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Abstract

In this paper we develop a new geometric method to answer the
log-concavity questions related to a nice class of combinatorial se-
quences arising from the Khayyam-Pascal triangle.

1 Introduction

One of the important task in enumerative combinatorics is to determine
log-concavity of a combinatorial sequence.

Definition 1.1. A sequence a0, a1, . . . , an of real numbers is said to be
concave if ai−1+ai+1

2 ≤ ai for all 1 ≤ i ≤ n− 1, and logarithmically concave
(or log-concave for short) if ai−1ai+1 ≤ a2

i for all 1 ≤ i ≤ n− 1.

Definition 1.2. The sequence a0, a1, . . . , an is called symmetric if ai = an−i
for 0 ≤ i ≤ n.

Definition 1.3. We say that a polynomial a0+a1q+· · ·+anqn has a certain
property (such as log-Concave or symmetric) if its sequence a0, a1, . . . , an
of coefficients has the property.

There are many ways to prove the log-concavity of a combinatorial se-
quence. One of the classic method of proof is direct combinatorial approach,
which is of significant interest for combinatorial people.
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Example 1.1. The best-known log-concave sequence is the n-th row of
Khayyam-Pascal’s triangle:

(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
.

Here, the log-concavity is easy to show directly because of the explicit
formula

(
n
k

)
= n!

k!(n−k)! . Indeed,(
n
k

)2(
n
k−1

)(
n
k+1

) =
(k + 1)(n− k + 1)

k(n− k)
> 1,

which is equivalent to n > −1 (or n ≥ 0), as required.

Example 1.2. For the sequence of the n-th diagonal of the Khayyam-Pascal
triangle: (

n
0

)
,
(
n+1

1

)
,
(
n+2

2

)
, . . . ,

(
n+k
k

)
, . . .,

again, we have

(n+i
i )2

(n+i−1
i−1 )(n+i+1

i+1 ) = (n+i)(i+1)
i(n+i+1) > 1,

which is equivalent to n > 0.

In spite of the geometric idea behind the definition of the log-concavity
of a sequence, there is no geometric approach to tackle this issue. In this
paper, we develop a new geometric method to answer the log-concavity
questions related to a nice class of combinatorial sequences arising from the
Khayyam-Pascal triangle.

2 Khayyam-Pascal Array and Parallelepiped
Determinantal Identities

Consider a 45 ◦ rotation of the Khayyam-Pascal triangle which we call it
Khayyam-Pascal squared array [1]. Now, we construct a parallelepiped with
two triangles as its bases which is shown with six entries of this array and
the corresponding edges in Fig 1.
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Fig 1. A Determinantal Parallelepiped

Then, we have the following determinantal identities which are the direct
consequence of the recurrence relation for the Khayyam-Pascal array. For a
generalization to higher dimensions and other possible proofs see the paper
[2].

Proposition 2.1. (Parallelepiped Determinantal Identities)

i)
∣∣∣∣ u v
u′ v′

∣∣∣∣ =
∣∣∣∣ w v
w′ v′

∣∣∣∣ ,
ii)

∣∣∣∣ w v
w′ v′

∣∣∣∣ =
∣∣∣∣ w u
w′ u′

∣∣∣∣ .
In other words, the determinants formed by three faces of the parallelepiped
uvwu′v′w′ in Fig 1 are equal.
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Proof. By the rule of Khayyam-Pascal array, we have

u = v + w
u′ = v′ + w′.

Now, multiplying the above equalities by v and v′, respectively, we get

uv′ = vv′ + wv′

u′v = vv′ + w′v.

Subtracting the above equalities, we obtain

uv′ − u′v = wv′ − w′v,

or equivalently

∣∣∣∣ u v
u′ v′

∣∣∣∣ =
∣∣∣∣ w v
w′ v′

∣∣∣∣ ,
which is the first determinantal identity. The second one can be proved in
a similar way and left to the reader as a simple exercise.

Proposition 2.2. Every diagonal of the Khayyam-Pascal triangle is log-
concave.

Proof. First of all note that the diagonals of the Khayyam-Pascal triangle
correspond to the columns (rows) of the Khayyam-Pascal squared array.
Now, we use the previous determinantal identities in their special cases
to give a new geometric proof of the log-concavity of the diagonals of the
Khayyam-Pascal triangle. To this end, consider three consecutive terms
ak−1, ak, ak+1 in any arbitrary column of the Khayyam-Pascal squared ar-
ray, as shown in Fig 2. We consider a parallelepiped in its special case where
two antipodal vertices (u and w′ in Fig 1) coincide. Here, those vertices cor-
respond to two equal entries ak. By Proposition 2.1, we have

∣∣∣∣ ak ak+1

ak−1 ak

∣∣∣∣ =
∣∣∣∣ bk ak
bk+1 ak+1

∣∣∣∣ .
But, we already know that the 2-by-2 determinant in the right-hand side of
the above identity is a Narayana number [4]. Therefore, we obtain
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∣∣∣∣ ak ak+1

ak−1 ak

∣∣∣∣ ≥ 0,

and this completes the proof.

