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Abstract

A set A of vertices of a graph G is called d-scattered in G if no two
d-neighborhoods of (distinct) vertices of A intersect. In other words,
A is d-scattered if no two distinct vertices of A have distance at most
2d. This notion was isolated in the context of finite model theory by
Gurevich and recently it played a prominent role in the study of ho-
momorphism preservation theorems for special classes of structures
(such as minor closed families). This in turn led to the notions of
wide, semiwide and quasi-wide classes of graphs. It has been proved
previously that minor closed classes and classes of graphs with locally
forbidden minors are examples of such classes and thus (relativised)
homomorphism preservation theorem holds for them. In this paper
we show that (more general) classes with bounded expansion and
(newly defined) classes with bounded local expansion and even (very
general) classes of nowhere dense graphs are quasi wide. This not
only strictly generalizes the previous results and solves several open
problems but it also provides new proofs. It appears that bounded
expansion and nowhere dense classes are perhaps a proper setting for
investigation of wide-type classes as in several instances we obtain
a structural characterization. This also puts classes of bounded ex-
pansion in the new context and we are able to prove a trichotomy
result which separates classes of graphs which are dense (somewhere
dense), nowhere dense and finite. Our motivation stems from finite
dualities. As a corollary we obtain that any homomorphism closed
first order definable property restricted to a bounded expansion class
is a duality.
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1 Introduction

For a (finite or infinite) family F of graphs we denote by Forbm(F) the
class of all finite graphs G not containing any F ∈ F as a subgraph.
By a subgraph we mean here not necessarily induced subgraph (and ”m”
in Forbm(F) stands for monomorphism). In this paper we study mainly
asymptotic properties of such classes which are defined by means of edge
densities. In order to digest this we list some examples:

• Forbm(K2) is the class of all discrete graphs;

• Forbm(Pk) is the class of graphs with a bounded tree depth ([NOdM06b];
see Section 3);

• Forbm(S1,k) is the class of all graphs with all degrees bounded by k;

• Forbm(T ) for any given tree T is a class of graphs with bounded
degeneracy (or bounded maximal average degree; this will be denoted
below as ∇0).

On the other side of our spectrum is the class Forbm(C` : ` ≤ g) of all
graphs with girth > g. This class it is right to consider as a class of random
- like graphs. In the next sextion we shall define the notions of shallow
minor and topological minor and this will lead to much more general classes
of type Forbm(F) which are called bounded expansion classes, bounded local
expansion classes and finally here newly defined classes of nowhere dense
graphs. For all these classes we shall be able to prove characterizations and
structural theorems.

Classes of nowhere dense structures are defined in this paper (in Section
2.4) and they have several interesting (and we believe surprising) properties
and equivalent formulations, see Theorem 4.1. This not only relates classes
of nowhere dense structures to characterizations of classes with bounded
expansion but also alternatively defines them as classes of structures where
all shallow minors have edge density n1+o(1). The interplay between dense
classes (more precisely the classes of nsomewhere dense graphs) and classes
of nowhere dense graphs is very interesting and it is expressed by the tri-
chotomy Theorem 3.2.

Despite the generality of these classes we can deduce from the results of
[NOdM08a] and [NOdM08b] several algorithmic consequences. For example
any first-order sentence preserved under homomorphisms on a class C of

2



structures may be decided in time O(n) if C has bounded expansion and in
time n1+o(1) if C is a class of nowhere dense structures.

These classes strictly contain all previously studied -in this context-
classes of structures such as classes with bounded local tree width, locally ex-
cluded minors, etc, see [Cou90][KS99][ADK04][ADG05][ADK06] [DGK07];
see Fig 4 for the schema of inclusion of these classes. Yet we can prove
for all these new classes that the relativized homomorphism preservation
theorem holds even for them. Perhaps this also provides a proper setting
for questions related to scattered sets in graphs. This leads to notions wide,
semi-wide and quasi-wide classes and we obtain characterization theorems
for these classes. This is mentioned in the last section devoted to applica-
tions.

In Section 3 we prove Theorem 4.1 which should be seen as the main
result of this paper. It not only characterizes classes of nowhere dense
graphs (and structures) but it also explains the pleasing interplay of various
invariants defined for bounded expansion classes. This has several conse-
quences for First Order definable classes, for dualities but also algorithmic
consequences. Some of this is listed in the Section 4 devoted to applications.

2 Definitions

For graphs and, more generally, relational structures, we use standard no-
tation and terminology. In this Section we give the key definitions of this
paper.

2.1 Distances, Shallow Minors and Grads

The distance in a graph G between two vertices x and y is the minimum
length of a path linking x and y (or ∞ if x and y do not belong to the same
connected component of G) and is denoted by distG(x, y). Let G = (V,E)
be a graph and let d be an integer. The d-neighborhood NG

d (u) of a vertex
u ∈ V is the subset of vertices of G at distance at most d from u in G:
NG

d (u) = {v ∈ V : distG(u, v) ≤ d}.
For a graph G = (V,E), we denote by |G| the order of G (that is: |V |)

and by ‖G‖ the size of G (that is: |E|).
For any graphs H and G and any integer d, the graph H is said to be a

shallow minor of G at depth d ([PRS94]) if there exists a subset {x1, . . . , xp}
of G and a collection of disjoint subsets V1 ⊆ NG

d (x1), . . . , Vp ⊆ NG
d (xp) such
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≤ r

Figure 1: A shallow minor of depth r of a graph G is a simple subgraph of a
minor of G obtained by contracting vertex disjoints subgraphs with radius
at most r

that H is a subgraph of the graph obtained from G by contracting each Vi

into xi and removing multiple edges (see Fig. 1). The set of all shallow
minors of G at depth d is denoted by G O i. In particular, G O 0 is the set
of all subgraphs of G.

