists. Let k = `(P ) ≤ 3, and let P = p0p1 . . . pk. By
applying the same kind of reductions as used in the proof of Theorem
6 together with the minimality of G, one can show:

(3) The following properties are satisfied:

(a) Every vertex v ∈ V (G) satisfies deg(v) ≥ |L(v)|.
(b) G is 2-connected and `(P ) ≥ 1.

(c) Every non-crossed chord of F is incident with exactly one in-
ternal vertex of P .

(d) If K is a triangle in G and no edge of K is crossed, then K
is not separating. If K is a separating 4-cycle without crossed
edges, then IntK(G)− V (K) is either a vertex in N or a com-
plete graph on 4 vertices involving a crossing.

(e) Every vertex v ∈ V (G) satisfies |L(v)| ≤ 5.

(f) If v ∈ V (G) \ V (P ) is adjacent to a vertex p ∈ V (P ), then
L(p) ⊆ L(v).

Most properties in (3) are easy to argue about; they are left to
the reader. Property (e) is achieved by removing colors from lists of
size 6 or more. The only problem that may arise is that we obtain
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an obstruction; however, inspection of bad lists for the obstructions
exhibited in Figure 4 shows that we can always remove one of the
colors so that (O) still holds. The only remaining nontrivial claim
is the property of separating 4-cycles in part (d). To prove that, we
first color the subgraph of G consisting of ExtK(G) and all chords
of K and then consider G′ = IntK(G). Let K = v1v2v3v4, and let ci
be the color of vi as used in the coloring of ExtK(G). Suppose that
c1 6= c3. In that case we consider the list assignment L′ for G′ given
by setting L′(v) = L(v) if v /∈ V (K), L′(vi) = {ci} for i = 1, 2, 3, and
L′(v4) = {c1, c3, c4}. Since any L′-coloring of G′ yields an L-coloring
of G, we conclude that G′ does not satisfy all assumptions of the
theorem. It is easy to see that the only possible violation is that
G′ contains an obstruction. Note that this obstruction contains the
whole path v1v2v3 and that the only vertices whose lists have size 3
or 4 are v4 and possibly a vertex in N . If a vertex in N is present,
there is no crossing by the distance condition. The only obstructions
with these properties are ON1 and OC5, yielding the outcome of the
claim (a similar argument shows that V (IntK(G)) only consists of the
vertices of the obstruction; see (4) below for details). The remaining
case to consider is when c1 = c3. In this case we replace the color c3
in the list of v3 and in the lists of all its neighbors by a new color c′3
that does not occur elsewhere, and then apply the same argument
as in the previous case. It is to be observed that the color c′3 will
only be used for v3, and the color c3 will not be used on any of the
neighbors of v3. Thus a coloring with the revised lists gives rise to
an L-coloring of G also in this case. This completes the proof of (3).

Let T = v1v2v3 be a triangle in G. Suppose that the edge v1v2
is crossed by an edge uw, where w belongs to G2 = IntT (G) and
w 6= v3. Let ϕ be an L-coloring of ExtT (G) and let L2 be the list
assignment such that L2(vi) = {ϕ(vi)} for 1 ≤ i ≤ 3, L2(w) = L(w)\
{ϕ(u)} and L2(z) = L(z) otherwise. Note that |L2(w)| ≥ 4, that G2

is not L2-colorable and that it is (v1v2v3, (N ∩ V (G2)) ∪ {w}, ∅)-
distant. Observe that G2 satisfies the validity conditions (S)–(C),
and also satisfies (O). Hence it is a counterexample to Theorem 7,
contradicting the minimality of G. Similarly, if w = v3, then we
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conclude that no vertex is drawn in the open disc bounded by T .
Together with (3), we obtain the following conclusion:

(4) If T is a triangle in G distinct from F , then V (IntT (G)) = V (T ).

Suppose now that G contains one of the obstructions from Fig-
ure 3. Note that each of the obstructions contains a special subgraph.
By the distance condition, none of them has further crossed edges
and (4) implies that no such obstruction H appears in G, as oth-
erwise we would have G = H and G would be L-colorable by the
assumptions.

Furthermore, analogous arguments as used in the proof of (3)(d)
show that the following conditions hold:

(5) If K is a 4-cycle in G distinct from F and V (IntK(G)) 6= V (K),
then either IntK(G) − V (K) is K4, or there exists a vertex z such
that V (IntK(G)) = V (K)∪{z}, z is adjacent to all vertices of K and
z either belongs to N or is incident with an edge crossing an edge of
K.

(6) If K is a 5-cycle in G distinct from F , V (IntK(G)) 6= V (K), no
edge of K is crossed and there exists a special subgraph S ⊆ ExtK(G)
such that d(S,K) ≤ 1, then V (IntK(G)) = V (K) ∪ {z} for a vertex
z adjacent to all vertices of K.

Some explanation concerning the proof of (6) is needed: Again,
we first color ExtK(G) and then consider IntK(G) with the 5-cycle
precolored. By the previous results, K has no chords, since the
outcomes of (5) would yield a special subgraph too close to S. Let
uv be an edge of K, and let G′ = IntK(G) − {u, v}. By removing
the colors of u and v from the lists of their neighbors, we obtain
another instance of a list coloring problem with a precolored path
of length 2. Since any coloring of G′ gives rise to a coloring of G,
we conclude that one of the assumptions of the theorem is violated.
By the distance condition, the only one that may not hold is the
assumption (T). Since the common neighbor w of the three vertices
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on the path has list of size 3 (and it had list of size 5 in G), it is
adjacent to u and v in G, thus proving the claim.

Our next goal is to show that F does not have chords. Let uv be
a non-crossed chord of F . By (3)(c), u is an internal vertex of P , say
u = p1, while v 6∈ V (P ). Let G1 and G2 be the uv-components for G
such that p0 ∈ V (G1), and let P1 = p0p1v and P2 = vp1 . . . pk. For
each color c ∈ L(v) \ L(u), let Lc be the list assignment such that
Lc(v) = {c} and Lc(z) = L(z) if z 6= v. Since G is not L-colorable,
either G1 or G2 is not Lc-colorable. Furthermore, since both G1

and G2 are L-colorable (by the minimality of G), there exist distinct
colors c1 and c2 such that G1 is not Lc1 -colorable and G2 is not Lc2-
colorable. Since G is a minimal counterexample, the assumptions of
our theorem fail for G1 and G2 with respect to these list assignments.
In the sequel we discuss what can go wrong.

All special subgraphs in G that do not contain v remain special in
G1 or G2 and no new special subgraphs arise. Thus, G1 is (P1, N ∩
V (G1),M ∩E(G1))-distant and G2 is (P2, N ∩ V (G2),M ∩E(G2))-
distant. Clearly, validity conditions (S), (N), (M), and (C) hold for
both graphs. Thus one of (P), (T), or (O) fails. If G1 contains an
obstruction, then it contains a special subgraph whose distance to p1

is at most two. In that case, we conclude that `(P ) ≤ 2 and that G2

contains no obstruction, since the distance between special subgraphs
in G is more than four; also, no edge at distance at most two from
p1 in G2 is crossed. Since `(P ) ≤ 2, we may in this case exchange
the role of G1 and G2 and henceforth assume that G1 contains no
obstructions. Similarly, by exchanging the roles of G1 and G2 if
necessary, we may assume that no edge in G1 at distance at most
2 from p1 is crossed. Furthermore, if G1 violates (T), then since no
edge in G1 incident with p1 is crossed, we could consider the chord
p1z instead of p1v, where z is the common neighbor of p0, p1 and
v. Therefore, we can assume that G1 satisfies (T) and (O). Since no
L-coloring of G2 extends to an L-coloring of G1, we conclude that G1

violates (P), and thus v is adjacent to p0. Since vp0 is neither crossed
nor incident with an internal vertex of P , we conclude that vp0 is part
of the boundary of F , and hence G1 is equal to the triangle p0p1v.
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Suppose now that G2 contains an obstruction H; by (3) and (4), we
have G2 = H. However, the inspection of the obstructions shows
that G would either be L-colorable or an obstruction. Therefore, G2

satisfies (O). Furthermore, by the absence of OP1 and property (T)
of G, we conclude that there exists a color c ∈ L(v) \ (L(p0)∪L(p1))
such that G2 satisfies (P). Since this coloring does not extend to an
L-coloring of G2, it follows that G2 violates (T), i.e., there exists a
vertex w adjacent to v and to vertices p, p′ ∈ V (P ) \ {p0} such that
L(w) = L(p) ∪ L(p′) ∪ {c}. Since we cannot choose c so that G2

satisfies both (P) and (T), it follows that either G contains OP2, or
vw ∈ M (in which case `(P ) = 2), and G contains OM1. This is a
contradiction, thus every chord of F is crossed.

Consider now a (crossed) chord uv of F that is not incident with
an internal vertex of P . Let e be the edge crossing uv and let G1 and
G2 be the uv-components of G− e such that P ⊆ G1. Let e = x1x2,
where x1 ∈ V (G1) and x2 ∈ V (G2). By the minimality of G, there
exists an L-coloring ϕ of G1. Since ϕ(u) 6= ϕ(v), we can assume that
ϕ(x1) 6= ϕ(u). Let G′ be the graph obtained from G2−uv by adding
new vertices y1 and y2, edges of the path P ′ = uy1y2v and the edge
y1x2. Let L′ be the list assignment for G′ such that L′(u) = {ϕ(u)},
L′(v) = {ϕ(v)}, L′(y1) = {ϕ(x1)}, L′(y2) = {c} for a new color c
that does not appear in any of the lists and L′(z) = L(z) for any
other vertex z. Note that G′ has a new special subgraph consisting
of the edge y1y2 and that G′ is (P ′, N ∩ V (G′),M ∩E(G′))-distant,
since the crossing of G incident with x2 does not belong to G′ and
any path from a special subgraph in G′ to y1y2 passes through one
of the vertices u, v, x2 of the crossing in G. Furthermore, G′ is not
L′-colorable, and by the minimality of G, it violates (T) or (O).
The latter is not possible, since y2 has degree two, thus (T) does
not hold in G′. This implies that x2 has list of size three and it is
adjacent to u and v. By (3) and (4), we have V (G2) = {u, v, x2}.
Note that by (C), we conclude that each of |L(u)|, |L(v)|, |L(x1)| is
either 1 or 5. Let a be a color in L(x2) distinct from the colors of its
neighbors in P , which exists by (T). Let G′′ = G − x2 with the list
assignment L′′ such that L′′(z) = L(z) \ {a} for z ∈ {u, v, x1} and
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L′′(z) = L(z) otherwise. Note that G′′ is (P,N ∪ {x1},M}-distant
and L′′ is (P,N ∪ {x1},M)-valid. By the minimality of G, we have
that G′′ violates (O). The obstruction involved is L-colorable, so
it must contain one of the vertices whose lists have been changed.
Since none of these vertices has list of size 3 or 4 in L and all special
subgraphs are far away from the crossing, we conclude that `(P ) = 2,
|L′′(x1)| = 4 and G′′ contains one of ON1, ON2 or ON3, in which
the interior vertex with list of size 4 is x1. However, inspection of
these graphs shows that |L′′(u)| = 3 or |L′′(v)| = 3, which is a
contradiction.