 

ka 1−

kakb

1+kb 1+ka

Fig 2. Log-Concavity of Diagonals of the Khayyam-Pascal Triangle Array.
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Next we prove the log-concavity of the rows of the Khayyam-Pascal
triangle, using the same technique.

Proposition 2.3. Every row of the Khayyam-Pascal triangle is log-concave.

Proof. We note that the rows of the Khayyam-Pascal triangle correspond
to the diagonals of the the Khayyam-Pascal squared array. Consider an
special parallelepiped vuwv′u′v, as shown in Fig 3.

 

w

wv ′= u

u ′′u′v′

Fig 3. Log-Concavity of Rows of Khayyam-Pascal Triangle Array.

Then, we have
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∣∣∣∣ v w
v′ v

∣∣∣∣ =
∣∣∣∣ w′ w
u′ u

∣∣∣∣ .
On the other hand, from the parallelepiped w′uwu′u′′u we get∣∣∣∣ w′ w

u′ u

∣∣∣∣ =
∣∣∣∣ w′ u
u′ u′′

∣∣∣∣ .
Therefore, we conclude that

v2 − wv′ =
∣∣∣∣ w′ u
u′ u′′

∣∣∣∣ .
But, again the last determinant in the above equality is the Narayana num-
ber and a non-negative integer. This completes the proof.

Definition 2.1. We call an array a row log-concave (diagonal log-concave)
array, if every row (diagonal) of this array is log-concave.

As in the paper of Peter R.W. McNamara and Bruce E. Sagan [3] for ev-

ery array A = (aij)i,j≥0, we will call the determinants
∣∣∣∣ ai,j ai,j+1

ai+1,j ai+1,j+1

∣∣∣∣,
its adjacent minors. From the proofs of the two previous propositions, we
get the following interesting result.

Corollary 2.4. Every diagonal log-concave array with non-negative adja-
cent minors, is also a row log-concave array.

3 Khayyam-Pascal Determinantal Arrays

In this section, we introduce an infinite class of arrays of numbers as a gen-
eralization of the standard Khayyam-Pascal squared array. We will denote
the entries of the the Khayyam-Pascal squared array by Pi,j = P

(1)
i,j =

(
i+j
i

)
,

i, j ≥ 0. Our main goal here is to prove that the members of this new class
of arrays are diagonal and row log-concave, again using geometric ideas.

Definition 3.1. A Khayyam-Pascal determinantal array of order k, k ≥ 1,
is an infinite array with entries P ki,j , (i, j ≥ 0), where P ki,j is the determinant
of a k-by-k subarray of the Khayyam-Pascal squared array. Namely,
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P
(k)
i,j :=

∣∣∣∣∣∣∣
Pi,j . . . Pi,j+k−1

...
. . .

...
Pi+k−1,j . . . Pi+k−1,j+k−1

∣∣∣∣∣∣∣ .
Example 3.1. A Khayyam-Pascal determinantal array of order 2 has shown
in Fig 4. This is a well-known array which is the squared-form of the so-
called Narayana triangular array (see A001263 in [4]).

 
    1 
 

1 1 1 1 1 1 

    1 
 

3 6 10 15 21 28 

    1 
 

6 20 50 105 196 336 

    1 
 

10 50 175 490 1176 2520 

    1 
 

15 105 490 1764 5292 13860 

    1 
 

21 196 1176 5292 19404 60984 

    1 
 

28 336 2520 13860 60984 226512 

 
 
 Fig 4. Khayyam-Pascal Determinantal Array of Order 2.

In [5], the authors have shown that if we define the weight of any arbitrary
rectangle whose vertices are the entries of the Khayyam-Pascal determinan-
tal array of order k as shown in Fig 5, by
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W := Pk
i+m,j+l.P

k
i,j

Pk
i+m,j .P

k
i,j+l

,

d

����
��

��
��

'&%$ !"#• lP
(k)
i,j P

(k)
i,j+l•

•
P

(k)
i+m,j P

(k)
i+m,j+l

m

•

Fig 5. Weighted Version of Star of David.

then when we move the anchor, the circled-vertex, along the diagonal of
the Khayyam-Pascal determinantal array (indicated by the arrow d in Fig
5), the weights remain unchanged. They called this property the weighted-
version of the Star of David Rule. As they have shown in another paper [6],
the weighted-version of the Star of David Rule can also be used to prove
the following interesting property of this new class of arrays.

Proposition 3.1. In any Khayyam-Pascal determinantal array, the ratio
of any pair of r-by-r minors along any arbitrary diagonal x + y = d of the
array is the same as the ratio of the product of the entries appearing in their
back diagonals parallel to d (see Fig 6). In other words, we have˛̨̨̨

˛̨̨̨
˛̨̨

P
(k)
i,j . . . P

(k)
i,j+r−1

...
. . .

...
P

(k)
i+r−1,j . . . P

(k)
i+r−1,j+r−1

˛̨̨̨
˛̨̨̨
˛̨̨

˛̨̨̨
˛̨̨̨
˛̨̨

P
(k)
i′,j′ . . . P

(k)
i′,j′+r−1

...
. . .

