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Abstract

In this paper we develop a new geometric method to answer the
log-concavity questions related to a nice class of combinatorial se-
quences arising from the Khayyam-Pascal triangle.

1 Introduction

One of the important task in enumerative combinatorics is to determine
log-concavity of a combinatorial sequence.

Definition 1.1. A sequence ag,aq,...,a, of real numbers is said to be
concave if % < a; for all 1 <i<n—1, and logarithmically concave
(or log-concave for short) if a;—1a;41 < a? forall1<i<n-—1.

Definition 1.2. The sequence ag, a1, ..., ay is called symmetricif a; = an,_;
for 0 <i<n.

Definition 1.3. We say that a polynomial ag+a1qg+- - -+a,q™ has a certain
property (such as log-Concave or symmetric) if its sequence ag, a1, ..., ay,
of coefficients has the property.

There are many ways to prove the log-concavity of a combinatorial se-
quence. One of the classic method of proof is direct combinatorial approach,
which is of significant interest for combinatorial people.
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Example 1.1. The best-known log-concave sequence is the n-th row of
Khayyam-Pascal’s triangle:

(©): (D), () G-

Here, the log-concavity is easy to show directly because of the explicit
formula (2) = ﬁlk), Indeed,

(1)’ ket —k+1) -

(1@:11) (1911) k(n — k)

which is equivalent to n > —1 (orn > 0), as required.

Example 1.2. For the sequence of the n-th diagonal of the Khayyam-Pascal
triangle:

(6), ("7 ("3%) s (05

again, we have

(F) (i)
(T e

> 1,

which is equivalent to n > 0.

In spite of the geometric idea behind the definition of the log-concavity
of a sequence, there is no geometric approach to tackle this issue. In this
paper, we develop a new geometric method to answer the log-concavity
questions related to a nice class of combinatorial sequences arising from the
Khayyam-Pascal triangle.

2 Khayyam-Pascal Array and Parallelepiped
Determinantal Identities

Consider a 45° rotation of the Khayyam-Pascal triangle which we call it
Khayyam-Pascal squared array [1]. Now, we construct a parallelepiped with
two triangles as its bases which is shown with six entries of this array and
the corresponding edges in Fig 1.
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Fig 1. A Determinantal Parallelepiped

Then, we have the following determinantal identities which are the direct
consequence of the recurrence relation for the Khayyam-Pascal array. For a
generalization to higher dimensions and other possible proofs see the paper
[2].

Proposition 2.1. (Parallelepiped Determinantal Identities)
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In other words, the determinants formed by three faces of the parallelepiped
wvwu'v'w’ in Fig 1 are equal.



Proof. By the rule of Khayyam-Pascal array, we have

U=v+w
uw =0 4.

Now, multiplying the above equalities by v and v’, respectively, we get

wv' = vv’ + wv’
uw'v = vv +w'.

Subtracting the above equalities, we obtain
w’ — u'v = wv’ — w'v,

or equivalently

which is the first determinantal identity. The second one can be proved in
a similar way and left to the reader as a simple exercise. O

Proposition 2.2. Every diagonal of the Khayyam-Pascal triangle is log-
concave.

Proof. First of all note that the diagonals of the Khayyam-Pascal triangle
correspond to the columns (rows) of the Khayyam-Pascal squared array.
Now, we use the previous determinantal identities in their special cases
to give a new geometric proof of the log-concavity of the diagonals of the
Khayyam-Pascal triangle. To this end, consider three consecutive terms
aj—1,0k, Gk+1 in any arbitrary column of the Khayyam-Pascal squared ar-
ray, as shown in Fig 2. We consider a parallelepiped in its special case where
two antipodal vertices (u and w’ in Fig 1) coincide. Here, those vertices cor-
respond to two equal entries ax. By Proposition 2.1, we have

af Q41

agr—1  ag bry1 Grt1

_‘ by, ay

But, we already know that the 2-by-2 determinant in the right-hand side of
the above identity is a Narayana number [4]. Therefore, we obtain



ag Q41 >0,
ak—1 ag
and this completes the proof. O
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Fig 2. Log-Concavity of Diagonals of the Khayyam-Pascal Triangle Array.



Next we prove the log-concavity of the rows of the Khayyam-Pascal
triangle, using the same technique.

Proposition 2.3. Every row of the Khayyam-Pascal triangle is log-concave.

Proof. We note that the rows of the Khayyam-Pascal triangle correspond
to the diagonals of the the Khayyam-Pascal squared array. Consider an
special parallelepiped vuwv'u’'v, as shown in Fig 3.

Fig 3. Log-Concavity of Rows of Khayyam-Pascal Triangle Array.

Then, we have
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But, again the last determinant in the above equality is the Narayana num-
ber and a non-negative integer. This completes the proof. O

Definition 2.1. We call an array a row log-concave (diagonal log-concave)
array, if every row (diagonal) of this array is log-concave.

As in the paper of Peter R.W. McNamara and Bruce E. Sagan [3] for ev-

Qj, 5 A, 541
Ai+1,5 Git1,5+1
its adjacent minors. From the proofs of the two previous propositions, we
get the following interesting result.

ery array A = (a;;); j>0, we will call the determinants

Corollary 2.4. FEvery diagonal log-concave array with non-negative adja-
cent minors, is also a row log-concave array.