The greatest reduced average density (shortly grad) with rank r of a graph
G [NOdM08a] is defined by formula

∇r(G) = max
{
‖H‖
|H|

: H ∈ G O r

}
(1)

By extension, for a class of graphs C, we denote by C O i the set of all
shallow minors at depth i of graphs of C, that is:

C O i =
⋃

G∈C
(G O i)

Hence we have
C ⊆ C O 0 ⊆ C O 1 ⊆ · · · ⊆ C O i ⊆ . . .

Also, for a class C of graphs we define the expansion of the class C as:

∇i(C) = sup
G∈C

∇i(G)

Notice that ∇i(C) = ∇0(C O i).
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These definitions may be carried over for any graph invariant. Ex-
plicitely, let us define

ωi(C) = sup
G∈C O i

ω(G) = ω(C O i).

As we shall see (and a bit surprisingly) this parameter characterizes
classes of nowhere dense graphs.

2.2 Shallow Topological Minors and Top-grads

length ≤ 2r + 1

Figure 2: A shallow topological minor of depth r of a graph G is a simple
subgraph of a minor of G obtained by contracting internaly vertex disjoint
paths of length at most 2r + 1

For any (simple) graphs H and G and any integer d, the graph H is said
to be a shallow topological minor of G at depth d if there exists a subset
{x1, . . . , xp} of G and a collection of internaly vertex disjoint paths P1 . . . Pq

each of length at most 2d + 1 of G with endpoints in {x1, . . . , xp} whose
contraction into single edges define on {x1, . . . , xp} a graph isomorphic to
H (see Fig. 2).

The set of all the shallow topological minors of G at depth d is denoted
by G Õ d. In particular, G Õ 0 is the set of all the subgraphs of G. Notice
that for every graph G and every integer i we clearly have (G Õ i) ⊆ (G O i).

The topological greatest reduced average density (top-grad) with rank r
of a graph G is:

∇̃r(G) = max
{
‖H‖
|H|

: H ∈ G Õ r

}
(2)
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By extension, for a class of graphs C, we denote by C Õ i the set of all
shallow topological minors at depth i of graphs of C, that is:

C Õ i =
⋃

G∈C
(G Õ i)

Hence we have
C ⊆ C Õ 0 ⊆ C Õ 1 ⊆ · · · ⊆ C Õ i ⊆ . . .

For a class C of graphs we define the topological expansion of C as:

∇̃i(C) = sup
G∈C

∇̃i(G)

Notice that ∇̃i(C) = ∇̃0(C Õ i).
The top-grads and the grads have been related by Z. Dvořák:

Theorem 2.1 ([Dvo07]). For every integer r and every graph G:

1
4

(
∇r(G)

4

) 1
(r+1)2

≤ ∇̃r(G) ≤ ∇r(G)

2.3 Cliques Minors and Topological Cliques

We prove here that the clique size of shallow minors and the clique size of
topological shallow minors are strongly related. Precisely, for any graph
G and any integer r, ω(G O r) lies between ω(G Õ r) and Pr(ω(G Õ g(r)))
where Pr is a polynomial and g(r) is an exponentialy growing function.

In order to prove this result, we will need the following slight modifica-
tion of the Lemma 9.8 of [NOdM06a].

Lemma 2.2. Let G be a graph and let H ∈ G O 1. Assume Kp′ ∈ H Õ k.
Then Kp ∈ G Õ (9k + 10) if p′ ≥ 2p2 − 6p + 8.

Proof. If p = 1, 2 or 3 the result is obvious as p′ ≥ p and G will obviously
include a vertex, an edge or a cycle of length at most 9k + 9 (respectively).
Thus we may assume p ≥ 4 hence p′− p(p− 1) ≥ max(p, (p− 2)(p− 3)+2).

By considering a subgraph of G if necessary, we may assume that V (G)
is partitioned into A1, . . . , Ai, . . . , Ap′ , L1,1, . . . , Li,j , . . . , Lp′,p′ where:

• for 1 ≤ i ≤ p′, G[Ai] is a star (possibly reduced to a single vertex or
a single edge);
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• for 1 ≤ i < j ≤ p′, there exists vi,j ∈ Ai and vj,i ∈ Aj such that
G[Li,j ∪ {vi,j , vj,i}] is a path of length at most 3k + 3 with endpoint
vi,j and vj,i.

For sake of simplicity, we define Lj,i = Li,j and Li,i = ∅. For a subset Y of
{1, . . . , p} we also define GY has the subgraph of G induced by

⋃
i∈Y Ai ∪⋃

i,j∈Y Li,j .
We first claim the following result: Let N be a positive integer and let X

be a subset of {1, . . . , p′} of cardinality at least max(N, (N −2)(N −3)+2).
Then there exists a subset X ′ = {ka,1, . . . , ka,N} of X of cardinality (N−1)
such that there exists in GX′ a spider (that is: a subdivision of a star)
with center ra ∈ Aka,a

and leaves la,1, . . . , la,a−1, la,a+1, . . . , la,N with la,i ∈
La,ka,i , such that the length of the paths from the center to the leaves is
at most 3k + 4 (see Fig 3). This claim is easily proved as follows: Assume
no vertex of Aka,a

has degree at least (N − 1) in GX . Then |X| − 1 ≤
(N − 2)(N − 3), a contradiction. Choose for ra any vertex of Aka,a

with
degree at least (N −1) in GX . Then there exists in GX a spider with center
ra and at least (N − 1) leaves belonging to different Aka,i linked to ra by
paths of length at most 3k + 4.

Assume p′ − N(N − 1) ≥ (N − 2)(N − 3) + 2, i.e. p′ ≥ 2N2 − 6N +
8. Using the previous claim, we inductively define Z1, . . . , ZN with Zi =
{ki,1, . . . , ki,N} such that GZi

contains a spider with center ri ∈ Aki,i
and

leaves li,j ∈ Aki,j connected by paths of length at most 3k +4: to construct
Zi, we consider X = {1, . . . , p′}\

⋃
1≤j<i Zj . Then G includes a ≤ (9k+10)-

subdivision of KN with principal vertices r1, . . . , rN as the union of all the
spiders (and connections of length at most 2 within the Li,j if necessary).