Finally, consider a crossed chord uv of F incident with an internal
vertex u of P . Since G is (P,N,M)-distant, we have `(P ) = 2, thus
u = p1. Let e be the edge crossing uv and let G1 and G2 be the
uv-components of G− e such that p0 ∈ V (G1) and p2 ∈ V (G2). Let
P1 = p0p1v and P2 = p2p1v, and let e = x1x2, where xi ∈ V (Gi)
for i ∈ {1, 2}. Note that Gi is (Pi, (N ∩ V (Gi)) ∪ {xi},M ∩E(Gi))-
distant. If Gi contains an edge f different from p0p1, p0v, p1v, then
by the minimality of G there exists an L-coloring ϕ3−i of G − f ⊇
G3−i +x1x2. If additionally |L(xi)| ∈ {1, 5}, then define Li to be the
list assignment for Gi such that Li(v) = {ϕ3−i(v)}, Li(xi) = L(xi) \
{ϕ3−i(x3−i)}, and Li(z) = L(z) for any other vertex z. Observe
that Gi is not Li-colorable, and we conclude that it violates (P),
(T) or (O). (For (S) to hold, we add xi to N). Since ϕ3−i is a
coloring of G−f , (P) is satisfied for Gi. Since G is (P,N,M)-distant
and contains no non-crossed chord, it follows that Gi satisfies (T).
Thus, Gi violates (O). The corresponding obstruction is ON1 since
all others either have a special subgraph of G that would violate the
distance condition in G, or have a non-crossed chord incident with
p1. Together with (3) and (4), we have that for each i ∈ {1, 2}, one
of the following holds:

• xi ∈ V (Pi) and either Gi = Pi or Gi is the triangle on V (Pi),
or

• |L(xi)| ∈ {3, 4}, or
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• Gi is equal to ON1 and xi is its vertex with list of size four.

Since we already excluded all chords not incident with p1, at most
one of x1 and x2 has list of size three or four. By symmetry as-
sume that |L(x1)| ∈ {1, 5}. If |L(x2)| ∈ {1, 5}, then all the possi-
ble combinations of such graphs G1 and G2 are either L-colorable
or equal to OC1. Therefore, |L(x2)| ∈ {3, 4}. Since every chord
of F is crossed and incident with an internal vertex of P , we have
x1 6∈ V (F ), thus G1 is ON1. Let w be the vertex of G1 with list of
size three, G′ = G − {w, p0} − p1v and L′ the list assignment such
that L′(x1) = {ϕ1(x1)}, L′(v) = {ϕ1(v)} and L′(z) = L(z) other-
wise. Note that G′ is (p2p1x1v,N ∩ V (G′),M ∩ E(G′))-distant and
not L′-colorable. If v has degree at least 5 in G, then it has degree
at least three in G′. Together with (3), this implies that x2 is not
adjacent to v, hence (T) holds. If v has degree at most four, then
|L(v)| ≤ 4, and by (C), |L(x2)| = 4, and again (T) holds. Therefore,
G′ violates (O). Since x1 has degree three in G′ and it is adjacent
to a vertex with list of size three or four, G′ contains (and by (3), is
equal to) OP1 or OP2. However, then G is L-colorable. Therefore,
we obtain the following conclusion:

(7) F has no chords.

An easy corollary is that

(8) no vertex of P is incident with a crossed edge.

Indeed, if vp were a crossed edge with p ∈ V (P ), then by (7), we
have v 6∈ V (F ). Furthermore, since P is incident with a crossing,
we have `(P ) ≤ 2. Let L′ be the list assignment such that L′(v) =
L(v) \ L(p) and L′ matches L on the rest of the vertices of G. Note
that G − vp is not L′-colorable, and by the minimality of G, we
conclude that G − vp contains ON1, ON2 or ON3, whose internal
vertex with list of size 4 is v. It cannot contain ON1, since v is not
adjacent to all vertices of P in G − vp. Similarly, it cannot contain
ON3, since the edge vp would be crossed twice. IfG−vp contains ON2,
then G contains OC1. Comparison of bad lists for ON2 and OC1 in
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Figure 4 shows that OC1 is not L-colorable, which is a contradiction
to the assumption that (O) holds for G and L.

Consider now a vertex v with three neighbors pa, pb, pc ∈ V (P ),
where a < b < c. Let K be the cycle papa+1 . . . pcv, and note that K
has a chord vpb. By (8), none of the edges vpa, vpb and vpc is crossed.
By (3)(d), K is not separating ((3)(d) allows a vertex of N or a K4

with a crossed edge in the interior of K; however, this would only be
possible if `(P ) = 3, yielding two special subgraphs at distance 1).
Suppose that c− a = `(P ), and let G2 be the pavpc-component of G
that does not contain P . Since v /∈ V (F ), and v /∈ N if `(P ) = 3,
there is a color in L(v) that does not appear in the lists of vertices in
P . Observe that G2 (with the precolored path pavpc) violates either
(T) or (O). In the former case, G is either ON1 or OP6. In the latter
case, we have `(P ) = 2 by the distance condition, and (2) implies
that G2 is either OM1 or OC1. If G2 is OM1, then G is OM2, and if
G2 is OC1, then G is L-colorable.

Finally, consider the case that `(P ) = 3 and v is adjacent to say
p0, p1 and p2 and is not adjacent to p3. If L(p0) = L(p2), then G−vp2

is a counterexample to Theorem 7 contradicting the minimality of G.
Therefore, L(p0) 6= L(p2). Since the edges vp0, vp1, and vp2 are not
crossed, the degree of p1 is three. Let G′ = G− p1 + p0p2, with the
list assignment L′ such that L′(v) = L(v) \ L(p1) and L′(z) = L(z)
otherwise. Note that G′ is (p0p2p3, N ∪ {v},M)-distant, since the
rank of the special subgraph p1p2 in G is greater than the rank
of the special subgraph v (in G′), and any path Q between two
special subgraphs S1 and S2 that uses the new edge p0p2 gives rise
to paths between S1 or S2 and the middle edge p1p2 of P in G, thus
implying `(Q) ≥ 14+r(S1)+r(S2)+2r(p1p2)−1 > 7+r(S1)+r(S2).
We conclude that G′ violates (O) and contains ON1, ON2 or ON3

that is not L′-colorable; however, then G contains a non-L-colorable
obstruction OP6, OP4 or OP5, respectively. Therefore, we have:

(9) Every vertex has at most two neighbors in P .

Suppose now that uv and xy are edges crossing each other and
u, x ∈ V (F ). By (8), neither u nor x belongs to P . Let c be the

23



curve formed by the part of the edge uv between u and the crossing
and the part of the edge xy between the crossing and x. If c is not
part of the boundary of F , then let G2 be the subgraph of G drawn
inside the closed disc bounded by c and the part of the boundary of
F between u and x that does not contain P . Note that there are two
possible situations, depending on whether G2 includes the vertices v
and y or not. In any case, we can write G = G1∪G2, where G1∩G2

consists only of vertices u and x. Let G′2 be the graph obtained from
G2 by adding a common neighbor w of u and x. No L-coloring of
G1 extends to an L-coloring of G′2 (where w is assigned an arbitrary
color different from the colors of u and x). By the minimality of G,
we conclude that G′2 (with the precolored path uwx) violates (P),
thus ux ∈ E(G). The conclusion is:

(10) If u and x are crossing-adjacent and u, x ∈ V (F ), then either
ux ∈ E(G), or the crossing incident with u and x belongs to the
boundary of F .

Similarly, we derive the following property:

(11) Suppose that Q = x1x2 . . . xt−1xt is a path in G, where t ≤ 6
and x1x2 crosses xt−1xt. Let c be the closed curve consisting of the
path x2 . . . xt−1 and parts of the edges x1x2 and xt−1xt, and let X
be the set of vertices of G drawn in the open disc bounded by c. If
x1 6∈ X, then X = ∅.

The proof of (11) proceeds as follows. Observe first that the curve
c is not crossed since all its edges are close to a crossing. If the path
x2 . . . xt−1 is induced in G, then the subgraph of G drawn inside
the closed disc bounded by c, with the precolored path x2x3 . . . xt−1,
would be a counterexample to Theorem 7 smaller than G (the dis-
tance constraints are satisfied even if t = 6, since the middle edge of
the path x2x3x4x5 has smaller rank then the crossing, whose distance
to x3x4 in G is one). If x2 . . . xt−1 contains a chord xixj (i < j),
then we first consider Q′ = x1x2 . . . xixj . . . xt and then apply (3)(d)
to show that no vertices are contained in the interior of the cycle
xixi+1 . . . xjxi.
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Figure 6: Possible cases for G2 for a 2-chord uvw
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Now, we shall consider the 2-chords of F .

(12) Let uvw be a 2-chord of F such that vw is not crossed. Let
c be the closed curve bounding the outer face of G and q the curve
corresponding to the 2-chord uvw. Let c1 and c2 be the simple closed
curves in c ∪ q distinct from c, and let G1 and G2 be the subgraphs
of G drawn inside c1 and c2, respectively, so that G1 ∩ G2 = uvw
and G1 ∪G2 is equal to G if the edge uv is not crossed, and is equal
to G − xy if uv is crossed by the edge xy. If neither u nor w is an
internal vertex of P and P ⊆ G1, then one of the following holds (cf.
Figure 6):

• V (G2) = {u, v, w}, and either uv is not crossed and uw ∈
E(G), or uv is crossed by an edge incident with w; in the latter
case, uw may or may not be an edge.

• V (G2) = {u, v, w, z} for a vertex z with list of size three, and
either uv is not crossed and uz, vz, wz ∈ E(G), or uv is crossed
by an edge incident with z, zw ∈ E(G) and at least one of uz
and vz is an edge.

• V (G2) = {u, v, w, z} for a vertex z with list of size four adjacent
to u, v, w and incident with an edge crossing uv.

Proof. Let us consider a 2-chord uvw that does not satisfy the con-
clusion of the claim such that G2 is maximal. First, suppose that uv
is not crossed. An L-coloring of G1 does not extend to an L-coloring
of G2, hence G2 (with the precolored path uvw) violates (P), (T) or
(O). If G2 violates (P) or (T), then by (4) and (7) the outcome of
the claim holds. Therefore, we conclude that G2 violates (O). Since
the obstruction in G2 violating (O) contains a special subgraph with
a vertex distinct from v and v /∈ V (F ), we conclude that v /∈ N ,
and hence |L(v)| = 5. By (3) and (4) we also conclude that G2 is
the obstruction. Let S be the set of L-colorings of uvw that do not
extend to an L-coloring of G2. The inspection of the non-colorable
obstructions with `(P ) = 2 in Figure 4 shows that one of the follow-
ing holds:
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(R1) there exists a set A of at most two colors and S contains only
colorings ψ such that ψ(v) ∈ A, and furthermore, if |A| = 2
then neither u nor w has list of size three; or,

(R2) S contains only colorings ψ such that ψ(u) = ψ(w), and neither
u nor w has list of size three.