3 Khayyam-Pascal Determinantal Arrays

In this section, we introduce an infinite class of arrays of numbers as a gen-
eralization of the standard Khayyam-Pascal squared array. We will denote
the entries of the the Khayyam-Pascal squared array by P; ; = Pi(;-) = (H;] ),
1,7 > 0. Our main goal here is to prove that the members of this new class

of arrays are diagonal and row log-concave, again using geometric ideas.

Definition 3.1. A Khayyam-Pascal determinantal array of order k, k > 1,
is an infinite array with entries Pfj, (i, > 0), where Pfj is the determinant
of a k-by-k subarray of the Khayyam-Pascal squared array. Namely,
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Example 3.1. A Khayyam-Pascal determinantal array of order 2 has shown
in Fig 4. This is a well-known array which is the squared-form of the so-
called Narayana triangular array (see A001263 in [4]).

1 6 20 50 105 196 336

1 10 50 175 490 1176 2520

1 15 105 490 1764 5292 13860

1 21 196 1176 5292 19404 60984

1 28 336 2520 13860 60984 226512

Fig 4. Khayyam-Pascal Determinantal Array of Order 2.

In [5], the authors have shown that if we define the weight of any arbitrary
rectangle whose vertices are the entries of the Khayyam-Pascal determinan-
tal array of order k as shown in Fig 5, by
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Fig 5. Weighted Version of Star of David.

then when we move the anchor, the circled-vertex, along the diagonal of
the Khayyam-Pascal determinantal array (indicated by the arrow d in Fig
5), the weights remain unchanged. They called this property the weighted-
version of the Star of David Rule. As they have shown in another paper [6],
the weighted-version of the Star of David Rule can also be used to prove
the following interesting property of this new class of arrays.

Proposition 3.1. In any Khayyam-Pascal determinantal array, the ratio
of any pair of r-by-r minors along any arbitrary diagonal x +y = d of the
array is the same as the ratio of the product of the entries appearing in their
back diagonals parallel to d (see Fig 6). In other words, we have
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Fig 6. Ratio of Determinants in Khayyam-Pascal Determinantal array

The following lemma is the key in the proof of diagonal log-concavity of the
Khayyam-Pascal determinantal Arrays.

Lemma 3.2. For every integer n > 1, the log-concave sequence {a;}i>1
satisfies the following inequality

Proof. We use induction on n. The basis case, n = 1, is just the definition of
the log-concavity of the sequence {a;};>1. Now, let us assume by induction

a20n41
a10n42

> 1.

A\ 4

hypothesis that the assertion is true for n — 1. Hence, we have

1<

Ap+10n+2 _ a20n41 anan+2)

10

an+1an+2

a10n42

2
n+1



Thus, we get
2
a28n41 Ap41 > 1
alan+l - anan+2 -

The later inequality holds because of the definition of the log concavity of
the sequence {a;};>1. This completes the proof by induction. O

Now, we are at the position to state our main result of this section.

Theorem 3.3. For every integer k > 1, the Khayyam-Pascal determinantal
array of order k is diagonal log-concave.

Proof. Assume that «, 3, 0, v are four entries of the Khayyam-Pascal de-
terminantal array of order k such that 3, 0, v are three consecutive diagonal
entries, as shown in Fig 7.

A\ 4
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Fig7. Four Entries of A diagonal of Khayyam-Pascal Determinantal Array

Clearly the back diagonal entries of these four entries of the Khayyam-Pascal
determinantal array of order k, as the four k-by-k minors of the Khayyam-
Pascal squared array, lie in some diagonal of the Khayyam-Pascal squared
array. For simplicity of arguments, we will show their entries from south-
west to north-east by 31, Bo, ..., Bk, 01, 02, ..., Ok, 71, V2, - -, Tk and aq,
g, ..., o, respectively. It is not hard to see that we have the following
relations among their entries:

B =01,83=02,...,0 = 0Ok_1,
01 =71,03="72,...,0 = Vp_1.

To prove the log-concavity, it suffices to show that #2 — 3y > 0. But, using
the determinants ratio Proposition 3.1 and the above relations, we have

0% — By
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Therefore we need to prove that Bave—s > 1, which is nothing more than
the inequality of the key lemma, Lemma 3.2, by renaming technique. O

Next, we prove the row log-concavity of the Khayyam-Pascal determi-
nantal array.

Theorem 3.4. For every integer k > 1, the Khayyam Pascal determinantal
array of order k is a row log-concave array.

Proof. Using Corollary 2.4, it is only suffices to prove that every adjacent
minor of the Khayyam-Pascal determinantal array of order k is nonnega-
tive. Now by the Proposition 3.1 about the ratio of determinants along the
diagonal = + y = d, we get
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which is clearly a positive integer. Thus, to prove that the adjacent minor

pr pk
P&éﬁ P(}c’)] +1 is a nonnegative integer, we only need to show that
it1,5  Titl,j+1
1 PR
) P(’;”’l is positive for every i,7 > 0, which is equivalent to show
i+j+1,1

that the first column, starting form 0, of the Khayyam-Pascal determinantal
array of order k is an increasing sequence. It is not hard to see that this
first column is indeed the kth column of the Khayyam-Pascal squared array
[1]. Finally we need to show that for every ! > 0, we have

()
((l—1)+k) > 1,
k
which is equivalent to inequality k£ > 0 or & > 1, as required. O
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