Lemma 2.3. Let f : N → N be defined by:

f(p, r) =

{
2p2 − 6p + 8, if r = 0

2f(p, r − 1)2 − 6f(p, r − 1) + 8, otherwise

Let G be a graph and let r be an integer. Then:

ω(G Õ r) ≤ ω(G O r) < f

(
ω

(
G Õ

(5
4
(9r − 1)

))
+ 1, r

)
Proof. Let H ∈ G O r. According to Lemma 2.2, we have that Kp′ ∈ H Õ k
implies Kp ∈ G Õ (9r(k + 5/4)− 5/4) if p′ ≥ f(p, r). In particular, if Kp′ ∈
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Ak1,1

Akp,p

Zi Zj

ri

rjli,j

lj,i

Figure 3: Finding a ≤ (9k + 10)-subdivision of Kp. The dotted line corre-
sponds to the path Lki,j ,kj,i .

G O r then Kp ∈ Õ ( 5
4 (9r−1)) if p′ ≥ f(p, r). Hence p > ω

(
G Õ

(
5
4 (9r−1)

))
implies f(p, r) > ω(G O r). Let p = ω

(
G Õ

(
5
4 (9r − 1)

))
+ 1, the lemma

follows.

3 Classes of Sparse Graphs

Although almost all results of this paper can be formulated in the “local”
form (for a single graph with special properties) we find it useful to formulate
our results by means of properties of classes of graphs.

A class C of graphs is hereditary if every induced subgraph of a graph in C
to C, and it is monotone of every subgraph of a graph in C belongs to C. For
a class of graphs C, we denote by H(C) the class containing all the induced
subgraphs of graphs in C, that is the inclusion-minimal hereditary class of
graphs including C. For a class of graph C we define ∆(C) = supG∈C ∆(G)
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and ω(C) = supG∈C ω(G).
Let C be an infinite class of graphs and let f : C → R be a graph

invariant. (By this we mean a function which is isomorphism invariant.)
Let Inj(N, C) be the set of all injective mappings from N to C. Then we
define:

lim sup
G∈C

f(G) = sup
φ∈Inj(N,C)

lim sup
i→∞

f(φ(i))

Notice that lim supG∈C f(G) always exist and is either a real number or
±∞.

If lim supG∈C f(G) = α ∈ R = R ∪ {−∞,∞} we have the following two
properties:

• for every φ ∈ Inj(N, C), lim supi→∞ f(φ(i)) ≤ α;

• there exists φ ∈ Inj(N, C), lim supi→∞ f(φ(i)) = α.

Note that the second property is easy to prove: consider a sequence φ1, . . . ,
φi, . . . such that limi→∞ lim supj→∞ f(φi(j)) = α. For each i, let si(1) <
· · · < si(j) < . . . be such that lim supj→∞ f(φi(j)) = limj→∞ f(φi(si(j))).
Then iteratively define φ ∈ Inj(N, C) by φ(1) = φ1(s1(1)) and φ(i) =
φi(si(j)), where j is the minimal integer greater or equal to i such that
φi(si(j)) will be different from φ(1), . . . , φ(i−1). Then lim supj→∞ f(φ(j)) =
α.

3.1 Trichotomy

Defining the boundary between sparse and dense classes is not an easy task.
Several definitions have been given for “sparse graphs”, which do not allow a
dense/sparse dichotomy (for instance: a graph is sparse if it has a size which
is linear with respect to its order, dense if it is quadratic). Instead of defining
what is a “sparse graph” or a “dense graph”, we define “sparse classes of
graphs” and “dense classes of graphs” by the limit behaviour of the “biggest”
graphs in the class when their order tends to infinity. Moreover, we will
demand that our definition stays invariant in the context of derived classes,
i.e. when we perform lexicographic products with small graphs, contractions
of small balls, etc. It appears that the right measure of the growth of edge
densities is the fraction of logarithms. This leads to a following trichotomy
results (Theorem 3.2) which is the starting point of our classification.

This trichotomy result relies on Lemma 2.3 and on Z. Dvořák’s study
of clique subdivisions arising in graphs with large minimum degree. It is
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easy to check that ω(G Õ 1) almost surely lies between Ω(log n) and O(
√

n)
for a random graph G of order n. The conjecture of Mader [Mad72] and
Erdős and Hajnal [EH69] that there exists a constant c such that any graph
with average degree cp2 contains a subdivision of Kp has been proved by
Komlós and Szemerédi [KS94, KS96] and Bollobás and Thomasson [BT98].
Note that a similar result holds for minors — a graph with average degree
Ω(p

√
log p) contains Kp as a minor, by Kostochka [Kos82] and Thomasson

[Tho84].
Consider a graph G of order n and minimum degree nε, for some constant

0 < ε < 1. If G is random, the expected diameter of G would be constant
(dependent on ε) hence would contain a subdivision of a large clique where
each edge would be subdivided by a constant number of vertices. The
question studied by Dvořák [Dvo07] is whether such a result holds in general.
The proof by Bollobás and Thomasson [BT98] uses an argument from which
the lengths of the subdivision paths are difficult to derive. The proof of
Komlós and Szemerédi [KS96] finds a subdivision of the complete graph
where each edge is subdvided polylogarithmic number of times, because of
the use of an expander to boost the degree. For the sake of completeness
we give here a short sketch of Dvořák’s result and refer the reader to his
thesis for further details.

Theorem 3.1 ([Dvo07]). For each ε(0 < ε ≤ 1) there exist integers n0

and c0 and a real number µ > 0 such that every graph G with n ≥ n0

vertices and minimum degree at least nε contains the c-subdivision of Knµ

as a subgraph, for some c ≤ c0.

Sketch of the Proof. The first ingredient is a lemma (denoted here as Claim
1) allowing to boost the exponent in the minimum degree.