Indeed, by (2), all obstructions except for OM1 and OC1 satisfy (R1)
with |A| = 1. If G2 is OM1 or OC1, then neither u nor w has list of
size three, by (M) together with the distance condition and by (C).
The inspection of the colorings shows that if G2 is OC1, then (R1)
holds with |A| = 2, and if G2 is OM1, then either (R1) holds with
|A| = 2, or (R2) holds (the latter is the case when the two lists of
size 3 are equal, i.e., a = c in Figure 4).

If (R1) holds, then let G′ = G1, with the list assignment L′ such
that L′(v) = L(v) \ A and L′(z) = L(z) for z 6= w. Note that if
|A| = 2, then v has no neighbor in G1 with list of size three by (R1)
and by the maximality of G2. If (R2) holds, let G′ = G1 + uw with
the list assignment L′ = L. In either case, G′ is not L′-colorable and
it is (P,N∩V (G′),M∩E(G′))-distant (in the latter case, any path Q
between special subgraphs H1 and H2 using the added edge uw gives
rise to paths from H1 and H2 to the special subgraph of G2, and thus
`(Q) ≥ 14 + r(H1) + r(H2) − 3). Furthermore, G′ satisfies (T) by
(7) and (9), and if G′ violated (C) or (O), then v or uw would have
to belong to a crossing or to an obstruction in G′, and the distance
between its special subgraph and the special subgraph of G2 would be
at most 4. Note that G′ cannot violate (P), as otherwise u,w ∈ V (P )
and G2 is OM1, and by (3) and (9), v would have degree four and list
of size five. Therefore, G′ is a counterexample to Theorem 7 smaller
than G, which is a contradiction.

Suppose now that uv is crossed by an edge xy, where x ∈ V (G1)
and y ∈ V (G2). If y = w, then the conclusion of the claim holds by
(10), hence assume that y 6= w. Furthermore, x 6= w by (10), and
uw 6∈ E(G) by (4). Let G′1 be the graph obtained from G1 by adding
the edges ux and vx (if they are not present already). Note that this
can be done without introducing any new crossings. Since u, v and x
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are incident with a crossing in G, G′1 is (P,N ∩ V (G′1),M ∩E(G′1))-
distant. Furthermore, G′1 does not contain any obstruction, as its
special subgraph would be at distance at most 2 from the crossing.
By (7), u has at most one neighbor in P within G, hence G′1 satisfies
(T). By (8), u and x cannot belong to P , hence by the minimality of
G, there exists an L-coloring ϕ of G′1. Let G′2 be the graph obtained
from G2− uv by adding the vertex x and edges ux, vx, yx. Consider
the list assignment L′2 for G′2 such that L′2(z) = {ϕ(z)} for z ∈
{u, v, w, x} and L′2(z) = L(z) otherwise. Note that G′2 is not L′2-
colorable and that it is (uxvw,N ∩ V (G′2),M ∩ E(G′2))-distant.

Since y 6= w and since uw /∈ E(G′2), the graph G′2 satisfies (P) for
the ϕ-colored path uxvw. If G′2 violates (T), then by (4) we have that
|L(y)| = 3 and y is adjacent to at least two of u, v and w. In particu-
lar, y ∈ V (F ). Observe that if vy ∈ E(G), then the yvw-component
K that does not contain P can only be a triangle (since otherwise
any L-coloring of the other yvw-component K ′ would extend to K,
and K ′ would contradict the minimality of G). Thus yw ∈ E(G).
By (11) applied to the path xywvu, we have V (G2) = {u, v, w, y}
and the conclusion of the claim holds. Let us now consider the re-
maining case that G′2 satisfies (T), and thus by the minimality of G,
it violates (O). By (3) and (4), G′2 is equal to one of OP1, . . . , OP6,
but not OP3 since x has degree 3 in G′2.

If G′2 is OP1, then the conclusion of the claim holds. Otherwise,
let us define S as the set of colorings ψ of the path uxvw that do
not extend to an L-coloring of G′2 and satisfy ψ(u) 6= ψ(v). The
inspection of the obstructions and their problematic list assignments
displayed in Figure 4 shows that either (R1) or one of the following
holds:

(R3) G′2 is OP2 and there exists a color c such that S contains only
colorings ψ such that either ψ(u) = c and ψ(x) = ψ(w), or
ψ(x) = c and ψ(u) = ψ(w). Moreover, |L(u)| 6= 3 and |L(w)| 6=
3.

(R4) G′2 is OP4 and there exists a color c such that S contains only
colorings ψ satisfying either ψ(v) = c or ψ(x) = c. Moreover,
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|L(u)| 6= 3.

Again, the conclusions that the specified vertices do not have lists of
size three follow in all applicable cases by noting that otherwise either
(C) or the distance condition would be violated. Let us remark that
for OP2 we have (R1) if the colors a, b, c, d in Figure 4 are different;
we have (R3) if b = d or a = d. To argue for OP4, OP5, OP6 we
observe that ψ(x) and ψ(v) should be taken from the difference of
the lists of the two neighbors of u (so these are colors b, c in Figure 4).
This yields (R1) with the only exception in the case of OP4, where
we cannot argue about |L(w)| 6= 3, so we need (R4) in this (and only
this) case.

The condition in (R3) that the lists of u and w do not have
precisely three elements is argued as follows. Since x has degree 3 in
G′2, the vertex z of OP2 with list of size 3 is not the vertex y, and
v, w are both adjacent to z. Since |L(z)| = 3 and the edge wz is close
to a crossing in G, we conclude that wz /∈M and hence |L(w)| 6= 3.
Since |L(y)| = 4, (C) implies that |L(u)| 6= 3.

Now, the case when (R1) holds is handled in the same way as
the case when uv was not crossed. If (R3) holds, then we let G′1 =
G1 + uw with the list assignment obtained from L by removing c
from the list of u (note that |L(u)| 6= 1 by (8)); we may need to add
an edge incident with u to M in order to satisfy (M). If (R4) holds
and |L(x)| = 5, then let G′1 = G1 with the list assignment obtained
by removing c from the lists of x and v (and adding x to N). In all
the cases, G′1 satisfies the assumptions of the theorem. Indeed, (P)
is trivial, since u 6∈ V (P ) by (8). Similarly, (T) follows by (7) and
(9). Finally, (O) holds since by the distance condition, we could only
create OM1, OM2, ON1, ON2 or ON3, and each of them is excluded
by (7) or (9). Therefore, G′1 contradicts the minimality of G, since
its coloring would extend to an L-coloring of G.

Finally, consider the case that (R4) holds and |L(x)| ∈ {3, 4}. By
(10), all neighbors of u distinct from x belong to G2. By (8), we
have u 6∈ V (P ), deg(u) ≥ |L(u)| ≥ 4, and thus u is adjacent to x and
|L(u)| = 4. Since G′2 is OP4, every coloring of x, v and w extends to
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an L-coloring of G2, hence G1 contradicts the minimality of G. This
completes the proof of (12).

Similarly, one can prove the following:

(13) Let u,w ∈ V (F ) be distinct vertices, neither of which is an
internal vertex of P . Suppose that v 6∈ V (F ) is a vertex adjacent to
w and crossing-adjacent to u. Let c be the closed curve not containing
P consisting of vw, parts of the crossed edges incident with u and
v, and a part of the boundary of F between u and w that does not
contain P , and let G2 be the subgraph of G drawn in the closed disc
bounded by c. Then G2 does not contain the crossing and satisfies
one of the following:

(a) V (G2) = {u, v, w} and uw ∈ E(G), or

(b) V (G2) = {u, v, w, z}, |L(z)| = 3 and z is adjacent to u, v and
w.

Proof. By (12), it suffices to consider the case that uv 6∈ V (G). Let
G′1 be the graph obtained from G1 as follows: If uw ∈ E(G), then we
add the edge uw. If u, v and w have a common neighbor z with list
of size three, then we add z and incident edges. If V (G′1) = V (G),
then (a) or (b) holds. Otherwise, there exists an L-coloring ψ of
G′1 by the minimality of G. Let L′ be the list assignment such that
L′(v) = {ψ(v)}, L′(w) = {ψ(w)}, L′(u) = {c} for a new color c,
L′(x) = (L(x) \ {ψ(u)}) ∪ {c} for each neighbor x of u distinct from
v and w and L′(x) = L(x) for all other vertices x. Note that G′2 =
G2 + uv is not L′-colorable, and by the minimality of G, one of the
assumptions of the theorem is violated in G′2. By the construction of
G′1 and the choice of ψ, (P) and (T) hold. By the distance condition,
the only obstruction that can appear in G′2 is OC1. However, then
the 2-chord wvt (where t is the neighbor of u in G2 with list of size
four) contradicts (12).
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Let us now introduce a way of defining list assignments that will
be used throughout the rest of the paper. Let ϕ be any proper partial
L-coloring of G such that ϕ(v) 6∈ L(p) for every pair of adjacent
vertices v ∈ dom(ϕ) and p ∈ V (P ). For each vertex z ∈ V (G), let

Rz =
⋃

p∈V (P )\dom(ϕ),zp∈E(G)

L(p).

We define Lϕ to be the list assignment such that

Lϕ(z) =
(
L(z) \ {ϕ(x) : x ∈ dom(ϕ), xz ∈ E(G)}

)
∪Rz.

Let us also define Gϕ = G − dom(ϕ). Consider any Lϕ-coloring ψ
of Gϕ. We claim that the combination of ϕ with ψ is a proper L-
coloring of G. Indeed, for any z ∈ V (Gϕ), we clearly have ψ(z) 6∈ Rz,
and thus ψ(z) ∈ Lϕ(z) is different from the colors of the neighbors
of z in dom(ϕ). Since G is not L-colorable, we conclude that Gϕ is
not Lϕ-colorable.

Suppose now that G contains a subgraph H isomorphic to one
of the graphs drawn in Figure 3 such that the subgraph of H cor-
responding to full-circle vertices is equal to P , triangle vertices have
lists of size at least three, square vertices have lists of size at least
four and pentagonal vertices have lists of size five. Then we say that
H is a near-obstruction.

(14) If H is a near-obstruction, then H is isomorphic to one of
OM1, ON2, ON3 or OP3. Furthermore, |(V (H)∩ V (F )) \ V (P )| ≤ 1,
and if (V (H) ∩ V (F )) \ V (P ) 6= ∅, then H is ON2 or ON3.

