
Equitable colourings of graphs with bounded
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We study the equitable chromatic number of graphs of minimum degree
at least 2, lower-bounded girth and upper-bounded density. As direct corol-
laries, we obtain that the equitable chromatic number of a planar graph
with minimum degree at least 2 is at most 3 if the graph has girth at least
14, and at most 4 if the graph has girth at least 10. This improves the pre-
viously known bounds, obtained by Wu and Wang [Discrete Mathematics,
308(5-6):985–990, 2008].

1 Introduction

Given a graph G = (V,E) and a positive integer m, an m-colouring of G
is a mapping c : V → {1, 2, . . . ,m}. It is proper if c(u) 6= c(v) whenever u
and v are two adjacent vertices of G. Graph colouring is a prominent topic
in graph theory. It was initiated by the 4-colour conjecture, which is now a
theorem [2, 3]. Many variants and generalisations have been considered, in
particular in relation with practical problems such as channel assignment
or scheduling. The notion considered in this paper is one of those variants.

Given an m-colouring c of a graph G, a colour-class is a subset c−1({i})
for some i ∈ {1, 2, . . . ,m}. The colouring c is equitable if

• it is proper; and

• the size of any two colour-classes differ by at most 1.
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The equitable chromatic number of a graph G is χe(G), the smallest integer
k such that G admits an equitable m-colouring whenever m ≥ k. (Note
that a graph admitting an equitable k-colouring does not necessarily admit
an equitable m-colouring for all m > k.)

Equitable colourings arise naturally when modelling various problems,
e.g. scheduling [14], and are also used to study the deviation of some random
variables in probability theory [13, 8]. In 1964, Erdős [5] conjectured that
the equitable chromatic number of any graph of maximum degree ∆ is at
most (∆+1). This was proved by Hajnal and Szemerédi [7] in 1970. Finding
a simpler proof of this theorem has been a long standing question, and
several new proofs (along with polynomial time algorithms) have been found
recently, by Kierstead and Kostochka [9] and Mydlarz and Szemerédi [12].
Further research in this direction is offered by an intriguing conjecture of
Chen, Lih and Wu [4], that a graph of maximum degree ∆ has equitable
chromatic number at most ∆ unless it is K∆ or K∆,∆. The survey of Lih [11]
provides additional background about equitable colourings.

It is natural to search for conditions ensuring that the equitable chro-
matic number is equal to the chromatic number — the smallest integer
k for which the graph admits a proper k-colouring. This is why, very re-
cently, Wu and Wang [15] studied the equitable chromatic number of planar
graphs with minimum degree at least 2. For such graphs, they proved that
χe(G) ≤ 3 if G has girth at least 26, and χe(G) ≤ 4 if G has girth at least
14. (The girth of a graph is the size of a smallest cycle.) So, for instance,
they derive that if a planar graph has minimum degree at least 2, girth at
least 26 and is non-bipartite then its equitable chromatic number is equal
to its chromatic number. (This is so since, by Grötzsch’s Theorem [6], the
chromatic number of any planar graph of girth has least 4 is at most 3.)

The two restrictions on the minimum degree and the girth are natural:
on one hand, the equitable chromatic number of stars (i.e. trees whose all
vertices but at most one are leaves) is unbounded. More precisely, if Tn is a
star with root v and leaves v1, v2, . . . , vn, its equitable chromatic number is
1+

⌈
n
2

⌉
. Observe also that the equitable chromatic number of planar graphs

with minimum degree 2 (but without any restriction on girth) is unbounded:
starting from the star Tn aforementioned, we add a new vertex linked to all
the vertices of Tn. The equitable chromatic number of the obtained graph
is 2 +

⌈
n
2

⌉
.

We aim at improving the bounds on girth given by Wu and Wang. To
this end, we study a more general class of graphs, namely the class of
graphs with bounded density. The average degree of a graph G = (V,E) is
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Ad(G) := 2|E|
|V | . The maximum average degree of a graph G is Mad(G), the

maximum of the values Ad(H) taken over all subgraphs H of G.
The purpose of this paper is to prove the following two theorems.

Theorem 1. The equitable chromatic number of every graph of minimum
degree at least 2, girth at least 11 and maximum average degree less than 7

3
is at most 3.

Theorem 2. The equitable chromatic number of every graph of minimum
degree at least 2, girth at least 10 and maximum average degree less than 5

2
is at most 4.

Those two theorems yield corollaries giving a substantial improvement
on the bounds given by Wu and Wang [15]. Their derivation from Theo-
rems 1 and 2 is a direct consequence of Euler’s formula. More precisely,
Euler’s formula implies that for any planar graph G of girth g ≥ 3,

2g

g − 2
< Mad(G),

which in turn allows us to deduce the following two corollaries from Theo-
rems 1 and 2.

Corollary 3. The equitable chromatic number of every planar graph of
minimum degree at least 2 and girth at least 14 is at most 3.

Corollary 4. The equitable chromatic number of every planar graph of
minimum degree at least 2 and girth at least 10 is at most 4.

Using the discharging method, we prove Theorem 1 in Section 2 and
Theorem 2 in Section 3. In both cases, we identify subgraphs that cannot
appear in a minimal counter-example (we call them reducible configura-
tions). Then we use a discharging procedure to obtain a contradiction. We
finish this section by introducing some definitions and conventions.