Claim 1: For any ε (0 < ε < 1) there exists n0 such that for every graph
G of order n ≥ n0 and minimum degree at least nε, G Õ 1 either contains
Knε3 or a graph G1 with order n1 = Ω(nε−ε3) and minimum degree at least

d = Ω
(

n
ε+ε2 1−ε−ε2

1−ε+ε3

1

)
.

This claim is verified as follows: let A be a subset of vertices of G
obtained by picking each vertex randomly independently with probability
p = 2n−ε+ε3 . Let B be the set of vertices not in A having at least nε3

neighbours in A. Using Chernoff and Markov inequalities, there is a non
zero probability that |A| ≤ 4n1−ε+ε3 and |B| ≥ n

2 (if n is sufficiently large),
so choose such a pair of subsets A and B. Then form a graph G′ with vertex
set A as follows: order (arbitrarily) the vertices of B and consider iteratively
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each vertex v ∈ B. If NG(v) ∩ A is not a clique in G′, join in G′ some two
non-adjacent vertices in NG(v) ∩ A. If, for some v ∈ B, no edge is added
then NG(v)∩A is a clique in G′ thus Knε3 ∈ G Õ 1. Otherwise, G′ ∈ Õ 1 and
G′ has average degree at least 1

4nε−ε3 hence contains a subgraph G1 with
minimum degree at least d = 1

8nε−ε3 and order 1
8nε−ε3 ≤ n1 ≤ 4n1−ε+ε3 .

Expressing d relatively to n1, the Claim 1 follows.
This result allows to augment the exponent in the expression of the

minimum degree when ε ≤
√

5−1
2 ≈ 0.618. In a similar way we can verify

Calim 2: There exists n0 such that for every graph G of order n ≥ n0

and minimum degree at least 4n0.6 holds Kn0.1 ∈ G Õ 1.
By applying Claim 1 at most 10

ε2 times and then applying Claim 2, it
follows that some Knµ belongs to G Õ

(
2

10
ε2

+1 − 1
)

(if G is sufficiently big)
for some constant µ dependent on ε.

Theorem 3.2. Let C be an infinite class of graphs. Then

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

∈ {0, 1, 2}

The extremal values may be characterized as follows:

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 0 ⇐⇒ lim sup
G∈C

‖G‖ < ∞,

and

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 2 ⇐⇒ ∃r0 ∈ N : ω(C Õ r0) = ∞

⇐⇒ ∃r′0 ∈ N : ω(C O r′0) = ∞

Proof. First notice that for every integer r ≥ 0 we have ω(C O r) ≥ ω(C Õ r)
and 2 ≥ lim supG∈C O r

log ‖G‖
log|G| ≥ lim supG∈C eO r

log ‖G‖
log|G| ≥ 0 as C O r ⊇ C Õ r

and has a graph has at most a quadratic number of edges.
If C is a class of graphs C such that the number of edges of the graphs

in C is bounded (that is: the graphs in C only contain isolated vertices with
the exception of a bounded number of vertices) then obviously
limr→∞ lim supG∈C O r

log ‖G‖
log|G| = 0.

Otherwise, there is an infinite sequence H1, . . . ,Hi, . . . of distinct graphs
in C Õ 0 = C O 0 which have no isolated vertices. As this sequence is infinite,
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we get limi→∞ log|Hi| = ∞. Moreover, ‖Hi‖ = 1
2

∑
v∈V (Hi)

d(v) ≥ |Hi|/2.
Hence:

lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

≥ lim sup
G∈C eO 0

log ‖G‖
log|G|

≥ lim
i→∞

log ‖Hi‖
log|Hi|

≥ lim
i→∞

log|Hi| − 1
log|Hi|

≥ 1

So we have:

lim sup
G∈C

‖G‖ < ∞⇒ 0 ≤ lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

≤ lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 0

and

lim sup
G∈C

‖G‖ = ∞⇒ lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

≥ lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

≥ 1.

Hence in particular:

lim sup
G∈C

‖G‖ < ∞ ⇐⇒ lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

= 0

⇐⇒ lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 0

Now assume that limr→∞ lim supG∈C eO r
log ‖G‖
log|G| > 1, i.e. that there exists

r1 and α > 0 such that lim supG∈C eO r1

log ‖G‖
log|G| ≥ 1 + α. Then there exists

an infinite sequence H1, . . . ,Hi . . . of distinct graphs in C Õ r1 such that
limi→∞

log ‖Hi‖
log|Hi| ≥ 1 + α. Moreover, each Hi has a subgraph H ′

i of order

at least
√
‖Hi‖, size at least ‖Hi‖/2 and minimum degree at least ‖Hi‖

2|Hi| :

from Hi remove iteratively vertices with degree at most ‖Hi‖
2|Hi| . When the

process is finished, we have removed at most |Hi| ‖Hi‖
2|Hi| = ‖Hi‖/2 edges and

hence the graph H ′
i has order at least

√
‖Hi‖. As limi→∞|H ′

i| = ∞, we can
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extract a subsequence Gi = H ′
f(i) such that all the Gi are distinct and have

increasing orders. We have:

lim
i→∞

log ‖Gi‖ − 1
log|Gi|

= lim
i→∞

log ‖Gi‖
log|Gi|

= lim
i→∞

log ‖H ′
f(i)‖

log|H ′
f(i)|

≥ lim
i→∞

log ‖Hf(i)‖ − 1
log|Hf(i)|

= lim
i→∞

log ‖Hi‖ − 1
log|Hi|

= lim
i→∞

log ‖Hi‖
log|Hi|

≥ 1 + α.