Proof. By (9), H is isomorphic to one of OM1, ON2, ON3, OC2, OC3,
OC4, OC5 or OP3.

By (12), if H is OC5, then V (G) = V (H) ∪ {z}, where z is a
vertex of degree three adjacent to p0, p2 and the vertex w 6∈ V (P )
in the outer face of H. However, the distance condition implies that
w /∈ N , so that |L(w)| = 5. This implies that G is L-colorable, which
is a contradiction.
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If H is OC2, then let p0w1w2p2 be the path in the outer face of H.
If w1, w2 ∈ V (F ), then V (G) = V (H) and G is L-colorable by (O).
Thus assume that w2 6∈ V (F ); hence |L(w2)| = 5. If w1 ∈ V (F ),
then since w2 has degree at least 5, by (12) we have that V (G) =
V (H) ∪ {z}, where z is adjacent to w1, w2 and p2. However, then
G is L-colorable. Therefore, w1 6∈ V (F ). Let ϕ be an L-coloring of
H and G2 the p0w1w2p2-component of G that does not contain P .
Since ϕ does not extend to an L-coloring of G2, it follows that G2

with the precolored path p0w1w2p2 violates (P), (T) or (O). Since
both w1 and w2 have degree at least 5, it follows that p0w2 /∈ E(G)
and w1p2 /∈ E(G), hence (P) holds. Suppose that G2 violates (T).
Then a vertex z with list of size three is adjacent to three vertices
among p0, w1, w2 and p2. If it is adjacent to all four of them, then
G contains OC5 which has already been excluded. Otherwise, since
w1 and w2 have degree at least 5, by (5) z cannot be adjacent to
p0, w1, and p2. By symmetry, we may assume that z is adjacent to
p0, w1, w2. Then (12) applied to the 2-chord zw2p2 shows that there
is a vertex z′ adjacent to z whose list has size 3, and we see that
the special edge zz′ gives a contradiction. Finally, if G2 violates (O),
then the obstruction is equal to one of OP1, OP2, OP3, OP4, OP5

or OP6, and now it is easy to see (by comparing bad lists for the
obstructions) that G is L-colorable.

If H is OC3, then let w1 be the vertex of H drawn by the triangle
and w2 the vertex of P that is not adjacent to it in G. If H is
OC4, then let w1 and w2 be the vertices of H drawn by triangles.
By symmetry, we can assume that w1 is the neighbor of p2. Let
w1x1x2w2 be the path in H formed by neighbors of p1. Note that
|L(wi)| ∈ {1, 5} by (7). Choose an L-coloring ϕ of the subgraph
of G induced by V (P ) ∪ {w1, w2} such that ϕ(w1) 6= ϕ(w2) and
either |Lϕ(x1)| ≥ 4 or Lϕ(x1) 6= Lϕ(x2). Note that this is possible
since |L(w1)| = 5. Let G′ = G − {p1, x1, x2} + w1w2 with the list
assignment L′ such that L′(z) = {ϕ(z)} for z ∈ {w1, w2} and L′(z) =
L(z) otherwise. Observe that G′ is not L′-colorable (since every L′-
coloring of G′ extends to an L-coloring of G) and that it satisfies (P)
for the precolored path w2w1p2 or p0w2w1p2. By the minimality of
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G, G′ violates (T) or (O). In the former case, by symmetry we can
assume that there exists a vertex z ∈ V (G) such that |L(z)| = 3
and z is adjacent to p2, w1 and either w2 or p0. It follows that
G contains a separating 4-cycle formed by non-crossed edges, and
by (3) the interior of this 4-cycle contains K4. By (7) and (12),
there are no other vertices in G. Now, it is easy to see that the
resulting graph is L-colorable. Therefore, G′ violates (O). Since G
is (P,N,M)-distant, this is only possible if H is OC4. In this case
the obstruction in G′ is one of OP1–OP6. Note that the edge w1w2 is
contained in a triangle; let z be their common neighbor. By (3), the
4-cycle w1zw2p1 surrounds K4 in G. However, the graphs obtained
from the obstructions OP1–OP6 with the precolored path p0w2w1p2

by adding the vertex p1 joined to the vertices p0, w1, w2, p2, deleting
the edge w1w2, and adding K4 inside the 4-cycle w1zw2p1 are easily
seen to be L-colorable.

The remaining obstructions are OM1, ON2, ON3, and OP3. If H
is OM1 or OP3, then none of the vertices in V (H) \ V (P ) belongs to
F since this would contradict (7). In the other cases, at most one of
the vertices of H can belong to F by the same reason.

Observe that `(P ) ≥ 2, since if `(P ) < 2, then we can pre-
color 2 − `(P ) more vertices of F (by (8), we can extend P in the
boundary of F ). Let pk . . . p1p0v1v2 . . . vs be the vertices contained
in the boundary of F in the cyclic order around it. We either have
vivi+1 ∈ E(G), or vi and vi+1 are crossing-adjacent, for each i. As
we already observed, p0v1, pkvs ∈ E(G). We also define vs+1 = pk,
vs+2 = pk−1, . . . .

If s = 0, then let ϕ be the L-coloring of p0. Then Gϕ with the
list assignment Lϕ is a smaller counterexample to Theorem 6. This
contradiction shows that s ≥ 1.

Suppose that s = 1 and let ϕ be the partial coloring that assigns
a color in L(v1) \ (L(p0) ∪ L(pk)) to v1. Note that if v1 is adjacent
to a vertex x by a crossed edge, then Gϕ is (P,N ∪ {x}, ∅)-distant,
otherwise Gϕ is (P,N, ∅)-distant. By the minimality of G, Gϕ with
the list assignment Lϕ violates (O) and contains an obstruction H,

33



which by (14) is one of OM1, ON2, ON3 or OP3. Note that if z ∈ V (H)
is a vertex with list of size three according to Lϕ, then z is adjacent
to v1 and belongs to N ; but z is at distance at most one from the
special subgraph in the obstruction, contradictory to the assumption
that G is (P,N,M)-distant. Therefore, s ≥ 2.

If v1 is not adjacent to v2 (i.e., v1 and v2 are crossing-adjacent),
then let ϕ be a coloring that assigns a color from L(v1) \L(p0) to v1
and the color from L(p0) to p0. Note that `(P ) = 2 by the distance
condition. Let y be the vertex adjacent to v1 by the crossed edge,
and note that Gϕ is (p1p2, N ∪ {y},M)-distant. By the minimality
of G together with (3), (7) and (9), we conclude that Gϕ with the
list assignment Lϕ violates (N) or (M). In the former case, we have
|Lϕ(y)| = 3 and since |L(y)| = 5, it follows that y is adjacent to
p0. However, by (4), v2 would be adjacent to p0, contrary to (7). In
the latter case, p0 and v1 have a common neighbor u 6= y adjacent
to a vertex w with |L(w)| = 3. This contradicts (12). Therefore,
v1v2 ∈ E(G), and by symmetry, vs−1vs ∈ E(G).

Suppose now that s = 2. By symmetry, assume that if v2 is
incident with a crossed edge, then v1 is incident with a crossed edge
as well. If v1v2 ∈ M , then let ϕ be an L-coloring of v1 and v2
such that ϕ(v1) 6∈ L(p0) and ϕ(v2) 6∈ L(pk). Otherwise, let ϕ be a
coloring of v1 by a color in L(v1) \ L(p0) such that if |L(v2)| = 3,
then ϕ(v1) 6∈ L(v2) \ L(pk). Note that this is possible by (3)(f). Let
us remark that when |L(v2) \ {ϕ(v1)}| = 2, then L(pk) = {ϕ(v1)}
and Lϕ(v2) = L(v2) by the definition of Lϕ, and thus we always have
|Lϕ(v2)| ≥ 3. If Gϕ with the list assignment Lϕ violated (C), then
v2 would have to be incident with a crossing, and by the choice of
v1, the vertex v1 would be incident with the same crossing, which
then would not appear in Gϕ. Therefore, Gϕ satisfies (C). If v1 is
incident with a crossed edge v1x, then let N ′ = N ∪ {x}; if v1 is
adjacent to a vertex y ∈ N , then let N ′ = N \ {y}; otherwise let
N ′ = N . If v1 and v2 have a common neighbor z belonging to N ,
then let M ′ = M ∪ {v2z}; otherwise let M ′ = M \ {v1v2}. Observe
that Gϕ is (P,N ′,M ′)-distant and that it satisfies (S), (N) and (M).
By the minimality of G, Gϕ violates (O) and thus G contains a near-
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obstruction H. By (14), H is OM1, ON2, ON3 or OP3. Observe that
v1v2 6∈M , since otherwise the distance between v1v2 and the special
subgraph of H (which is also special in G) is at most 3. Every vertex
with list of size three according to Lϕ either belongs to N or is equal
to v2. If v2 6∈ V (H), then H contains only one vertex with list of
size three, hence H is ON2. However, then N contains two adjacent
vertices, which is a contradiction. Similarly, we exclude the case that
v2 ∈ V (H) and H is ON3 or OP3. Therefore v2 ∈ V (H) and H is
OM1 or ON2. The former is excluded by (7). If H is ON2, then we
have V (G) = V (H) ∪ {v1} by (4). If v1 is incident with a crossed
edge, then G contains OC2. On the other hand, if v1 is not incident
with a crossed edge, then |L(v1)| = 3, |L(v2)| = 4, |N | = 1 and G is
L-colorable. This is a contradiction, hence s ≥ 3.

Next, observe that if v1 and v2 are not crossing-adjacent, then
|L(v1)| = 3 or |L(v2)| = 3. Otherwise, we could remove a color from
the list of v1. If the edges v1x and e cross, then |L(x)| = 5 by (7),
and both vertices incident with e have list of size five by (8) and
(10), hence G with the new list assignment satisfies (C). By (14), no
obstruction arises (since all vertices with lists of size three or four in
the new list assignment are contained in V (F )). Thus G with the
reduced lists satisfies (O) and contradicts the minimality assumption.
Similarly, if v1 and v2 are crossing-adjacent and |L(v1)| > 3 and
|L(v2)| > 3, then we can assume that |L(v1)| = |L(v2)| = 4.

If |L(v1)| = 3 or |L(v2)| = 3 and furthermore v1v2, v2v3 6∈ M ,
then let the set X ⊆ V (F ) \ V (P ) and its partial L-coloring ϕ be
defined as in (X1)–(X4) in the proof of Theorem 6. Let us add two
more cases for the situation when v1 and v2 are crossing-adjacent:

(X5) If |L(v1)| = |L(v2)| = 4 and |L(v3)| 6= 3, then X = {v1} and
ϕ(v1) ∈ L(v1) \ L(p0) is chosen arbitrarily.

(X6) If |L(v1)| = |L(v2)| = 4 and |L(v3)| = 3, then X = {v2} and
ϕ(v2) ∈ L(v2) \ L(v3) is chosen arbitrarily.