A vertex of degree d is a d-vertex. It is big if d ≥ 3. Given a graph
G, suppose that T := v1v2 . . . vt is an induced path such that each vertex
vi has degree 2 in G. Assume that b and b′ are big vertices such that bv1

and b′vt are edges of G. If b 6= b′ then T is a t-thread, and otherwise T is
a t-loop. We say that b is incident to T , and that it is t-weakly adjacent to
b′. The vertices b and b′ are t-weak neighbours.

In all the figures of this paper, a black bullet is a vertex of degree 2, a
triangle is a vertex of degree 3, a square a vertex of degree 4, a pentagon
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a vertex of degree 5 and an hexagon a vertex of degree 6. A white bullet
indicates a big vertex. A dashed line between two 2-vertices indicates an
induced path of G whose all vertices have degree 2 in G.

We use 1, 2, . . . ,m as the integers modulo m. Given an equitable m-
colouring of a graph G, we always assume that the number of vertices
coloured i is at most the number of vertices coloured i + 1 for every i ∈
{1, 2, . . . ,m− 1}. When m is fixed, a colour greater than m is always to be
understood modulo m.

2 The Proof of Theorem 1

We proceed by contradiction. Throughout this section, we assume that
G = (V,E) is a graph of minimum degree at least 2, girth at least 14 and
maximum average degree less than 7

3 whose equitable chromatic number is
greater than 3. Subject to this, we assume that G has as few vertices as
possible, i.e. every graph of minimum degree at least 2, girth at least 14,
maximum average degree less than 7

3 and fewer vertices than G has equitable
chromatic number at most 3. In particular, the equitable chromatic number
of any subgraph of G with less vertices than G and minimum degree at least
2 is at most 3.

In the next subsection, we start proving that some subgraphs (called
configurations) cannot occur in the graph G (i.e. are reducible).

2.1 Reducible Configurations

We use the next two lemmas in the sequel implicitly, without referring to
them.

Lemma 5. The graph G has no t-thread with t = 3 or t ≥ 5.

Proof. Fix an integer m ≥ 3. Suppose that b1 and bt are two big vertices
of G that are t-weakly adjacent through the t-thread T := u1u2 . . . ut, with
t = 3 or t ≥ 5. Let G′ be the subgraph obtained from G by removing the
vertices of T . As G′ has minimum degree at least 2, the minimality of G
implies that G′ admits an equitable m-colouring c. We extend it to T by
colouring the vertex ui with the colour i mod m. Hence, c is an equitable
m-colouring of G unless it is not proper, i.e. unless c(bi) = c(ui) for some
i ∈ {1, t}. Thus, up to switching the colours of u1 and u2, and the colours of
ut and ut−1, we obtain an equitable m-colouring of G, a contradiction.
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Lemma 6. A vertex b of G of degree at least 4 is not incident to a t-loop.

Proof. Suppose on the contrary that b is incident to a t-loop. So t ≥ 14.
Since b has degree at least 4, we can proceed as in the proof of Lemma 5
with b1 := bt := b.

We now make two observations that will be used in the forthcoming
reducibility proofs. The first one deals with the extension of a colouring to
a 2-thread, and we omit its straightforward proof.

Lemma 7. Let b0u0u1b1 be a path. Suppose that b0 is coloured α and b1 is
coloured β. Consider two distinct colours γ and γ′. We can properly colour
u0 and u1 using γ and γ′ unless α = β ∈ {γ, γ′}.

Our second observation deals with the extension of colourings to 4-
threads.

Lemma 8. Let b0u0u1u2u3b3 be a path. Fix an integer m ≥ 3. The integers
modulo m are colours. Suppose that b0 is coloured α and b3 is coloured β.
Consider the colours γ, γ + 1, γ + 2 and γ + 3. We can properly colour the
vertices ui using each of the four previous integers once unless m = 3 and
α = γ = γ + 3 = β mod 3. In particular, the extension is always possible
if m > 3, or if α 6= β mod m, or if α 6= γ mod 3.

Proof. We colour ui with γ + i. If the vertices b0 and u0 have the same
colour, then we switch the colours of u0 and u1, i.e. we colour u0 with γ +1
and u1 with γ. Similarly, if b3 and u3 have the same colour, we switch the
colours of u3 and u2. This yields a proper colouring unless α = γ = γ+3 = β
mod m, which can occur only if m = 3.

We now start proving reducibility of some configurations around vertices
of G. Each proof follows the same pattern, which we explain below. Each
configuration L is comprised of some vertices ui and bi. We proceed by
contradiction, that is we suppose that G contains L as a subgraph, and show
that G can then be equitably m-coloured for every m ≥ 3, a contradiction.
To this end, we remove the vertices ui of L from the graph G. We obtain a
subgraph G′ of G of minimum degree at least 2. To see this, we note that
due to the girth of G, all the vertices bi of L are pairwise distinct in most
cases. Whenever this is not true, we explicitly give an additional argument
to prove that we actually obtain a subgraph of minimum degree at least 2.
So, by the minimality of G, there exists for every integer m ≥ 3 an equitable
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b u1

u2

t ≥ 14
ut+1

(L1)

b u2

u1

u3

t ≥ 14
ut+2

(L2)

b u3

u2

u1

u4

t ≥ 14
ut+3

(L3)

b u5

u4

u3

u2

u1

u6

t ≥ 14
ut+5

(L4)

Figure 1: Reducible configurations (L1)–(L4).

m-colouring c of G′. We then extend c to an equitable m-colouring of G.
Note that if there are, say, r vertices ui, and we colour them using once
each colour in {1, 2, . . . , r}, then the obtained colouring of G is equitable
as soon as it is proper (recall that colours greater than m are understood
modulo m). Indeed, the size of each colour class has increased by r′ :=

⌊
r
m

⌋
,

except the r mod m smallest that have increased by r + 1. Recalling that
we assume for the colouring c of G′ that the size of the colour class i is
at most the size of the colour class i + 1 for each i ∈ {1, 2, . . . ,m − 1}, we
deduce that as soon as the obtained colouring of G is proper, it is equitable.