It follows that there exists N such that log ‖Gi‖−1
log|Gi| ≥ 1 + α/2 for every

i ≥ N , thus Gi has minimum degree at least ‖Gi‖/2
|Gi| ≥ |Gi|α/2. According

to Theorem 3.1, for every ε > 0 there exist integers n0(ε) and c0(ε) and
a real number µ(ε) > 0 such that every graph G with n ≥ n0(ε) vertices
and minimum degree at least nε contains the c-subdivision of Knµ(ε) as
a subgraph, for some c ≤ c0(ε). Thus, for every i ≥ max(N,n0(α/2)), Gi

contains the c-subdivision of K|Gi|µ(α/2) as a subgraph, for some c ≤ c0(α/2).
Let r0 = (2r1 + 1)(2c0(α/2) + 1)− 1. We have K|Gi|µ(α/2) ∈ Gi Õ c0(α/2) ⊆
C Õ r0. As limi→∞|Gi| = ∞ we infer that ω(C Õ r0) = ∞.

Moreover, if there exists r0 ∈ N such that ω(C Õ r0) = ∞ we have:

lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

≥ lim sup
G∈C eO r0

log ‖G‖
log|G|

≥ sup
i→∞

log ‖Ki‖
log|Ki|

= 2.

Hence:

lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

> 1 ⇐⇒ ∃r0 ∈ N : ω(C Õ r0) = ∞

⇐⇒ lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

= 2.

Now assume that limr→∞ lim supG∈C O r
log ‖G‖
log|G| > 1, i.e. that there exists

r′1 and α > 0 such that lim supG∈C O r′1

log ‖G‖
log|G| ≥ 1 + α. As in the previous
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case, we infer that there exists r′0 such that ω(C O r′0) = ∞ thus

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

> 1 ⇐⇒ ∃r′0 ∈ N : ω(C O r′0) = ∞

⇐⇒ lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 2.

According to Lemma 2.3, we have:

∃r0 ∈ N : ω(C Õ r0) = ∞ ⇐⇒ ∃r′0 ∈ N : ω(C O r′0) = ∞,

what completes the proof.

The characterization of classes of graphs for which

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

≤ 1

is the main theme of this paper. We call such classes classes of nowhere
dense graphs.
Remark 3.3. According to Theorem 3.2, a class C is a class of nowhere dense
graphs if and only if

∀r ∈ N ω(C O r) < ∞.

In the other words: there exists no integer r0 such that every graph is a
shallow minor of depth r0 of some graph in C.

Trichotomy theorem can be expressed using the average degrees of the
graphs in the class instead of the number of edges, as shown by the next
lemma:

Lemma 3.4. Let C be an infinite class of graphs. Then:

lim sup
G∈C

log d̄(G)
log|G|

= lim sup
G∈C

log ‖G‖
log|G|

− 1

Hence

lim
r→∞

lim sup
G∈C O r

log d̄(G)
log|G|

= lim
r→∞

lim sup
G∈C eO r

log d̄(G)
log|G|

= lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

− 1

where d̄(G) = 2‖G‖/|G| denotes the average degree of the graph G.
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Proof.

log d̄(G)
log|G|

=
1 + log ‖G‖ − log|G|

log|G|
=

1 + log ‖G‖
log|G|

− 1

3.2 Dichotomy

Here we shall consider the only dichotomy between classes of nowhere dense
graphs, that is classes

C such that lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

≤ 1

and classes of somewhere dense graphs, which are defined as classes C such
that

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 2.

Instead of the average degree, one can consider the minimum degree
δ(G) of graph G, as shown by the next lemma:

Lemma 3.5. Let C be a hereditary infinite class of graphs. Then

lim sup
G∈C

log d̄(G)
log|G|

= 0 ⇐⇒ lim sup
G∈C

log δ(G)
log|G|

= 0

⇐⇒ lim sup
G∈C

log∇0(G)
log|G|

= 0

Proof. Every graph G contains a subgraph H with mimum degree δ(H) ≥
d̄(G)/4 obtained by iteratively removing the vertices of degree at most
d̄(G)/4 (the degrees take the previous deletions into account). During the
process, at most d̄(G)/4 edges have been removed by vertex deletion, hence
‖H‖ ≥ ‖G‖/2 and |H| ≥

√
2‖H‖ ≥

√
‖G‖. It follows that every graph G

has a subgraph H such that:

log d̄(G)− 2
log|G|

≤ log δ(H)
log|H|

≤ 2
log d̄(G)
log|G|

Hence if C is a hereditary infinite class of graphs:
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lim sup
G∈C

log d̄(G)
log|G|

= 0 ⇐⇒ lim sup
G∈C

log δ(G)
log|G|

= 0

and also

lim sup
G∈C

log d̄(G)
log|G|

= 0 ⇐⇒ lim sup
G∈C

log∇0(G)
log|G|

= 0

as δ(G) ≤ ∇0(G) ≤ d̄(G).

Lemma 3.6. Let C be a monotone infinite class of graphs and let r be an
integer. Then

lim sup
G∈C O r

log∇0(G)
log|G|

≥ lim sup
H∈C

log∇r(H)
log|H|

≥ 1
2

lim sup
G∈C O r

log∇0(G)
log|G|

Proof. Let G ∈ C O r and let H be a minimal graph of C such that G ∈ H O r.
Then, each vertex v of G corresponds to a tree Yv of H with order at most
1 + dG(v) (as C is monotone, we may delete any unnecessary vertices or
edges of H). It follows that |H| ≤ 2‖G‖r + |G| ≤ 2|G|2r. Hence for every
G ∈ C O r there exists H ∈ C such that log∇r(H)

log|H| ≥ log∇0(G)
2 log|G|+log r . From this

follows
1
2

lim sup
G∈C O r

log∇0(G)
log|G|

≤ lim sup
H∈C

log∇r(H)
log|H|

Now, let H ∈ C and let G ∈ H O r be such that ∇r(H) = ∇0(H). As
|G| ≤ |H| we have

log∇r(H)
log|H|

≤ log∇0(G)
log|G|

hence

lim sup
H∈C

log∇r(H)
log|H|

≤ lim sup
G∈C O r

log∇0(G)
log|G|

what completes the proof.