Let m be the largest index such that vm ∈ X. Let us note that
m = 1 in (X1) and (X5), m = 3 in (X4), and m = 2 otherwise. Also,
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X = dom(ϕ) in all cases except for (X4b), when X = {v1, v2, v3}
and dom(ϕ) = {v1, v3}.
(15) One of the following cases holds:

(A1) v1v2 ∈M or v2v3 ∈M .

(A2) Either v1 and v2 or two distinct vertices in dom(ϕ) have a
common neighbor in N .

(A3) There exists a crossing q and two crossing-adjacent vertices
w1, w2 ∈ V (Gq) such that V (Gq) ∩X = ∅, w1 has a neighbor
in dom(ϕ) and w2 has two neighbors in dom(ϕ).

(A4) vmvm+1 ∈ E(G), there exists a crossing q such that V (Gq) ∩
X = ∅ and vm+1, vm+2 ∈ V (Gq), and either |L(vm+1)| =
|L(vm+2)| = 4 or |L(vm+1)| = 5 and |L(vm+2)| = 3.

(A5) vmvm+1 ∈ E(G), |L(vm+1)| ∈ {3, 4} and there exists a crossing
q such that V (Gq) ∩ X = ∅, vm+1 ∈ V (Gq) and a neighbor
w 6∈ V (F ) of vm is crossing-adjacent to vm+1.

(A6) v1 6∈ X and there exists a crossing q such that V (Gq)∩X = ∅,
v1 ∈ V (Gq) and a neighbor w 6∈ V (F ) of v2 is crossing-adjacent
to v1.

(A7) |X| ≥ 2 and there exists a path vm−1xyvm+1, where x and y
are neighbors of vm and y ∈ N .

Proof. See Figure 7 for the illustration of the possibilities. Note that
if (A1) does not hold, then X and ϕ are defined.

Suppose now for a contradiction that none of (A1)–(A7) holds.
Let us consider the graph G′0 = G−dom(ϕ) with the list assignment
Lϕ, and letG′ be the graph obtained fromG′0 by repeatedly removing
vertices whose list is larger than their degree. If dom(ϕ) 6= X, then
we have case (X4b) and X \dom(ϕ) = {v2}. If v2 is not incident with
a crossing, then its degree in G′0 is 1, and since |Lϕ(v2)| ≥ 2, it is not
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Figure 7: Possible outcomes of (15)
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present in G′. On the other hand, if v2 were incident with a crossing,
then the fact that |L(v1)| = |L(v3)| = 4 would contradict (C). This
shows that G′ ⊆ G−X. Observe also that G′ is not Lϕ-colorable.

Next, we argue that G′ satisfies the assumptions of Theorem 7
(with the sets N ′ ⊆ V (G′) and M ′ ⊆ E(G′) defined as the minimal
sets such that (S), (N) and (M) hold), thus contradicting the mini-
mality of G. The property (P) holds trivially, (T) holds by (9). To
verify (S), note first that the only vertices not in the outer face of G′

with list of size less than five are those belonging to N , or incident
with a crossed edge joining them in G to a vertex in dom(ϕ); and
the vertices of the latter kind have list of size four. Thus, they have
been added into N ′ without violating the distance condition since the
rank of special vertices in N ′ is smaller than the rank of the crossing.
Next, suppose that a vertex v ∈ V (G′) \ V (P ) satisfies |Lϕ(v)| ≤ 2.
Note that v 6∈ V (F ) by the choice of X and ϕ and by (7). It follows
that v ∈ N and v has two colored neighbors in X, thus (A2) holds.
This confirms that (S) is satisfied.

Now, let us consider property (C). Let q be a crossing in G′ and
suppose that (C) is violated at q, i.e., there exist distinct u, v ∈
V (Gq) such that |Lϕ(u)| = 3 and |Lϕ(v)| ∈ {3, 4}. If both u and
v belong to F , then by (7) and (10) we have that u and v are
crossing-adjacent, {u, v} = {vm+1, vm+2} and L(vm+2) = Lϕ(vm+2).
It follows that |L(vm+1)| 6= 3 and that (A4) holds. If u ∈ V (F )
and v 6∈ V (F ) and u and v are not crossing-adjacent, then since
V (Gq) ∩ X = ∅, (12) implies that (A4) holds. If u ∈ V (F ) and
v 6∈ V (F ) and u and v are crossing-adjacent, then we apply (13).
The outcome (a) of (13) gives (A5) or (A6). The outcome (b) gives
a vertex w ∈ X that is adjacent to v and a vertex z with |L(z)| = 3
that is adjacent to u, v and w. Therefore, |L(u)| 6= 3, so u has a
neighbor in X. This is only possible in the subcase (X4a) of the def-
inition of X, where z = v2, w = v3 and u = v1, thus obtaining (A6).
If u 6∈ V (F ) and v ∈ V (F ), then u has two neighbors in dom(ϕ).
Since V (Gq)∩X = ∅, (12) implies that u and v are crossing-adjacent.
By (13), one of the neighbors of u in X is also adjacent to v and has
list of size three, and by the choice of X, we conclude that (A6)
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holds. Finally, if u, v 6∈ V (F ), then they are crossing-adjacent by (4)
and the fact that V (Gq) ∩X = ∅, and (A3) holds.

Therefore, we can assume that G′ satisfies (C). Let us now con-
sider the newly created special subgraphs in G′. If v ∈ N ′\N , then v
is adjacent to a vertex of X by an edge containing a crossing q, and no
other vertex of Gq belongs to X. Therefore, there is at most one such
vertex. Consider now an edge xy ∈M ′ \M ; we will show that either
there exists a crossing q such that {x, y} = V (Gq)\X, or at least one
of x and y belongs to N . Note that xy has been added to M ′ because
|Lϕ(x)| = |Lϕ(y)| = 3. Suppose that x, y 6∈ N . If x, y 6∈ V (F ), then
both x and y have two neighbors in dom(ϕ). It is easy to see using
(4) and (5) that this implies that x and y are crossing-adjacent in
G via the edges joining x, y with X. If x, y ∈ V (F ), then by (7) we
can assume that x = vm+1 and y = vm+2; but then |Lϕ(x)| 6= 3 or
|Lϕ(y)| 6= 3 by the choice of X, which is a contradiction. Finally,
suppose that say x ∈ V (F ) and y 6∈ V (F ); then y has two neighbors
in dom(ϕ) and, in particular, we have cases (X2) or (X4). By (12),
we have x ∈ {v1, vm+1}. If x = v1, then y would be a common neigh-
bor of v1, v2 and v3, contradicting the choice of X (assumptions of
(X4b) are satisfied, hence we would have v1 ∈ X). If x = vm+1,
then |L(vm)| = 4 and therefore one of the edges vm−1y and vm+1y
is crossed since deg(vm) ≥ 4. However, by the choice of X we have
|L(vm−1)| = |L(vm+1)| = 3, contradicting (C).

It follows that d(S1, S2) ≥ 7 + r(S1) + r(S2) whenever S1 is a
special subgraph of G that is also special in G′ and S2 is any special
subgraph of G′. Suppose now that S1 and S2 are both distinct newly
created special subgraphs in G′. Note that |N ′ \ N | ≤ 1 and if
N ′ \N 6= ∅, then M ′ \M = ∅. It follows that S1, S2 ∈ M ′ \M . As
proved in the previous paragraph, each edge in M ′ \M is incident
with a special subgraph in G that is adjacent to X. By the distance
condition, we conclude that there exists a path xyz in G′ such that
|Lϕ(x)| = |Lϕ(y)| = |Lϕ(z)| = 3 and y ∈ N . Note that at most
one of x and z can have two neighbors in dom(ϕ), as otherwise G
would contain a crossing at distance at most one from y; thus we may
assume that x ∈ V (F ). By (12), x ∈ {v1, vm+1, vm+2}. If x = vm+2,
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then we would have |L(vm+1)| = |L(x)| = 3 and vm+1x ∈ M would
be at distance one from y ∈ N , which is a contradiction; therefore,
x 6= vm+2. If x = v1, then (A2) holds, hence x = vm+1 and z 6∈ V (F )
has two neighbors in dom(ϕ). However, then |L(vm)| = 4, hence
deg(vm) ≥ 4 and vm is adjacent to y and (A7) holds. We conclude
that G′ is (P,N ′,M ′)-distant.

Finally, suppose that G′ violates condition (O), and thus G con-
tains a near-obstruction H. By (14), H is one of OM1, ON2, ON3 or
OP3.

• If H is OM1, then let xy be the edge of H that belongs to
M ′, where x is adjacent to p2. Note that x, y 6∈ V (F ) by (7)
and xy 6∈ M . If x 6∈ N , then x has two neighbors vi and vj

in dom(ϕ), where i < j. By (12) applied to p2xvi, we have
j = i + 1 and by the choice of X, |L(vj)| = 4; hence vj is
incident with a crossing and thus y 6∈ N . Consequently, y is
also adjacent to vi and vj . However, note that |L(vi)| = 3,
contradicting (C) for G. Therefore, x ∈ N is adjacent to vj ,
and y is adjacent to both vi and vj . By (12) applied to p0yvj ,
we have i = 1, j = 2 and |L(v1)| = 3, and by (12) applied to
p2xv2, we have that s = 3 and |L(v3)| = 3. However, then G
is L-colorable.

• Next, suppose that H is ON2 and let x and y be the vertices in
the outer face of H such that |Lϕ(x)| = 3 and |Lϕ(y)| = 4. By
(7), y /∈ V (F ). If x ∈ V (F ), then by (12) we have s ≤ 2, which
is a contradiction, hence x 6∈ V (F ). Thus x has two neighbors
in dom(ϕ) and y has one, and by (12) we conclude that s = 3
and |L(v1)| = |L(v3)| = 3. It follows that X = {v1, v2}, x is
adjacent to v1 and v2, and y is adjacent to v2. There are two
cases, either v2 is incident with a crossed edge or |N | = 1; in
both of them, G is L-colorable.

• If H is ON3, then let xyz be the path in the outer face of H such
that |Lϕ(x)| = |Lϕ(z)| = 3, |Lϕ(y)| = 4 and z is adjacent to p1.
By (7), z 6∈ V (F ), thus z has two neighbors w1, w2 ∈ dom(ϕ),

40



and by (12), we can assume that the neighbors of w1 are w2, z
and an endvertex of P , and that |L(w1)| = 3. Since y 6∈ V (F ), y
is adjacent to w2. Since x cannot have more than one neighbor
in dom(ϕ), we have x ∈ V (F ). If xw2 6∈ E(G), then (12)
implies that x is adjacent to a vertex with list of size three,
and thus |Lϕ(x)| = |L(x)| > 3. This is a contradiction, hence
xw2 ∈ E(G). By the choice of X, |L(x)| = 3. Again, we
distinguish two cases depending on whether w2 is incident with
a crossed edge (in this case |L(w2)| = 5 by (C)) or |N | = 1. In
both cases, G is L-colorable.