2.1.1 Vertices of Degree Three

We give some reducible configurations around a 3-vertex. We start by prov-
ing that a 3-vertex cannot be incident to a t-loop. Hence, using Lemma 6,
we deduce that G has no t-loop.

Lemma 9. The configurations of Figure 1 are reducible.

Proof. For each configuration, we set c(ui) := i mod m. Hence, the ob-
tained colouring of G is equitable unless it is not proper. Note that the
defined colouring is proper unless c(u1) = c(b) mod m. In this case, we
switch the colours of u1 and u2, i.e. we colour u1 with 2 and u2 with 1. The
obtained colouring is then proper, since c(u3) = 3 /∈ {1, 2}.
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u3

u4
b4

u6u5
b6

u1u2
b1

(L5)

u3u7

u4
b7

u6u5
b6

u1u2
b1

(L6)

Figure 2: Reducible configurations (L5) and (L6).

The next lemma states that a 3-vertex of G incident to two 2-threads
cannot be incident to a 1-thread or a third 2-thread.

Lemma 10. The configurations of Figure 2 are reducible.

Proof. (L5). Suppose first that m 6= 3. We set c(ui) := i mod m for all
indices i. We switch the colours of u1 and u2 if c(b1) = 1 mod m, the
colours of u3 and u4 if c(b4) = 4 mod m, and the colours of u5 and u6 if
c(b6) = 6 mod m. The obtained colouring is the sought one.

Assume now that m = 3. We want to colour the 6 vertices ui using twice
each colour. Hence, we may assume that c(b1) 6= 1 mod 3 and c(b4) 6= 2
mod 3. We set c(u1) := c(u3) := 1, c(u4) := 2 and c(u2) := 3. We finish by
colouring the 2-thread u5u6 with the colours 2 and 3, which is possible by
Lemma 7 since c(u3) = 1 /∈ {2, 3}.

(L6). If one of the vertices bi, say b7, is not coloured 7 mod m, then we
colour u7 with 7, and we finish colouring the vertices ui using once each
integer in {1, 2, . . . , 6} as for (L5). Thus, we may assume that c(bi) = 7
mod m for i ∈ {1, 6, 7}. We set c(u3) := 5 mod m. Then, we extend the
colouring to each 2-thread using once each integer in {1, 2, . . . , 7} \ {5}.
This is possible by Lemma 7, since c(u3) = 5 6= 7 = c(bi) mod m for all
i ∈ {1, 6, 7}.

The following lemma ensures that a 3-vertex of G incident to a unique
4-thread is either incident to two 1-threads or adjacent to two big vertices.

Lemma 11. The configurations of Figure 3 are reducible.

Proof. (L7). We colour u8 and u9 with the colours 8 and 9 such that
c(u9) 6= c(b9) mod m. It remains to properly colour the vertices ui for
i ∈ {1, 2, . . . , 7} using once each integer in {1, 2, . . . , 7}. Observe that we
can proceed exactly as for the configuration (L6) of Figure 2.
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u3u9

u8

u7

u4
b9

u6u5
b6

u1u2
b1

(L7)

u3u8

u7

u6

u5
b8

u1u2
b1

u4
b4

(L8)

u3u7

u6

u5

u4
b7

u1u2
b1

b3

(L9)

u2u6

u5

u4

u3
b6

u1
b1

b2

(L10)

Figure 3: Reducible configurations (L7)–(L10).

(L8). We first properly colour u7 and u8 with the colours 7 and 8. Extending
this colouring to G using once each integer in {1, 2, . . . , 6} then amounts to
what has been done for the configuration (L5) of Figure 2.

(L9). Let c(u3) ∈ {1, 2, 3} \ {c(b3), c(b7)}. Next, let c(u1) ∈ {1, 2, 3} \
{c(b1), c(u3)} and c(u2) ∈ {1, 2, 3} \ {c(u1), c(u3)}. We now colour the
4-thread u4u5u6u7 by applying Lemma 8 with γ = 4, which yields the
conclusion since c(u3) 6= c(b7) mod m.

(L10). Let c(u2) ∈ {1, 2, 3} \ {c(b2)}, c(u1) ∈ {1, 2, 3} \ {c(b1), c(u2)} and
c(u3) ∈ {1, 2, 3} \ {c(u1), c(u2)}. Next, we let c(u4) ∈ {4, 5, 6} \ {c(u3)},
c(u6) ∈ {4, 5, 6} \ {c(b6), c(u4)} and c(u5) ∈ {4, 5, 6} \ {c(u4), c(u6)}.

The next lemma states that a 3-vertex of G is not incident to more than
one 4-thread.

Lemma 12. The configurations of Figure 4 are reducible.

Proof. (L11). We colour u10 and u11 with the colours 10 and 11 such that
c(u11) 6= c(b11) mod m. It remains to colours the vertices ui for i ≤ 9 using
once each integer in {1, 2, . . . , 9}. We proceed as for the configuration (L7)
of Figure 3.