Lemma 3.7. Let C be an infinite class of graphs and let r be an integer.
Then

1
(r + 1)2

lim sup
G∈C

log∇r(G)
log|G|

≤ lim sup
G∈C

log ∇̃r(G)
log|G|

≤ lim sup
G∈C

log∇r(G)
log|G|

Proof. This is a direct consequence of Theorem 2.1.
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3.3 Within the Nowhere Dense World

Class C has bounded expansion [NOdM08a] if each of the classes C O i has
bounded density:

C has bounded expansion ⇐⇒ ∀i ≥ 0 : sup
{
‖G‖
|G|

: G ∈ C O i

}
< ∞

⇐⇒ ∀i ≥ 0 : ∇i(C) < ∞

It has been proved in [Dvo07] that bounded expansion classes may be also
defined in terms of density of the shallow topological minors:

C has bounded expansion ⇐⇒ ∀i ≥ 0 : sup
{
‖G‖
|G|

: G ∈ C Õ i

}
< ∞

⇐⇒ ∀i ≥ 0 : ∇̃i(C) < ∞

We shall add two more types of classes: bounded local expansion and class
of nowhere dense graphs. The class C has bounded local expansion if the
balls of bounded radius of graphs in C have bounded expansion:

C has bounded local expansion ⇐⇒ ∀ρ, i ≥ 0 : sup
v∈G∈C

∇i(G[NG
ρ (v)]) < ∞

Bounded expansion classes strictly contain proper minor closed classes (as
classes with constant expansion). Bounded local expansion classes general-
ize classes with locally forbidden a minor.

For an extensive studies of bounded expansion classes we refer the reader
to [NOdM08a][NOdM08b][NOdM08c][Dvo07][Dvo08],[Zhu08]. Notice that a
class C is a class of nowhere dense graphs if for every integer i ≥ 0, the class
C O i does not contain all finite simple graphs.

The inclusion of these classes and of several other types of classes of
nowhere dense graphs is depicted Fig. 4.

Remark 3.8. Let us note (a pleasing fact) that the class of “locally nowhere
dense” graphs coincides with the notion of nowhere dense graphs. If C is
“locally nowhere dense”, then for any r the subclass C2r of the graphs in
C with diameter at most 2r is nowhere dense, hence the clique number of
the shallow topological minor class of C2r with depth r is bounded. But a
r-subdivision of a clique is in a graph of C2r if and only if it is in a graph
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of C. Hence the clique number of the shallow topological minors of depth
r of C2r is bounded. By definition, this means that C is a class of nowhere
dense graphs.

Note that the same kind of argument does not apply to bounded ex-
pansion classes which are characterized by ”dense” minors which may have
unbounded diameter.

4 Classes of Nowhere Dense Graphs

In this section we give several class properties which provide equivalent
characterizasion of classes of nowhere dense graphs. We first state the main
result which will be proved in the following sections 4.1–4.2. This result com-
bine virtually all concepts which were developed for the study of bounded
expansion classes and exposes them in the new light. It also appears that
classes of nowhere dense graphs are a quantitative generalization of bounded
expansion classes and that these classes reach the limit for structural proper-
ties: Graphs with n vertices and n1+ε edges have already typical properties
of random graphs; see e.g. [Erd59][AS08]. This is yet another manifestation
of the dichotomy “randomness vs structure”, see [Tao07]. In its variety this
also resembles the characterization of quasi-random structures [CGW89].
(Sparse quasi-random structures are more particularly studied in [CG02].)

The undefined notions in this characterizations will be defined below.
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Theorem 4.1. Let C be a hereditary class of graphs. The following condi-
tions are equivalent:

C is a bounded size class or is a class of nowhere dense graphs; (i)
∀r ∈ N, ω(C O r) < ∞ (ii)

∀r ∈ N, ω(C Õ r) < ∞ (iii)

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

≤ 1 (iv)

lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

≤ 1 (v)

lim
r→∞

lim sup
G∈C O r

log d̄(G)
log|G|

= 0 (vi)

lim
r→∞

lim sup
G∈C eO r

log d̄(G)
log|G|

= 0 (vii)

lim
r→∞

lim sup
G∈C O r

log δ(G)
log|G|

= 0 (viii)

lim
r→∞

lim sup
G∈C eO r

log δ(G)
log|G|

= 0 (ix)

lim
r→∞

lim sup
G∈C O r

log∇0(G)
log|G|

= 0 (x)

lim
r→∞

lim sup
G∈C eO r

log∇0(G)
log|G|

= 0 (xi)

lim
r→∞

lim sup
G∈C

log∇r(G)
log|G|

= 0 (xii)

lim
r→∞

lim sup
G∈C

log ∇̃r(G)
log|G|

= 0 (xiii)

lim
r→∞

lim sup
G∈C

log χr(G)
log|G|

= 0 (xiv)

lim
r→∞

lim sup
G∈C

log wcolr(G)
log|G|

= 0 (xv)

C is quasi-wide; (xvi)
C is uniformly quasi-wide; (xvii)

Proof. Equivalence of the five first items follows from the definition of classes
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of nowhere dense graphs and Theorem 3.2, the equivalence with the next
two items follows from Lemma 3.4 and the equivalence with the next four
items follows from Lemma 3.5. The equivalence of (x) and (xii) comes from
Lemma 3.6 and the equivalence of (xii) and (xiii) comes from Lemma 3.7.

The definition of χr will be given in Section 4.1 and the equivalence of
(xii) and (xiv) will follow from Corollary 4.5. The definition of wcolr will
be given in Section 4.2 and the equivalence of (xii) and (xiv) will follow by
Corollary 4.3.

Equivalence of (ii) with the last two items is stated by Theorem 5.4
which is proved in [NOdM09a].