• Therefore, H is OP3. But then two of the vertices ofH have two
neighbors in dom(ϕ), hence G contains a crossing at distance
at most one from P , contradictory to the assumption that G
is (P,N,M)-distant.

We have shown that G′ satisfies all conditions of Theorem 7 for
the list assignment Lϕ. This gives a contradiction to the minimality
of G and proves claim (15).

Each case among (A1)–(A7) in (15) contains a special subgraph.
Thus, G contains a special subgraph S whose distance from p0 is at
most 2 + r(S). Consequently, `(P ) = 2. Next, we consider the set
X ′ ⊆ {vs, vs−1, vs−2} defined symmetrically to X and conclude that
there exists a special subgraph S′ (satisfying one of (A1)–(A7) with
vi replaced by vs+1−i) whose distance to p2 is at most 2 + r(S′). It
follows that d(S, S′) ≤ 6 + r(S) + r(S′), and since G is (P,N,M)-
distant, we have S = S′.

Next, we show that

(16) S consists of two edges incident with a crossing.

Proof. If not, then either S ∈ M or S ∈ N . Suppose first that
S ∈ M . Then (A1) holds and s ≤ 4. Since s ≥ 3, we can by
symmetry assume that S = v2v3. If v2, v3 and vi have no common
neighbor for i ∈ {1, 4} (i = 1 if s = 3), then let ϕ be an arbitrary
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L-coloring of S (such that ϕ(v3) /∈ L(p2) if s = 3). Observe that
Gϕ cannot contain an obstruction since its special subgraph would
be a special subgraph in G, too close to the special edge v2v3. Now
it is easy to check using previously proved properties of G that Gϕ

satisfies all conditions of Theorem 7. (The same reasoning will be
applied in the sequel without repeating it.) Therefore, Gϕ with the
list coloring Lϕ is a counterexample to Theorem 7, contradicting the
minimality of G. Thus, by symmetry, we may assume that v1, v2 and
v3 have a common neighbor w. In that case, w is not adjacent to v4
by (12). Let ϕ be an L-coloring of v1 and v3 such that ϕ(v1) 6∈ L(p0),
ϕ(v3) 6∈ L(p2) and |Lϕ(v2)| ≥ 2. Then G′ = G − {v1, v2, v3} with
the list assignment Lϕ contradicts the minimality of G since any Lϕ-
coloring of G′ can be extended to v2 by using a color in Lϕ(v2), and
can henceforth be extended to G.

Let us now consider the case that S ∈ N , hence (A2) or (A7)
holds. Let i and j be the smallest and the largest integer, re-
spectively, such that S is adjacent to vi and vj . By (12) we have
j ∈ {i + 1, i + 2}. We consider the two possible values of j sepa-
rately:

• Suppose first that j = i + 1. If |X| ≥ 2, then |L(vm)| ≥ 4
and |L(vm+1)| = 3, hence (A7) cannot hold for both X and
X ′. If both X and X ′ satisfy (A2), then since s ≥ 3, we can
assume that v2, v3 ∈ X have a common neighbor in N . By the
choice of X, we have |L(v4)| = 3, hence s = 4 and v2, v3 ∈ X ′.
However, then |L(v1)| ≥ 4 by the choice of X and |L(v1)| = 3
by the choice of X ′, which is a contradiction.

Hence, we can assume that (A7) holds for X and (A2) for
X ′; then we either have s = m + 1, or we have s = m + 2
and X ′ = {vm, vm+1}. If there exists an L-coloring ϕ of vm−1

and vm+1 such that their colors are distinct from the colors
of their neighbors in P and |Lϕ(vm)| ≥ 3, then G′ = G −
{vm−1, vm, vm+1} with the list assignment Lϕ contradicts the
minimality of G. (Observe that G′ satisfies (O), since no special
subgraph of G is at distance at most two from S. A new special
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subgraph would appear in G′ only if S would be adjacent to
vm+2, which is not the case since j = i+ 1.)

We conclude that no such coloring exists, hence both vm−1 and
vm+1 have a neighbor in P and s = 3. Furthermore, |L(v1)| = 3
and L(v1) \L(p0) ⊂ L(v2). Let w′ be the common neighbor of
S and v1. Suppose that there exists a color c ∈ L(w′) different
from the colors of the neighbors of w′ in P such that either
c 6∈ L(v2), or v1 has degree three and c 6∈ L(v1) \L(p0). In this
case, we let ϕ be the partial coloring such that ϕ(w′) = c and
let G′ = G− {w′, v2} if c 6∈ L(v2) and G′ = G− {w′, v1, v2} if
c ∈ L(v2). Observe that G′ is not Lϕ-colorable. Furthermore,
it satisfies the assumptions of Theorem 7, with the edge Sv3
belonging to M (the condition (O) holds by (14), the distance
condition and (7)). This contradicts the minimality of G, and
thus no such color c exists. Since |L(w′)| > |L(v2)|, it follows
that w′ has a neighbor in P . By (12), w′ is not adjacent to
p2, hence it is adjacent to p0 or p1. However, then (5) and (7)
imply that v1 has degree three, and since |L(v1) \ L(p0)| = 2
and w′ has at most two neighbors in P , the color c exists. This
is a contradiction.

• It remains to consider the case when j = i + 2. In this case
S is adjacent to vi and vi+2, and by (12) we conclude that
vi+1 is a vertex of degree 3 with neighbors vi, vi+2, and S.
Thus, |L(vi+1)| = 3. Suppose first that both X and X ′ sat-
isfy (A7). If there exists a coloring ϕ of S by a color differ-
ent from the colors of its neighbors in P such that ϕ(S) 6∈
L(vi) ∩ L(vi+1) ∩ L(vi+2), then G′ = G − {S, vi, vi+1, vi+2}
with the list assignment Lϕ is a counterexample contradicting
the minimality of G (since in this case any Lϕ-coloring of G′

extends to an L-coloring of G). Otherwise, note that S is not
adjacent to p0 or p2 by (12), hence S is adjacent to p1 and
L(S) \ L(p1) = L(vi+1) ⊆ L(vi) ∩ L(vi+2). However, in this
case we let ϕ be the L-coloring of X as chosen in the proof
of Theorem 6, and note that ϕ(vi) 6∈ L(vi+1) = L(S) \ L(p1).
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Then G−X with the list assignment Lϕ for any other vertex
z is a counterexample contradicting the minimality of G.

Hence, we can assume that say X ′ satisfies (A2). Let us first
consider the case that X satisfies (A2) as well. Note that vi+2 6∈
X, as otherwise |L(vi+3)| = 3 by the choice of X, and thus
vi+1 6∈ X ′, contradictory to the assumption that X ′ satisfies
(A2). Symmetrically, vi 6∈ X ′. Since |L(vi+1)| = 3, we cannot
have {vi, vi+1} ⊆ X, thus i = 1, and by symmetry, s = 3.
Observe that we cannot color S by a color ϕ(S) 6∈ L(vi+1),
as otherwise G − {S, vi+1} with the list assignment Lϕ would
contradict the minimality of G. Therefore, S has a neighbor in
P , and by (12), this neighbor is p1. By (5), the 4-cycle p1p0v1S
is not separating, and by (7), v1 has degree three. This is a
contradiction, since |L(v1)| > 3.

Therefore, X satisfies (A7). Note that vi+1 cannot be the ele-
ment of X ′ with the smallest index, thus i+ 2 = s. As before,
we exclude the case that S can be colored by a color not be-
longing to L(vi) ∩ L(vi+1), hence S has a neighbor in P . By
(12), S is not adjacent to p0 or p2, hence S is adjacent to p1.
However, by (5), the 4-cycle p1Svi+2p2 is not separating, and
by (7), vi+2 is not adjacent to p1. Thus, vi+2 has degree three
and list of size at least four, which is a contradiction.

This completes the proof of the case when S ∈ N .

Therefore, (16) holds and S consists of two edges incident with a
crossing q. We conclude that each of X and X ′ satisfies one of (A3),
(A4), (A5) or (A6). If one of them satisfies (A4), then |V (Gq) ∩
V (F )| = 2 by (7). If it satisfies (A6), then by (7), (8) and (10)
we have |V (Gq) ∩ V (F )| = 1. If it satisfies (A3), then similarly
|V (Gq)∩V (F )| ≤ 1, and if it satisfies (A5) then 1 ≤ |V (Gq)∩V (F )| ≤
2.

(17) Neither X nor X ′ satisfies (A3).
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Proof. Suppose for a contradiction that X satisfies (A3). Let w1

and w2 be as in the description of (A3). Note that w2 is adjacent to
vm−1 and vm (even if vm−1 6∈ dom(ϕ), in the case (X4b)) and that
|L(vm−1)| = |L(vm+1)| = 3.

Let us first consider the case that |V (Gq) ∩ V (F )| = ∅. In this
case X ′ satisfies (A3) as well, i.e., there exists w′2 ∈ V (Gq) adjacent
to vb and vb+1, where b is the smallest index of an element of X ′,
and another vertex w′1 of Gq that has one neighbor in X ′. Since
|L(vb)| 6= 3, we have b /∈ {m−1,m+1}. Consequently, |X ∩X ′| ≤ 1,
and w′2 6= w2 by (12).

We now distinguish two cases regarding whether w2 is adjacent
or crossing-adjacent to w′2 in Gq.

• Suppose that w2w
′
2 is a crossed edge. Then b 6= m by (4) and

the assumption that Gq is disjoint with F ; thus b ≥ m+ 2. Let
G1 and G2 be the subgraphs of G intersecting in vmw2w

′
2vb,

such that G1 ∪G2 = G− e, where e is the edge crossing w2w
′
2,

and P ⊂ G1. By (12), we have that w1 6= w′2, w′1 6= w2 and
that if w1 = w′1, then w1 belongs to G2. By symmetry, assume
that w1 belongs to G2. If w1 is adjacent to vb, then b = m+ 2
by (12). Let T = {vm, vm+1, vm+2, w1}. By using (11) it is
easy to see that |L(t)| = deg(t) for each t ∈ T \ {w1} and
that deg(w1) ≤ 6. By the minimality of G, there exists an
L-coloring ϕ of G−T . Consider the subgraph G′ of G induced
by T with the list assignment Lϕ. We have |Lϕ(vm+1)| ≥ 3
and |Lϕ(z)| ≥ 2 for z ∈ T \ {vm+1}. If Lϕ(w1) 6= Lϕ(vm),
then we color w1 by a color in Lϕ(w1) \ Lϕ(vm) and extend
this coloring to the rest of G′. Similarly, G′ is Lϕ-colorable if
Lϕ(w1) 6= Lϕ(vm+2). If Lϕ(vm) = Lϕ(w1) = Lϕ(vm+2), then
we color vm+1 by a color in Lϕ(vm+1) \ Lϕ(w1) and again we
can extend this to an Lϕ-coloring of G′. It follows that G is
L-colorable, which is a contradiction.