(L12). We colour u12 and u13 with the colours 12 and 13 such that c(u13) 6=
c(b13) mod m. It remains to properly colour the vertices ui for i ≤ 11
using once each integer in {1, 2, . . . , 11}. Thus we can proceed as for the
configuration (L11).
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u3u1

u2
b1

u9

u8

u7

u4
b9

u11

u10

u6

u5
b11

(L11)

u3u13

u12

u1

u2
b13

u9

u8

u7

u4
b9

u11

u10

u6

u5
b11

(L12)

u3

u4
b4

u8

u7

u6

u5
b8

u10

u9

u1

u2
b10

(L13)

u3b3
u7

u6

u5

u4
b7

u9

u8

u1

u2
b9

(L14)

Figure 4: Reducible configurations (L11)–(L14).

u5

u7

u8

u1

u2

u3

u4
b1

u9
b9

u13

u12

u11

u10
b13

u6
b6

(L15)

u6

u5

u3

u11

u10

u9

u8
b11

u4
b4

u1

u2
b1

u7
b7

(L16)

u11

u10

u9

u16

u15

u14

u13
b16

u8
b8

u6

u7

u4

u3

u2

u1
b1

u5
b5

u12
b12

(L17)

Figure 5: Reducible configurations (L15)–(L17).

(L13). We colour u9 and u10 with the colours 9 and 10 such that c(u10) 6=
c(b10) mod m. We then extend the colouring to the remaining vertices ui

as for the configuration (L8) of Figure 3.

(L14). We properly colour u8 and u9 with the colours 8 and 9, and then
proceed as for the configuration (L9) of Figure 3.

The next lemma ends our study of 3-vertices of G.

Lemma 13. The configuration of Figure 5 are reducible.

Proof. (L15). Note that the girth assumption on G does not prevent the
vertices b1 and b13 from being the same one. However, they cannot be the
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u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11
b11

u12u13
b13

(L18)

u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11
b11

u12
b12

(L19)

Figure 6: Reducible configurations (L18) and (L19).

same 3-vertex, otherwise G would have a 3-vertex incident to more than one
4-thread, thereby contradicting Lemma 12. Therefore, we obtain as usual a
subgraph of minimum degree at least 2 when we remove all the vertices ui

from G.
We set c(ui) := i mod m for all indices i. The obtained colouring is

proper up to switching the colours of u1 and u2 if c(b1) = 1 mod m, and
of ui and ui−1 if c(bi) = i mod m for i ∈ {6, 9, 13}.

(L16). We set c(ui) := i mod m. For each i ∈ {1, 4, 7}, we switch the
colours of ui and ui+1 if c(bi) = i mod m. Finally, we switch the colours
of u11 and u10 if c(b11) = 11 mod m.

(L17). Two of the vertices bi, namely b1 and b16, could be the same with-
out violating the girth assumption on G. However, as previously, those
two vertices cannot be the same 3-vertex without contradicting Lemma 12.
Consequently, we obtain a subgraph of minimum degree at least 2 when we
remove the vertices ui from G

We set c(ui) := i mod m for all indices i. For each i ∈ {1, 5, 8}, we
switch the colours of ui and ui+1 if c(bi) = i mod m. Moreover, for each
i ∈ {12, 16}, we switch the colours of ui and ui−1 if c(bi) = i mod m.

2.1.2 Vertices of Degree Four

We start with 4-vertices incident to two 4-threads.

Lemma 14. The configurations of Figure 6 are reducible.

Proof. (L18). Let α ∈ {4, 5, 6} \ {c(b11), c(b13)}. We set c(u5) := α. More-
over, we colour u4 with the smallest integer in {4, 5} \ {α}, and u6 with the
colour in {4, 5, 6} \ {c(u4), α}. Note that c(u4) ∈ {4, 5} and c(u6) ∈ {5, 6}.
Next, we set c(u3) := 3 and c(u7) := 7. Then, we colour u1 and u2 with the
colours 1 and 2 such that c(u1) 6= c(b1) mod m. Similarly, we colour u8
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u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11

u14

u15
b15

u12u13
b13

(L20)

u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11

u14

u15
b15

u12u13

u16

u17
b17

(L21)

u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11

u13

u14
b14

u12
b12

(L22)

u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u10

u11

u12

u13
b13

b5

(L23)

Figure 7: Reducible configurations (L20)–(L23).

and u9 with the colours 8 and 9 such that c(u9) 6= c(b9) mod m. It remains
to colour the two 2-threads. We use Lemma 7 twice: for i ∈ {10, 12}, we
extend the colouring to the 2-thread uiui+1 using the colours i and i + 1,
which is possible since c(u5) 6= c(bi+1) mod m.

(L19). Let α ∈ {4, 5}\{c(b11)}. We colour u5 with α and u4 with the colour
in {4, 5}\{α}. Next, we set c(u3) := 3 and we properly colour u1 and u2 with
the colours 1 and 2. We extend this colouring to the 4-thread u6u7u8u9 using
each of the integers 6, 7, 8, 9, which is possible by Lemma 8 since c(u5) 6= 6
mod 3. We colour u12 with a colour of {10, 11, 12}\{c(b12), c(u5)}. We finish
by colouring the 2-thread with the two colours of {10, 11, 12} \ {c(u12)},
which is possible by Lemma 7 since c(u5) 6= c(b11) mod m.

The following lemma ensures that a 4-vertex of G cannot be incident to
more than two 4-threads.

Lemma 15. The configurations of Figure 7 are reducible.