4.1 Weak coloring numbers

Kierstead and Yang introduced in [KY03] a generalization of the coloring
number which we recall now:

Definition 4.1. Let L be a linear order on the vertex set of a graph G, and
let x, y be vertices of G. We say y is weakly k-accessible from x if y <L x
and there exists an x-y-path P of length at most k (i.e. with at most k
edges) with minimum vertex y with respect to <L (see Fig. 5).

xy

<

G

P

Figure 5: The vertex y is weakly 8-accessible from x

Let Qk(GL, y) be the set of vertices that are weakly k-accessible from y.
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Definition 4.2. The weak k-coloring number wcolk(G) of G is defined by:

wcolk(G) = 1 + min
L

max
v∈V (G)

|Qk(GL, v)|. (18)

Generalized coloring numbers are strongly related to grads: it has been
proved by X. Zhu[Zhu08] that there exists polynomials Fk such that the
following holds:

Theorem 4.2. For every integer k and every graph G:

∇ k−1
2

(G) ≤ wcolk(G) ≤ Fk(∇ k−1
2

(G))

Corollary 4.3. Let C be an infinite class of graphs. Then:

lim
r→∞

lim sup
G∈C

log∇r(G)
log|G|

= 0 ⇐⇒ ∀r ∈ N : lim sup
G∈C

log∇r(G)
log|G|

= 0

⇐⇒ ∀r ∈ N : lim sup
G∈C

log wcolr(G)
log|G|

= 0

⇐⇒ lim
r→∞

lim sup
G∈C

log wcolr(G)
log|G|

= 0

4.2 Tree-depth and chromatic numbers

The closure clos(F ) of a rooted forest F is the graph with vertex set V (F )
and edge set

E(F ) = {{x, y} : x is an ancestor of y in F, x 6= y}.

A rooted forest F defines a partial order on its set of vertices: x ≤F y if x
is an ancestor of y in F . The comparability graph of this partial order is
obviously clos(F ).

The tree-depth td(G) of a graph G is the minimum height of a rooted
forest F such that G ⊆ clos(F ) [NOdM06b]. For instance, the tree depth
of a path is logarithmic in the order of the path (see Fig 6). This defini-
tion is analogous to the definition of rank function of a graph which has
been used for analysis of countable graphs and is equivalent to the ones of
height of an elimination tree and of vertex ranking number (investigated in
[NS03],[Sch90]) as shown in [NOdM06b].The concept also plays a key role
in [Ros08].
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Figure 6: The tree-depth of a path is logarithmic in the order of the path

In [NOdM06b] have also been introduced a generalization of the chro-
matic number of the graphs: for a graph G and an integer i, χp(G) is the
minimum number of colors needed to color the vertices of G in such a way
that every subgraph of G induced by a subset of i ≤ p colors has tree-
depth at most i. Notice that χ1(G) is the standard chromatic number of
G. The next chromatic number, χ2(G), also called star chromatic number
[AMR92, NOdM03], which has been introduced by Grünbaum in [Grü73].

These chromatic numbers are strongly related to grads by a family of
polynomials Pr:

Theorem 4.4 ([NOdM08a]). There are polynomials Pr, r = 1, 2, . . . such
that for every graph G and any positive integer r:

∇r(G) ≤ (2r + 1)
(

χ2r+2(G)
2r + 2

)
χr(G) ≤ Pr(∇rr (G))

Corollary 4.5. Let C be an infinite class of graphs. Then:

lim
r→∞

lim sup
G∈C

log∇r(G)
log|G|

= 0 ⇐⇒ ∀r ∈ N : lim sup
G∈C

log∇r(G)
log|G|

= 0

⇐⇒ ∀r ∈ N : lim sup
G∈C

log χr(G)
log|G|

= 0

⇐⇒ lim
r→∞

lim sup
G∈C

log χr(G)
log|G|

= 0
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The results of Sections 4.1 and 4.2 together with results in Sections 3.2
and 3.3 finish the proof of Theorem4.1.

5 Applications

5.1 How Wide is a Class?

Let r ≥ 1 be an integer. A subset A of vertices of a graph G is r-independent
if the distance between any two distinct elements of A is strictly greater than
r. We denote by αr(G) the maximum size of an r-independent set of G.
Thus α1(G) is the usual independence number α(G) of G. A subset A of
vertices of G is d-scattered if NG

d (u) ∩ NG
d (v) = ∅ for every two distinct

vertices u, v ∈ A. Thus A is d-scattered if and only if it is 2r-independent.
Wide classes are classes where every large graph contains large d-scattered

set. This being too restrictive A. Dawar recently introduced [Daw07] two
weaker notions: almost wide and quasi-wide classes. It has been proved in
[ADK04] and [Daw07] that graphs with all of its vertices of bounded degree
and proper minor closed classes of graphs are wide, resp. almost wide. In
[NOdM09a] we characterized these classes and showed how they relate to
the classes of nowhere dense graphs. We shall review briefly the relevant
part of this here.

We find it useful to study wide (and almost wide and quasi-wide) classes
by means of the following functions ΦC and ΦC defined for classes of graphs.
It is essential for our approach that we also define the uniform version of
these concepts.

The function ΦC has domain N and range N∪{∞} and ΦC(d) is defined
for d ≥ 1 as the minimum s such that the class C satisfies the following
property:

“There exists a function F : N → N such that for every integer m, every
graph G ∈ C with order at least F (m) contains a subset S of size at most s
so that G− S has a d-independent set of size m.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s). Moreover, we define ΦC(0) = 0.

The function ΦC has domain N and range N∪{∞} and ΦC(d) is defined
for d ≥ 1 as the minimum s such that C satisfies the following property:

“There exists a function F : N → N such that for every integer m, every
graph G ∈ C and every subset A of vertices of G of size at least F (m),
the graph G contains a subset S of size at most s so that A includes a
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d-independent set of size m of G− S.”
We put ΦC(d) = ∞ if C does not satisfy the above property for any value

of s). Moreover, we define ΦC(0) = 0.
Notice that obviously ΦC ≥ ΦC for every class C and for every integer d.