Therefore, w1 is not adjacent to vb, and in particular w1 6= w′1
and w′1 ∈ V (G1). Let ϕ be an L-coloring of G1, which exists
by the minimality of G. Since w1 is not adjacent to vb, note
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w1 w2

v1 v2 v3

w′2 w′1

vb+1vb

(b)

w′1 = w2

vm = vb

w′2 = w1

(c)

Figure 8: Subcases when w2 and w′2 are crossing-adjacent

that w1 has at most three neighbors in G1 different from w′2.
Hence, we can additionally choose a color ϕ(w1) for w1 different
from the colors of its neighbors in G1 so that ϕ(w1) 6= ϕ(w′2).
Let G′2 = G2 − w2 + w1w

′
2. Note that G′2 gives an instance of

Theorem 7 with the precolored path P ′ = vmw1w
′
2vb, since the

added edge w1w
′
2 can be drawn without crossings following the

crossed edges of G that are no longer in G′2. It is clear that G′2
satisfies validity and distance constraints. Note that ϕ does not
extend to an L-coloring of G′2. Thus G′2 violates (T) or (O). In
the former case, the vertex violating (T) must be vm+1 and we
would have b = m+ 2. Consequently, vb would have degree at
most three, which is a contradiction. In the latter case, since
|L(vm+1)| = |L(vb−1)| = 3 and vb has degree at least three in
G′2, we have that G′2 is equal to OP5 or OP6. In both cases,
any L-coloring of G1−{vm, vb} would extend to an L-coloring
of G, a contradiction.

• Suppose now that w2 is crossing-adjacent to w′2. Let G1 and G2

be the subgraphs of G intersecting in {vb, w
′
2, w2, vm}, where
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P ⊂ G1 and G1 ∪G2 is equal to G without the crossed edges.
We have two subcases: either b > m or b = m.

– If b > m, then (12) implies that w′2 has no neighbor in X,
and thus w1 6= w′2. Symmetrically, w′1 6= w2. Considering
the drawing of G in the plane, we conclude that the edges
of Gq are w1w

′
2 and w′1w2.

If w1, w
′
1 /∈ V (G1) (see Figure 8(a)), then w1vm, w

′
1vb ∈

E(G). Let ϕ be an L-coloring of G1+{w1w
′
2, w

′
1w2, w1w

′
1}

which exists by the minimality of G, and note that ϕ
does not extend to an L-coloring of G′2 = G2 + w1w

′
1.

Observe that G′2 provides an instance for Theorem 7 with
the precolored path vmw1w

′
1vb. It is easy to see that we

can choose the colors of w1, w′1, vm and vb so that G′2
satisfies the assumptions of the theorem (once the coloring
of G1−{vm, vb} is fixed, we still have two possible choices
for the colors of vm and vb and three possible choices for
the colors of w1 and w′1). This is a contradiction. The
case that w1, w

′
1 ∈ V (G1) (see Figure 8(b)) is excluded

similarly.

– If b = m, then let w2z and w′2z
′ be the edges of Gq (note

that we have w1 = w′2 and w′1 = w2). Suppose that z, z′ ∈
V (G2). Note that V (G2) 6= {z, z′, w2, w

′
2, vm}, since oth-

erwise z would have degree at most four and |L(z)| = 5.
Therefore, the subgraph of G induced by V (G1) ∪ {z, z′}
has an L-coloring ψ by the minimality of G. Let L′ be the
list assignment for G′2 = G2 − {z, z′} obtained from L by
removing the colors of z and z′ according to ψ from the
lists of their neighbors and by setting L′(w2) = {ψ(w2)},
L′(vm) = {ψ(vm)} and L′(w′2) = {ψ(w′2)}. Note that
G′2 satisfies (O) by the distance condition and (P) by the
choice of ψ, and since G is not L-colorable, we conclude
that G′2 violates (T). Therefore, G2 contains a vertex ad-
jacent to w2, w′2, vm, z and z′, and by (4), z and z′ have
degree at most four. This is a contradiction.
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Therefore, we have z, z′ ∈ V (G1) (see Figure 8(c)), and
by (11), deg(vm) = 4. Let S1 = L(v2) if m = 3 and S1 =
L(v1) \ L(p0) if m = 2. Note that S1 ⊂ L(vm), as oth-
erwise we consider the partial coloring ϕ with ϕ(vm−1) ∈
S1 \L(vm) and conclude that Gϕ with the list assignment
Lϕ contradicts the minimality of G. Suppose that there
exists a color c ∈ L(w2) \ L(vm), or that deg(vm−1) = 3
and there exists a color c ∈ L(w2) \ S1, such that this
color c is distinct from the colors of the neighbors of w2

in P . Let G′ = G − {w2, vm} if deg(vm−1) > 3 and
G′ = G − {w2, vm, vm−1} if deg(vm−1) = 3, with the list
assignment L′ obtained from L by removing c from the
lists of neighbors of w2 and setting L′(vm−1) = L(vm−1)
if vm−1 belongs to V (G′) (observe that c 6∈ S1 and that
in any L′-coloring of G′, the color of vm−1 must belong
to S1). Note that L′ is (P,N ∪ {z},M)-valid. Every L′-
coloring of G′ would extend to an L-coloring of G, thus
G′ is not L′-colorable. By the minimality of G, we con-
clude that G′ violates (O), and by (14) and the distance
condition, G′ contains ON2 or ON3. However, then z is
adjacent to two vertices of P and to z′ and w′2, and at
least one of z′ and w′2 has a list of size three according to
L′, which is a contradiction since |L(z′)| = |L(w′2)| = 5.
We conclude that there exists no such color c. Since
|L(vm)| = 4 and |L(w2)| = 5, we conclude that w2 has
a neighbor in P . By (12), w2 is not adjacent to p2, and
if it were adjacent to p0, then we would have m = 2,
deg(v1) = 3 and there would exist a color c ∈ L(w2) \
(S1 ∪ L(p0) ∪ L(p1)). Therefore, w2 is adjacent to p1. By
symmetry, w′2 is adjacent to p1 as well. However, the edges
w2p1 and w′2p1 are not crossed by (8), and thus the cross-
ing is contained inside the 4-cycle vmw2p1w

′
2, contrary to

(5).

We conclude that V (Gq) ∩ V (F ) 6= ∅. By (7), w2 6∈ V (F ). Let
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wb+2

w2

p0 v1 = w1 vb

Figure 9: Subcase combining (A3) and (A5).

w be the vertex joined to w2 by a crossed edge, and let w1w
′ be the

other crossing edge. Since V (Gq)∩X = ∅, by (12) we have w 6∈ V (F ).
Since vm has degree at least four, we cannot have w1 = vm+1, thus
by (7) and (8), we have w1 6∈ V (F ) \ {v1}. If w1 6∈ V (F ) and x ∈ X
is a neighbor of w1, then the 2-chord xw1w

′ separates P from either
w2 or w, and neither w2 nor w belongs to F , contrary to (12). We
conclude that w1 = v1 and V (Gq)∩V (F ) = {v1}, hence v1 6∈ X and
X was chosen according to (X4a).

Since |V (Gq)∩V (F )| = 1, X ′ must satisfy (A3), (A5) or (A6). If
X ′ satisfied (A3), the conclusions of the preceding paragraph would
apply symmetrically and we would have v1 = vb, which is a contra-
diction. Similarly, X ′ cannot satisfy (A6). The remaining possibility
is that (A5) holds for X ′. Then v1 = vb−1 and vb = v2. The situa-
tion is shown in Figure 9. Since X was chosen according to (X4a),
we have |L(vb)| = |L(vb+2)| = 3; in particular, s ≥ 4 and b ≤ s − 2.
This is only possible if X ′ has been chosen according to (X4), but
then |L(vb)| > 3. This is a contradiction, showing that (A3) does
not occur.

Next, we claim that

(18) |V (Gq) ∩ V (F )| = 1.

Proof. Since X does not satisfy (A3), if |V (Gq) ∩ V (F )| 6= 1 then
|V (Gq)∩V (F )| = 2 and each of X and X ′ satisfies (A4) or (A5). By
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(7) and (10), V (Gq) ∩ V (F ) = {vm+1, vm+2} and vm+1 is crossing-
adjacent to vm+2. Let vm+1w and vm+2w

′ be the crossed edges.
By symmetry, we can assume that |L(vm+1)| ≥ |L(vm+2)|. By (C),
either |L(vm+1)| ≥ |L(vm+2)| ≥ 4 or |L(vm+1)| = 5 and |L(vm+2)| =
3. Therefore, X was chosen according to the rules (X1) or (X3) and
|L(vm)| = 3.

If L(vm+2) 6= L(vm+1), then let c be a color in L(vm+1)\L(vm+2).
If vm+1 is not adjacent to vm+2, then let c be an arbitrary color in
L(vm+1). In both cases, let ϕ be an L-coloring of vm and vm+1 such
that ϕ(vm+1) = c and if m = 1, then ϕ(v1) 6∈ L(p0). It is easy to see
that Lϕ is a (P,N ∪{w},M)-valid list assignment for Gϕ. Therefore,
Gϕ violates (O). By (14), Gϕ contains ON2 or ON3. It follows that
w is adjacent to p1 and to p0 or p2. However, if w is adjacent to p0,
then by (12), vm+2 is incident with a chord of F , contradicting (7).
If w is adjacent to p2, then vm+2 has degree at most three in Gϕ by
(12), and since |Lϕ(vm+2)| ≥ 4, Gϕ contains neither ON2 nor ON3.
This is a contradiction, implying that L(vm+1) = L(vm+2) (and in
particular, |L(vm+1)| = |L(vm+2)| = 4), and vm+1vm+2 ∈ E(G). By
the choice of X ′, we have |L(vm+3)| = 3.