Proof. (L20). We first colour u14 and u15 using the colours 14 and 15 such
that c(u15) 6= c(b15) mod m. It remains to properly colour the vertices
ui for i ≤ 13 with the integers in {1, 2, . . . , 13}. We proceed as for the
configuration (L18) of Figure 6.

(L21). First, we colour u16 and u17 with the colours 16 and 17 such that
c(u17) 6= c(b17) mod m. We extend this colouring to the remaining vertices
ui using each integer in {1, 2, . . . , 15} as for (L20).
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u5

u4

u3

u2

u1
b1

u6

u7

u8

u9
b9

u11

u12

u14

u15

u16

u17
b17

u13
b13

u10
b10

(L24)

Figure 8: The reducible configuration (L24).

(L22). First, we properly colour the vertices u13 and u14 with the colours 13
and 14. Then, we colour the remaining vertices ui using once each integer
in {1, 2, . . . , 12} as for the configuration (L19) of Figure 6.

(L23). We set c(ui) := i for i ≤ 9. We switch the colours of u1 and u2 if
c(b1) = 1 mod m, and the colours of u9 and u8 if c(b9) = 9 mod m. Next,
we switch the colours of u5 and u6 if c(b5) = 5 mod m. Now, we extend
this colouring to the remaining 4-thread by applying Lemma 8 with γ = 10.
This is possible since neither 5 nor 6 is 10 modulo 3.

The next lemma ends our study of 4-vertices of G.

Lemma 16. The configuration of Figure 8 is reducible.

Proof. (L24). Note that the vertices b9 and b17 need not be distinct. How-
ever, they cannot be the same 3-vertex, otherwise G would have a 3-vertex
incident to at least two 4-threads, thereby contradicting Lemma 12. So, we
actually obtain a subgraph of minimum degree at least 2 when we remove
all the vertices ui from G.

We set c(ui) := i mod m for all indices i. We switch the colours of u1

and u2, and of u9 and u8 if necessary. Similarly, we switch the colours of u16

and u17 if c(b17) = 17 mod m. Moreover, if 5 = 10 mod m then we switch
the colour of u5 and u4, while if 5 = 11 mod m we switch the colours of
u5 and u6. Note that 4 /∈ {10, 11} in the former case, while 6 /∈ {10, 11} in
the latter case. Next, we switch the colours of u10 and u11 if c(b10) = 10
mod m. The obtained colouring is proper unless c(b13) = 13 mod m. Note
that c(ui) = i mod m for i ∈ {12, 14, 15}. Thus, we can safely switch the
colours of u13 and u14 if c(b13) = 13 mod m, which concludes the proof.
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u3

u4

u5

u6

u7
b7

u8

u9

u10

u11
u11

u12

u13

u14

u15
b15

u16

u17

u18

u19
b19

u2

u1

u20

u21

b21

(L26)

u3

u4

u5

u6

u7
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Figure 9: Reducible configurations (L25)–(L27).

2.1.3 Vertices of Degree Five

Lemma 17. The configurations of Figure 9 are reducible.

Proof. (L25). Suppose first that m 6= 3. We properly colour u1 and u2 with
the colours 1 and 2, and we set c(u3) := 3. For each i ∈ {4, 8, 12, 16}, we
extend the colouring to the 4-thread uiui+1ui+2ui+3 by applying Lemma 8
with γ = i.

Assume now that m = 3. We want to properly colour the vertices ui

using 7 times colour 1, and 6 times each of the colours 2 and 3. Thus,
without loss of generality, we may assume that c(b1) 6= 2 mod 3. We set
c(u3) := c(u1) := 2 and c(u2) := 1. Then, we extend the colouring to each
of the 4-threads by Lemma 8. More precisely, we apply twice the lemma
with γ being 1, and twice with γ being 3.

(L26). We properly colour u20 and u21 with the colours 20 and 21. Then,
we proceed as for (L25).

(L27). If m 6= 3, we first properly extend the colouring to u5 and u18 using
the colours 1 and 2, and then we use Lemma 8 to extend the colouring to
each 4-thread.
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Figure 10: The reducible configuration (L28).

Assume that m = 3. We want to properly colour all the vertices ui

using six times each colour. Hence, we may assume that c(b17) 6= 2 mod 3
and c(b18) 6= 1 mod 3. We set c(u18) := 1 and c(u5) := 2. Then, for each
i ∈ {1, 6, 10} we colour the 4-thread uiui+1ui+2ui+3 by applying Lemma 8
with γ = 3, This is possible since c(u5) = 2 6= 3 mod 3. We finish by
setting c(u14) := c(u16) := 1 and c(u15) := c(u17) := 2.

2.1.4 Vertices of Degree Six

Lemma 18. The configuration of Figure 10 is reducible.

Proof. (L28). We set c(u5) := 5 mod m. Then, using Lemma 8 we succes-
sively extend the colouring to each of the 4-threads, provided that either
m 6= 3, or m = 3 and at least one vertex bi is not coloured 2. If m = 3
and all the vertices bi are coloured 2, we set c(u5) := 3. Then, we apply
Lemma 8 to each of the 4-threads, three times with γ = 1, twice with γ = 2
and once with γ = 3, which is possible since c(u5) = 3 6= 2 = c(bi) for all
indices i.

2.2 The Discharging Procedure

Let T be a t-thread for some positive integer t. A vertex v gives y to T
means that v gives y

t units of charge to each 2-vertex of T . A 3-vertex of G
is bad if it is incident to a 4-thread and two 1-threads. It is good if it is not
bad.