Definition 5.1. A class of graphs C is wide (resp. almost wide, resp. quasi-
wide) if ΦC is identically 0 (resp. bounded, resp. finite) [Daw07]:

C is wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0
C is almost wide ⇐⇒ sup

d∈N
ΦC(d) < ∞

C is quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) < ∞

Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-
wide) if and only if C O 0 is wide (resp. almost wide, resp. quasi-wide) as
deleting edges cannot make it more difficult to find independent sets.

We introduce the following variation of Definition 5.1.

Definition 5.2. A class of graphs C is uniformly wide (resp. uniformly al-
most wide, resp. uniformly quasi-wide) if ΦC is identically 0 (resp. bounded,
resp. finite):

C is uniformly wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈N

ΦC(d) < ∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) < ∞

Notice that a class C is uniformly wide (resp. uniformly almost wide,
resp. uniformly quasi-wide) if and only if C O 0 is uniformly wide (resp. uni-
formly almost wide, resp. uniformly quasi-wide) as the property is hered-
itary in nature and deleting edges cannot make it more difficult to find
independent sets.

Based on a construction of Kreidler and Seese [KS99], Atserias et al.
proved that if a class excludes a graph minor then it is almost wide [ADK06].
Classes locally excluding a minor have been shown to be quasi-wide by
Grohe and Kreutzer [DGK07]. In this paper we characterize these three
classes of graphs as follows:

Theorem 5.1. (Characterization of wide classes) Let C be a hereditary
class of graphs. Then the following are equivalent:
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• ΦC(2) = 0,

• ΦC(2) = 0,

• ∆(C) < ∞,

• C is wide,

• C is uniformly wide.

Theorem 5.2. (Characterization of almost wide classes) Let C be a hered-
itary class of graphs and let s be an integer. Then the following are equiva-
lent:

• C is almost wide;

• C is uniformly almost wide;

• C is a hereditary subclass of a proper minor closed class.

We may be more precise when C is actually minor closed:

Theorem 5.3. (Characterization of minor closed wide classes) Let C be a
minor closed class of graphs and let s be an integer. Then the following are
equivalent:

• C is almost wide and ΦC(d) < s for every integer d ≥ 2;

• C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;

• C excludes some graph Ks,t.

Finally, we have the following characterization of quasi-wide classes
which complements our main result Theorem 4.1:

Theorem 5.4. (Characterization of quasi-wide classes) Let C be a heredi-
tary class of graphs. The following conditions are equivalent:

• C is quasi-wide;

• C is uniformly quasi-wide;

• for every integer d there is an integer N such that KN /∈ C O d;

• C is a class of nowhere dense graphs.

The proofs of these theorems are given in [NOdM09a]. This paper is
devoted to applications of the wide-type classes to logic and model theory.
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5.2 Independent sets and density

It is an old combinatorial paradigm Ramsey paradigm that if the class has
no complete graph of a fixed size then its independence number is large. Our
results yield a refinement of this for k-independent sets for special classes of
graphs classes with bounded expansion and classes of nowhere dense graphs.
These are quite general classes and the following are providing some more
explicit examples:

Let F = {Fi; i ∈ N} be a family of graphs. By Forbsh(F) we denote the
class of all graphs G whose no i-shallow minor contains Fi as a subgraph.

• Forbsh(F) is class of bounded expansion if F contains infinitely many
forests;

• Forbsh(F)is a class of nowhere dense graphs for any F ;

• Forbsh(F) is a class of graphs with bounded tree depth it Fi is a
matching with i edges.

This also illustrates of the power of our Theorem 4.1.

5.3 Homomorphism preservation theorems

As remarked in the introduction, one of our motivations for defining and
studying classes of nowhere dense graphs is in their relationship to the
model theory and logic, particularly to homomorphism preservation theo-
rems. Without going into details (and here we refer to [ADK04, NOdM09a])
we state some graph theoretic corollaries:

Theorem 5.5. Let K be a class of nowhere dense graphs. Let φ be a first
order formula defined for graphs such that φ is preserved by homomorphisms.
(This means that if G −→ G′, G,G′ ∈ K and G |= φ then also G′ |= φ.)
Then there exists a finite set of graphs F = {F1, . . . , Ft} such that any
G ∈ K holds:

G |= φ iff there exists i, 1 ≤ i ≤ t, such that Fi −→ G.

Thus the homomorphism closed first order definable sets restricted to
any class of nowhere dense graphs is an upper set in the homomorphism
order. In this formulation the classes of nowhere dense graphs are related
to dualities, see [NOdM09a, NOdM08c, NT00].
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5.4 Algorithmic Consequences

The main result of this paper Theorem 4.1 has a number of algorithmic
consequences. They can be obtained by generalizing results in
[NOdM06a][NOdM08b] Colorations such that i ≤ r colors induced a sub-
graph with tree-depth at most i may be computed efficiently:

Theorem 5.6 ([NOdM08b]). For every graph G and every integer r, a
coloration of G using Pr(∇rr (G)) colors such that any i ≤ r colors induce a
subgraph with tree-depth at most i may be computed in O(Pr(∇rr (G)) · |G|)-
time.

It follows that for input graphs in a class C, counting the isomorphs of a
fixed graph, testing whether a graph contains a fixed graph has a subgraph,
etc. may be computed in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense graphs,

where n is the order of the graph (see [NOdM08b]).

5.5 Ramsey Numbers

We proved in [NOdM09b] that the Ramsey number r(G) of a graph G of
order n is bounded by the first grads of G by

log2

(
r(G)

n

)
= O((∇0(G)∇1(G) log∇1(G))2)

It follows that the Ramsey numbers of the graphs of order n in a class
of nowhere dense graphs is bounded (for n → ∞) by 2no(1)

. This has to
be compared with the well known lower bound of r(Kn) proved by Erdős
[Erd47]: r(Kn) > n2n/2

e
√

2
(improved by a factor 2 by Spencer [Spe75]).
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