Suppose now that w′vm ∈ E(G). Note that vm+1 has degree at
least four, so it is adjacent to w′. Let S1 = L(vm) if m 6= 1 and S1 =
L(vm)\L(p0) if m = 1. Note that S1 ⊆ L(vm+1), as otherwise we can
choose an L-coloring ϕ of vm such that ϕ(vm) ∈ S1 \ L(vm+1), and
G1 = G−{vm, vm+1} with the list assignment Lϕ is a counterexample
contradicting the minimality of G (note that G1 cannot contain an
obstruction since no internal vertex in G1 has its list decreased and
q is not a crossing in G1). Since L(vm+1) = L(vm+2), we conclude
that S1 ⊆ L(vm+2). Let G′ be the graph obtained from G−vm+1 by
identifying vm with vm+2, and give the resulting vertex z the list of
vm. Note that G′ satisfies the validity and the distance conditions of
Theorem 7 (with the edge zvm+3 added to M). Since every coloring
of G′ gives rise to an L-coloring of G, condition (O) is violated in
G′ by the minimality of G. However, G′ contains neither OM1 nor
OM2 (and the exclusion of other obstructions is obvious). Therefore,
w′vm 6∈ E(G), and by symmetry, wvm+3 6∈ E(G).
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Let S2 = L(vm+3) if m + 3 6= s and S2 = L(vm+3) \ L(p2) if
m + 3 = s. Suppose now that there exists an L-coloring ϕ of vm+1

and vm+2 such that ϕ(vm+1) 6∈ S1 and ϕ(vm+2) 6∈ S2. Then Lϕ is
a (P,N, {ww′})-valid list assignment for Gϕ, and by the minimality
of G, Gϕ violates (O). By (14), Gϕ contains OM1 (the other cases
are easily excluded: ON2 and ON3 since no internal vertex gets a
reduced list and OP3 since `(P ) = 2). But then w′ is adjacent to
p0, and the 2-chord p0w

′vm+2 contradicts (12). Therefore, no such
coloring ϕ exists. It follows that |S1| = |S2| = 3 and S1 ⊆ L(vm+1).
Since L(vm+1) = L(vm+2), we also have that S1 = S2. Since |S1| =
|S2| = 3, claim (3)(f) implies that m = 2 and s = 6. Similarly, we
conclude that L(v1) = L(p0) ∪ L(v2) and L(v6) = L(p2) ∪ L(v5), as
otherwise we can color and remove v1 or v6.

Let us now consider the case that v2, v3 and w′ have no common
neighbor. If v1, v2 and v3 have no common neighbor, then let ϕ be
an L-coloring of v2, v3 and v4 such that ϕ(v4) 6∈ L(v5). Otherwise,
let ϕ be an L-coloring of v1, v3 and v4 such that ϕ(v4) 6∈ L(v5) and
ϕ(v1) = ϕ(v3). In the former case, let G′ = Gϕ, in the latter case let
G′ = Gϕ−v2. Observe that Lϕ is a valid list assignment for G′ (after
possibly adding the edge ww′ into M) and that any Lϕ-coloring of
G′ extends to G. Furthermore, G′ satisfies (O) by (14), since w′

cannot be adjacent to p0. Hence, Gϕ contradicts the minimality of
G. Therefore, v2, v3 and w′ have a common neighbor x′, and by
symmetry, v4, v5 and w have a common neighbor x (see Figure 10).

By (12), we have x 6= x′ and x is adjacent neither to p0 nor to p2.
Furthermore, if xp1 ∈ E(G), then consider the cycle K = p1p2v6v5x.
Since v6 has degree at least four, we conclude by (6) that K has two
chords incident with v6. However, that contradicts (7). Therefore,
x (and symmetrically x′) has no neighbor in P . By (12), neither
w nor w′ is adjacent to p0 or p2. Claims (4) and (5) imply that
x′w, xw′, xx′ 6∈ E(G). Since both w and w′ have degree at least 5,
we conclude that each of them has a neighbor that is different from
all vertices shown in Figure 10. Suppose that w′p1 6∈ E(G). Then let
ϕ be an L-coloring of x and w′ such that ϕ(x), ϕ(w′) 6∈ L(v4) (note
that these colors do not belong to the lists of v2, v3 and v5, as well
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x′ x

w′ w

p1

p0 v1 v2 v3 v4 v5 v6 p2

Figure 10: A subcase in the proof when X and X ′ satisfy (A4) or
(A5). The dotted edges may or may not be present.

as to L(v1) \ L(p0) and L(v6) \ L(p2)). Let G′ = G − {x,w′, v3, v4}
if deg(w) > 5 and G′ = G − {x,w′, v3, v4, w} if deg(w) = 5. Note
that G′ is not Lϕ-colorable since any Lϕ-coloring of G′ extends to
G. Furthermore, the only possible vertices with list of size three in
G′ are v2, v5, w and a common neighbor u of x and w′ distinct from
w and v4, if such a vertex exists. By (5), if u exists, then deg(w) = 5
and w 6∈ V (G′). Furthermore, by (5), u and w are not adjacent
to v2 and v5. Therefore, Lϕ is a valid list assignment, the distance
condition implies that G′ satisfies (O), and thus G′ contradicts the
minimality of G.

We conclude that w′p1 ∈ E(G). Let G1 and G2 be the p1w
′v4-

components of G, where G1 contains p0. Consider an L-coloring of
G2. Note that v3 has only two neighbors in G2−w′, thus the coloring
of G2 can be extended to v3 in such a way that its color is different
from the color of w′. Then G1 − v4 + w′v3 (with the precolored
path p0p1w

′v3) violates (O). Observe that only v1 and v2 have list
of size at most four and that x′ is a common neighbor of v3 and w′.
Therefore, x′ is a vertex in the corresponding obstruction K, and v2
is a vertex in K with list of size 3. It follows that K is equal to OP4.
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However, then v1p1 ∈ E(G), contradicting (7).

Therefore, |V (Gq) ∩ V (F )| = 1, and thus each of X and X ′

satisfies (A5) or (A6). Since s ≥ 3, we can assume that X ′ satisfies
(A5). Suppose first that X satisfies (A6), and thus b = 2. Since
v1 6∈ X, the inspection of possible cases for X and X ′ shows that we
have |L(v2)| = 3, X ′ = {v2}, and s = 3. If v1, v2 and v3 have no
common neighbor, then consider any L-coloring ϕ of v1 and v2 such
that ϕ(v1) 6∈ L(p0), and observe that Gϕ with the list assignment
Lϕ is a counterexample contradicting the minimality of G: since
v1, v2, v3 do not have a common neighbor, we do not get adjacent
vertices with lists of size 3; but we may need to add the neighbor z of
v1 along the crossed edge into the set N . The resulting graph satisfies
(O), since z is not adjacent to p0 and p2 by (12) and (8). Hence,
we can assume that v1, v2 and v3 have a common neighbor w, and
thus deg(v2) = 3. Similarly, we conclude that L(v1) = L(p0)∪L(v2)
(if not, we color v1 with a color in L(v1) \ (L(p0) ∪ L(v2)) and then
consider G′ = G− {v1, v2}) and that L(v3) = L(p2) ∪ L(v2) (if not,
we can color v3 by a color in L(v3)\(L(p2)∪L(v2)) and then consider
G′ = G − {v2, v3}). By (5), (8) and (12), w has no neighbor in P .
Let u be the vertex adjacent to w by the crossed edge, let ϕ be an
L-coloring of w such that ϕ(w) 6∈ L(v2) and let G′ = G − {v2, w}
Note that Lϕ is a (P,N∪{u}, ∅)-valid list assignment for G′ and that
G′ satisfies (O), since no vertex has list of size three. Thus, G′ is a
counterexample to Theorem 7 contradicting the minimality of G.

Therefore, both X and X ′ satisfy (A5) and b = m + 2. More-
over, (5) implies that the neighbor w′ of vb in V (Gq) \ {vm+1} is
different from w (the neighbor of vm). Let y be the vertex joined
to vm+1 by a crossed edge. If |L(vm+1)| 6= 3, then both X and
X ′ are chosen by cases (X1) or (X3) and |L(vm)| = |L(vm+2)| = 3.
The condition (A5) implies |L(vm+1)| = 4. However, in that case
we have |L(vm+2)| 6= 3 both in (X1) and (X3), which is a contra-
diction. Therefore, |L(vm+1)| = 3. Consequently, X and X ′ were
chosen by (X2) or (X4) and we have |L(vm)|, |L(vm+2)| ≥ 4 and
|L(vm−1)| = |L(vm+3)| = 3. Since deg(vm) ≥ 4, (12) implies that w
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has no neighbor in F other than p1, vm and vm+1, and by symmetry,
the only possible neighbors of w′ in F are p1, vm+1 and vm+2.

Let S1 = L(vm−1) if m = 3 and S1 = L(vm−1) \ L(p0) if m = 2.
Let S2 = L(vb+1) if b = s− 2 and S2 = L(vb+1) \ L(p2) if b = s− 1.
By symmetry, we can assume that if m = 2, then b = s − 1. Let S
be the set of colors c ∈ L(vm+1) such that either

(a) L(vm+2) = S2 ∪ {c}, or

(b) |L(vm)| = 4, c 6∈ S1 and S1 ∪ {c} ⊆ L(vm).

If m = 2, then we have b = s− 1, |S1| = |S2| = 2, there are at most
two colors with the property (b) and no colors with the property (a).
If m = 3, then |S1| = 3 and |S2| ≤ 3, there is at most one color
with the property (b) and at most one color with the property (a).
It follows that |S| ≤ 2. Let ϕ be an L-coloring of vm−1, vm+1 and
vm+2 chosen so that ϕ(vm+2) 6∈ S2, ϕ(vm+1) 6∈ S, ϕ(vm−1) ∈ S1

and |L(vm) \ {ϕ(vm−1), ϕ(vm+1)}| ≥ 3. Note that the choices for
ϕ(vm+2) and ϕ(vm−1) are possible, since ϕ(vm+1) does not satisfy
(a) and (b), respectively. Consider G′ = G − {vm−1, vm+1, vm+2}
with the list assignment Lϕ. By (12), vm−1 has no common neighbor
with vm+1 and none with vm+2, and the only common neighbor of
vm+1 and vm+2 is w′. Therefore, the only vertices with list of size
three are v1 if m = 3, vm, vm+3 and w′. Since w′ is not adjacent to
vm+3, Lϕ is (P,N ∪{y}, ∅)-valid. Furthermore, y is adjacent neither
to p0 nor to p2 by (12), hence G′ satisfies (O) by (14) and contradicts
the minimality of G. This completes the proof of Theorem 7.

Proof of Theorem 4. Let G be a graph with crossing number at most
two. We may assume that G is nonplanar. Consider a drawing of G
in the plane with one or two crossings and let L be a list assignment
such that each vertex has five admissible colors. Let xy and uv be
two edges crossing each other at the crossing q. Suppose first that
the edges xy and uv do not participate in another crossing. Now
remove the two edges and add the edges xu, uy, yv, and vx (if they
are not already present). This gives rise to a graph G′ with at most
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one crossing, and we can redraw it so that the cycle xuyv bounds the
outer face. Now we ϕ-precolor the path xuy such that ϕ(x) 6= ϕ(y),
and give v the list L(v) \ {ϕ(u)}. Theorem 7 now implies that G′

has a list coloring which in turn shows that G is L-colorable.
If the edge uv participates in another crossing, then xy does not

participate in another one. Suppose that the segment of uv from u to
the crossing q does not contain the other crossing. Then we proceed
similarly as above: we remove the edges xy and uv and add edges
xu and uy. The resulting graph is planar and the path P = xuy
is part of a facial walk. Thus we may ϕ-precolor the path so that
ϕ(x) 6= ϕ(y) and then remove ϕ(u) from the list of v. Now, we apply
Theorem 7 with N = {v} to obtain a coloring that again confirms
that G is L-colorable.
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