...
P

(k)
i′+r−1,j′ . . . P

(k)
i′+r−1,j′+r−1

˛̨̨̨
˛̨̨̨
˛̨̨

=
P

(k)
i,j+r−1...P

(k)
i,j+r−1

P
(k)
i′,j′+r−1

...P
(k)
i′,j′+r−1
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Fig 6. Ratio of Determinants in Khayyam-Pascal Determinantal array

The following lemma is the key in the proof of diagonal log-concavity of the
Khayyam-Pascal determinantal Arrays.

Lemma 3.2. For every integer n ≥ 1, the log-concave sequence {ai}i≥1

satisfies the following inequality
a2an+1

a1an+2
≥ 1.

Proof. We use induction on n. The basis case, n = 1, is just the definition of
the log-concavity of the sequence {ai}i≥1. Now, let us assume by induction
hypothesis that the assertion is true for n− 1. Hence, we have

1 ≤ a2an
a1an+1

= (
a2an
a1an+1

)(
an+1an+2

an+1an+2
) = (

a2an+1

a1an+2
)(
anan+2

a2
n+1

).
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Thus, we get
a2an+1

a1an+1
≥

a2
n+1

anan+2
≥ 1.

The later inequality holds because of the definition of the log concavity of
the sequence {ai}i≥1. This completes the proof by induction.

Now, we are at the position to state our main result of this section.

Theorem 3.3. For every integer k ≥ 1, the Khayyam-Pascal determinantal
array of order k is diagonal log-concave.

Proof. Assume that α, β, θ, γ are four entries of the Khayyam-Pascal de-
terminantal array of order k such that β, θ, γ are three consecutive diagonal
entries, as shown in Fig 7.

α

kγ

θ

β
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Fig7. Four Entries of A diagonal of Khayyam-Pascal Determinantal Array

Clearly the back diagonal entries of these four entries of the Khayyam-Pascal
determinantal array of order k, as the four k-by-k minors of the Khayyam-
Pascal squared array, lie in some diagonal of the Khayyam-Pascal squared
array. For simplicity of arguments, we will show their entries from south-
west to north-east by β1, β2, . . ., βk, θ1, θ2, . . ., θk, γ1, γ2, . . ., γk and α1,
α2, . . ., αk, respectively. It is not hard to see that we have the following
relations among their entries:

β2 = θ1, β3 = θ2, . . . , βk = θk−1,

θ1 = γ1, θ3 = γ2, . . . , θk = γk−1.

To prove the log-concavity, it suffices to show that θ2 − βγ ≥ 0. But, using
the determinants ratio Proposition 3.1 and the above relations, we have

θ2 − βγ

=
(

α

α1 · · ·αk−1αk

)2 [
(θ1 · · · θk−1θk)2 − (β1 · · ·βk−1βk)(γ1 · · · γk−1γk)

]
,

=
(

α

α1 · · ·αk−1αk

)2 [
(β2β

2
3 · · ·β2

kγk−1)(β2γk−1 − β1γk
]
.

Therefore we need to prove that β2γk−1
β1γk

≥ 1, which is nothing more than
the inequality of the key lemma, Lemma 3.2, by renaming technique.

Next, we prove the row log-concavity of the Khayyam-Pascal determi-
nantal array.

Theorem 3.4. For every integer k ≥ 1, the Khayyam Pascal determinantal
array of order k is a row log-concave array.

Proof. Using Corollary 2.4, it is only suffices to prove that every adjacent
minor of the Khayyam-Pascal determinantal array of order k is nonnega-
tive. Now by the Proposition 3.1 about the ratio of determinants along the
diagonal x+ y = d, we get∣∣∣∣∣ P

(k)
i,j P

(k)
i,j+1

P
(k)
i+1,j P

(k)
i+1,j+1

∣∣∣∣∣∣∣∣∣∣ 1 P
(k)
i+j,1

1 P
(k)
i+j+1,1

∣∣∣∣∣
=
P

(k)
i+1,jP

(k)
i,j+1

P
(k)
i+j,1

,
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which is clearly a positive integer. Thus, to prove that the adjacent minor∣∣∣∣∣ P
(k)
i,j P

(k)
i,j+1

P
(k)
i+1,j P

(k)
i+1,j+1

∣∣∣∣∣ is a nonnegative integer, we only need to show that∣∣∣∣∣ 1 P
(k)
i+j,1

1 P
(k)
i+j+1,1

∣∣∣∣∣ is positive for every i, j ≥ 0, which is equivalent to show

that the first column, starting form 0, of the Khayyam-Pascal determinantal
array of order k is an increasing sequence. It is not hard to see that this
first column is indeed the kth column of the Khayyam-Pascal squared array
[1]. Finally we need to show that for every l ≥ 0, we have(

l+k
k

)(
(l−1)+k

k

) > 1,

which is equivalent to inequality k > 0 or k ≥ 1, as required.
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