For every v ∈ V , we define the original charge of v to be ω(v) := deg(v).
Then, we apply the following discharging rules with x := 1

3 .

(R0) For every positive integer t, every big vertex gives t · x
2 to each of its

incident t-threads.
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(R1) Every big vertex gives x
2 to each of its bad 1-weak neighbours.

We show that after applying these rules, the final charge ω′(v) of every
vertex v is at least 7

3 . Thus, we infer that the average degree of G is∑
v∈V

ω(v)
|V |

=
∑
v∈V

ω′(v)
|V |

≥ 7
3
,

which contradicts our assumption on the maximum average degree of G.
Recall that G has minimum degree at least 2, no t-thread with t = 3 or

t ≥ 5, and no t-loop. Observe that the equitable chromatic number of any
cycle is at most 3, thus the maximum degree of G is at least 3. Note that a
vertex looses 2x units of charge each time it is incident to a 4-thread, and
at most x each time it is incident to a t-thread with t ∈ {1, 2}.
Let v ∈ V . If deg(v) ≥ 7, then the final charge of v is

ω′(v) ≥ deg(v)(1− 2x) ≥ 7 · 1
3

=
7
3
.

If deg(v) = 6, then v is not incident to six 4-threads by Lemma 18. So,
its final charge is

ω′(v) ≥ 6− 5 · 2x− x =
7
3
.

Suppose that deg(v) = 5. The reducibility of the configuration (L26) of
Figure 9 ensures that v is not incident to five 4-threads. If v is incident to
at most three 4-threads, then

ω′(v) ≥ 5− 3 · 2x− 2 · x =
7
3
.

If v is incident to four 4-threads, then it is adjacent to a big vertex thanks
to the reducibility of the configurations (L25) and (L27) of Figure 9. Thus,
its final charge is

ω′(v) ≥ 5− 4 · 2x =
7
3
.

Assume that deg(v) = 4. By Lemma 15, the vertex v is incident to at
most two 4-threads. If v is incident to at most one 4-thread, then its final
charge is ω′(v) ≥ 4−2x−3 ·x = 7

3 . So suppose that v is incident to exactly
two 4-threads. If v is adjacent to a big vertex, then its final charge is

ω′(v) ≥ 4− 2 · 2x− x =
7
3
.

15



If v is not adjacent to a big vertex, then we deduce from Lemma 14 that v
is incident to two 1-threads. Consequently, we know by Lemma 16 that v
has no bad 1-weak neighbour. Therefore, its final charge is

ω′(v) ≥ 4− 2 · 2x− 2 · x

2
=

7
3
.

Assume that deg(v) = 3. Suppose first that v is bad. The reducibility
of the configuration (L15) of Figure 5 ensures that v has no bad 1-weak
neighbour. Thus, v does not send any charge because of Rule R1. Moreover,
by Rule R1, the vertex v receives x

2 from each of its two 1-weak neighbours.
Consequently, its final charge is

ω′(v) ≥ 3− 2x− 2 · x

2
+ 2 · x

2
=

7
3
.

It remains to deal with the case where v is not bad. Suppose that v is
incident to a 4-thread. By Lemma 12, the vertex v is incident to exactly
one 4-thread. Furthermore, since v is good, we infer from Lemma 11 that v
is adjacent to two big vertices. Hence its final charge is ω′(v) ≥ 3− 2x = 7

3 .
So we assume now that v is not incident to a 4-thread. If v is adjacent to

a big vertex, then its final charge is ω′(v) ≥ 3−2 ·x = 7
3 . If v is not adjacent

to a big vertex, we deduce from Lemma 10 that v is incident to at most
one 2-thread. Thus, v is either incident to a 2-thread and two 1-threads, or
it is incident to three 1-threads. In the former case, the reducibility of the
configuration (L16) of Figure 5 ensures that v has no bad 1-weak neighbour.
Hence its final charge is

ω′(v) ≥ 3− x− 2 · x

2
=

7
3
.

In the latter case, the reducibility of the configuration (L17) of Figure 5
implies that v has at most one bad 1-weak neighbour. Thus, its final charge
is

ω′(v) ≥ 3− 3 · x

2
− x

2
=

7
3
.

To conclude, suppose that deg(v) = 2. So v belongs to a t-thread T for
some t ∈ {1, 2, 4}. By Rule R0, T receives tx from the big vertices to which
it is incident. Thus, each vertex of T receives x, and hence the final charge
of v is 2 + x = 7

3 .
The proof of Theorem 1 is complete. �

16



u4

u1

u2u3

b1

b2b3

(M1)

u2

u1

b2
u4u3

b1

b3

(M2)

u4

u1u2
b1u7 u6

b7

u3 u5
b5

(M3)

u4

u1u2
b1u3

b3

u6 u5
b5

(M4)

u3

u1u2
b1

b3

u4 u5
b5

(M5)

Figure 11: Reducible configurations (M1)–(M5).

3 The Proof of Theorem 2

The proof follows the line of that of Theorem 1. Throughout this section,
we assume that G = (V,E) is a counter-example to Theorem 2 with as
few vertices as possible. We first exhibit some reducible configurations, and
then use a discharging procedure to obtain a contradiction.

For each reducibility proof, we use the same approach as in Subsec-
tion 2.1.

3.1 Reducible configurations

We use the following lemma without explicit reference to it. Its proof is the
same as that of Lemmas 5, 6, 8 and 9 of Subsection 2.1, and hence we omit
it.

Lemma 19. The graph G has no t-thread with t ≥ 3 and no t-loop.

Recall that the girth of G is at least 10, so that in each forthcoming con-
figuration the vertices bi are pairwise distinct, except for the configuration
(M12) of Figure 13.

The next two lemmas exhibit some new reducible configurations con-
cerning 3-vertices of G.

Lemma 20. The configurations of Figure 11 are reducible.
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Figure 12: Reducible configurations (M6) and (M7).

Proof. (M1) and (M2). We properly colour each vertex ui one at a time,
using once each colour in {1, 2, 3, 4}. It suffices to finish by the vertex u4,
which is possible since these 4 integers are pairwise distinct modulo m.

(M3). We set c(ui) := i mod m for all indices i. The obtained colouring
is proper up to switching the colours of u1 and u2 if c(b1) = 1 mod m, the
colours of u7 and u6 if c(b7) = 7 mod m, and the colours of u5 and u3 if
c(b5) = 5 mod m.

(M4). We set c(ui) := i mod m for all indices i. For i ∈ {1, 3, 5}, we switch
the colours of ui and ui+1 if c(bi) = i mod m.

(M5). Let α ∈ {3, 4} \ {c(b3)}, and α′ ∈ {3, 4} \ {α}. We set c(u3) := α.
Then, we properly colour the 2-thread u1u2 with the colours 1 and 2, and
the 2-thread u4u5 with the colours α′ and 5.

Lemma 21. The configurations of Figure 12 are reducible.

Proof. (M6). First, we properly colour the vertices u1, u2 and u3 with the
colours 1, 2 and 3. Next, we properly colour the vertices u5, u6 and u7 with
the colours 5, 6 and 7. Finally, we set c(u4) := 4.

(M7). We first properly colour u8 and u9 with the colours 8 and 9. Then,
we proceed as for (M6).

Our third lemma deals with neighbourhoods of 4-vertices of G.

Lemma 22. The configurations of Figure 13 are reducible.

Proof. (M8). We set c(u7) := 4. Let α ∈ {1, 2, 3}\{c(b1)}, and β ∈ {1, 2, 3}\
{c(b2), α}. We set c(u1) := α and c(u2) := β. Let γ ∈ {1, 2, 3} \ {α, β} and
γ′ ∈ {5, 6} \ {γ}. We properly colour u3 and u4 with γ and γ′. This is
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possible by Lemma 7 since γ 6= γ′ mod m and γ 6= c(u7) = 4 6= γ′ mod m.
Similarly, we properly colour u5 and u6 with the two remaining colours.

(M9). Note that if c(bi) 6= 8 mod m for some i ∈ {4, 6, 8}, then we can
colour ui with 8 and proceed as for (M8). So we may assume that c(bi) = 8
mod m for each i ∈ {4, 6, 8}. Let α ∈ {3, 4} \ {8} and α′ ∈ {3, 4} \ {α}.
We set c(u7) := α, c(u4) := 7 and c(u3) := 8. Next, we set c(u5) := 5
and c(u6) := 6. As 1 6= α′ mod m, we can colour u2 with a colour in
{1, α′} \ {c(b2)}. It remains to properly colour the 2-thread u1u8 using
the two integers in {1, 2, α′} \ {c(u2)}. This is possible by Lemma 7 since
c(u7) = α /∈ {1, 2, α′}.

(M10). If a vertex bi, say b9, is not coloured 9, then we colour u9 with 9 and
proceed as for (M9). So we may assume that all the vertices bi are coloured
9. Let α ∈ {3, 4} \ {9} and α′ ∈ {3, 4} \ {α}. We set c(u7) := α, c(u8) := 8,
c(u2) := 6, c(u9) := 7 and c(u1) := 9. It remains to properly colour the two
2-threads u3u4 and u5u6 using once each integer in {1, 2, α′, 5}. We do so
by applying twice lemma 7, which is possible since c(u7) = α /∈ {1, 2, α′, 5}.

(M11). We set c(ui) := i for i ≤ 3, and we switch the colours of u1 and u2 if
c(b1) = 1 mod m. Next, we properly colour the vertices ui for i ∈ {4, 5, 6}
using each of the integers 4, 5 and 6: we colour first u4, then u5 and finally u6

with the remaining colour. This is possible since c(u3) = 3 /∈ {4, 5, 6}. Now,
we set c(u7) := 7 (note that this is proper since c(u6) 6= 7 mod m). Finally,
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u6u5
b6

u4 u3
b4

u1
b1 u2

b2

(M8)
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u6u5
b6

u4 u3
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b8 u2
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u4 u3
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u8 u1
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(M10)
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u8u9
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Figure 13: Reducible configurations (M8)–(M12).
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we colour the vertices u8, u9 and u10 using each of the integers 8, 9, 10. As
before, this is possible by colouring u8 last, since c(u7) = 7 /∈ {8, 9, 10}.

(M12). The vertices b1 and b12 need not be distinct. However, they cannot
be the same 3-vertex, otherwise G would have a 3-vertex incident to at least
two 2-threads, thereby contradicting the reducibility of the configuration
(M3), (M4) or (M5) of Figure 11. Consequently, the subgraph obtained by
removing the vertices ui from G has minimum degree at least 2.

For each i /∈ {6, 7, 8}, we set c(ui) := i mod m. For i ∈ {1, 3, 10, 12}, we
switch the colours of ui and ui+1 if c(bi) = i mod m. It remains to colour
the vertices u6, u7 and u8 using each of the integers 6, 7 and 8. We properly
colour u6 and u7 and we finish by u8, which is possible since c(u5) = 5 and
c(u9) = 9 so that neither can be equal to 6, 7 or 8 modulo m.

3.2 The Discharging Procedure

Recall that a vertex is big if its degree is at least 3. A 2-vertex is bad if it
belongs to a 2-thread. A 3-vertex is bad it it is incident to a 2-thread and
two 1-threads. A vertex of degree 2 or 3 is good if it is not bad. A 2-vertex
is suspicious if it is good and adjacent to a bad 3-vertex.

For every v ∈ V , we define the original charge of v to be ω(v) := deg(v).
Then, we apply the following discharging rules.

(R0) Every good 3-vertex gives 1
2k to each of its k adjacent 2-vertices, for

k ∈ {1, 2, 3}.
(R1) Every bad 3-vertex gives 1

2 to its adjacent bad 2-vertex.
(R2) Every 4-vertex gives 1

2 to each adjacent bad or suspicious 2-vertex;
and 1

4 to each of its remaining adjacent 2-vertices.
(R3) Every vertex of degree at least 5 gives 1

2 to each of its adjacent 2-
vertices.

We show that after applying these rules, the final charge ω′(v) of every
vertex v is at least 5

2 . Thus, we infer that the average degree of G is∑
v∈V

ω(v)
|V |

=
∑
v∈V

ω′(v)
|V |

≥ 5
2
,

which contradicts our assumption on the maximum average degree of G.
Recall that G has minimum degree at least 2, maximum degree at least

3, no t-thread for t ≥ 3, and no t-loop.
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Let v ∈ V . If deg(v) ≥ 5, then by Rule R3 the final charge of v is

ω′(v) ≥ deg(v)
(

1− 1
2

)
≥ 5

2
.

Suppose that deg(v) = 4. First suppose that v is adjacent to a bad
2-vertex. As the configuration (M10) of Figure 13 is reducible, the vertex v
is adjacent to at most three bad 2-vertices. Hence, if it is adjacent to a big
vertex, its final charge is

ω′(v) ≥ 4− 3 · 1
2

=
5
2
.

Otherwise, the reducibility of the configurations (M8), (M9) and (M11) of
Figure 13 implies that v is adjacent to exactly one bad 2-vertex, and zero
suspicious vertex. Consequently, its final charge is

ω′(v) ≥ 4− 1
2
− 3 · 1

4
>

5
2
.

Now, if v is not adjacent to a bad 2-vertex, then we infer from the reducibility
of the configuration (M12) of Figure 13 that either v is adjacent to a big
vertex, or it is adjacent to at most one suspicious 2-vertex. Therefore, its
final charge is

ω′(v) ≥ 4− 3 · 1
2

=
5
2
.

If deg(v) = 3, then v sends 1
2 in total to its neighbours by Rule R0 or

R1, so that its final charge is 5
2 , as desired.

Finally, assume that deg(v) = 2. Suppose first that v is bad, and let u
be the big neighbour of v. We assert that v receives 1

2 from u, and hence
its final charge is 5

2 . To prove this, we consider several cases regarding the
degree and the type of u.

If u has degree at least 4, then it gives 1
2 to v by Rule R2 or R3.

If u is a bad 3-vertex then it gives 1
2 to v by Rule R0.

If u is a good 3-vertex, then the reducibility of the configurations (M2),
(M3), (M4) and (M5) of Figure 11 along with the definition of a good
3-vertex imply that u is adjacent to two big vertices. Therefore, u
gives 1

2 to v by Rule R0, as asserted.
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Assume that v is good. If v is not suspicious, it receives at least 1
4

from each of its two neighbours according to Rules R0, R2 and R3, thanks
to the reducibility of the configuration (M1) of Figure 11. Hence its final
charge is at least 5

2 . If v is suspicious and adjacent to a vertex of degree
at least 4, then its final charge is 5

2 by Rules R2 and R3. Otherwise, v is
adjacent to a bad 3-vertex and another 3-vertex u. The reducibility of the
configuration (M7) of Figure 12 implies that u is good. Hence, we infer
from the reducibility of the configurations (M2) and (M4) of Figure 11 that
u is not adjacent to a bad 2-vertex. Furthermore, the reducibility of the
configurations (M1) of Figure 11 and (M6) of Figure 12 implies that u is
adjacent to two big vertices. Therefore, by Rule R0, v receives 1

2 from u.
Thus its final charge is 5

2 , as wanted.
The proof of Theorem 2 is complete. �

4 Concluding Remarks

Our setting allows us to derive results not only for planar graphs with
minimum degree at least 2 and lower-bounded girth, but more generally for
graphs of minimum degree at least 2 with bounded genus and lower-bounded
girth. Such results can be obtained from Theorems 1 and 2 using Euler’s
generalised formula and a theorem of Alon, Hoory and Linial [1, Theorem
1].

The technique used can probably be pushed further, and in particular for
equitable chromatic number 5 or more (those cases though are beyond our
original motivation). However, it would be more interesting and challeng-
ing to first find a more systematic way of proving reducibility of configura-
tions. In that regards, a useful notion could be the list-version of equitable
colouring introduced by Kostochka, Pelsmajer and West [10], which is worth
studying.

Finding planar graphs of minimum degree 2, equitable chromatic number
4 and the largest possible girth would also be interesting.
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