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Preface
My interest in graph homomorphisms dates back to the Spring School of
Combinatorics in . �e School is traditionally organised by the Depart-
ment of Applied Mathematics of the Charles University in a hilly part of the
Czech Republic; in  it was one of the few times when the Spring School
was international not only in terms of its participants, but also in terms of
its venue. Participants will never forget carrying a blackboard across the
border between Germany and the Czech Republic and the exciting boat
trip on the Vltava.

�e study text on homomorphisms [], specially prepared for the Spring
School, aroused my curiosity that has eventually resulted in both my mas-
ter’s thesis and this doctoral dissertation.

�e study of graph homomorphisms was pioneered by G. Sabidussi, Z. He-
drlín and A. Pultr in the ’s. It was part of an attempt to develop a
theory of general mathematical structures in the framework of algebra and
category theory. Many nice and important results have emerged from their
work and the work of their followers. Even so, until recently many graph
theorists would not include homomorphisms among the topics of central
interest in graph theory.

Nevertheless, graph homomorphisms and structural properties of graphs
have recently attracted much attention of the mathematical community.
�e reason may be in part that the homomorphism point of view has proved
useful in various areas ranging from colouring and graph reconstruction to
applications in artificial intelligence, telecommunication, and even statisti-
cal physics. A book [] now exists that introduces the topic and brings
together the most important parts of the theory and its applications. �is
thesis surveys my small contribution to the ongoing research in this area.

I typeset the thesis using X ELATEX. �is new typesetting system based on
Donald Knuth’s TEX and the format LATEX extends TEX’s capabilities of han-
dling Unicode input, multi-lingual and multi-script documents and espe-
cially modern OpenType fonts.

When I first saw it, I liked the typeface of the font Andulka very much and
have soon decided to use it for my thesis. For typesetting mathematics, I
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used AMS Euler [], an upright cursive font that tries to emulate a math-
ematician’s style of handwriting mathematical formulas on a blackboard,
which is upright rather than italic.

Some results contained in this thesis have been published or accepted for
publication.

[] J. Foniok, J. Nešetřil, and C. Tardif. Generalised dualities and finite
maximal antichains. In F. V. Fomin, editor, Graph-�eoretic Concepts in
Computer Science (Proceedings of WG ), volume  of Lecture
Notes in Comput. Sci., pages –. Springer-Verlag, .

[] J. Foniok, J. Nešetřil, and C. Tardif. On finite maximal antichains in the
homomorphism order. Electron. Notes Discrete Math., :–,
.

[] J. Foniok, J. Nešetřil, and C. Tardif. Generalised dualities and maximal
finite antichains in the homomorphism order of relational structures.
European J. Combin., to appear.
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Notation
A … base set of a Δ-structure A [see ..]
A → B … A is homomorphic to B

A ∼ B … A is homomorphically equivalent to B; A → B

and B → A

A ‖ B … A and B are incomparable; A 9 B and B 9 A

A/≈ … factor structure [see ..]
Block(A) … see ..
CB … exponential structure [see ..]
C(Δ) … category of Δ-structures; the homomorphism

order of Δ-structures
D(F) … dual of the Δ-tree F

D(F) … dual of a finite set F of Δ-trees
D(F) … finite dual set of a finite set F of Δ-forests
DSh(A) … directed shadow of A [see ..]→D … {A : A → D}→D … {A : A → D for some D ∈ D}

9D … {A : A 9 D for all D ∈ D}

Δ … a type of relational structures; Δ = (δi : i ∈ I)
f : A → B … f is a homomorphism from A to B

f[S] … image of the set S under the mapping f, if S is a
subset of the domain of f; f[S] =

{
f(s) : s ∈ S

}
f(e) … if e = (u1, u2, . . . , uk),

then f(e) =
(
f(u1), f(u2), . . . , f(uk)

)
f ¹ T … restriction of the function f to a subset T of the

domain of f

F9 … {A : F 9 A}

F→ … {A : F → A for some F ∈ F}

F9 … {A : F 9 A for all F ∈ F}

(x)ג … height label of the vertex x [see ..]
I … set of indices; Δ = (δi : i ∈ I)
Inc(A) … incidence graph of A [see ..]
Kk … complete graph on k vertices
p ∨ q … supremum of p and q; join in a lattice
p ∧ q … infimum of p and q; meet in a lattice
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p ⇒ q … Heyting operation [see ..]
~Pk … directed path with k edges
Ri(A) … the ith edge set of a Δ-structure A [see ..]
S↓ … downset generated by S

S↑ … upset generated by S

Sh(A) … shadow of A [see ..]
~Tk … transitive tournament with k vertices
[a]≈ … class of the equivalence ≈ that contains a

> … Δ-structure with one vertex and all loops; > =
{1}; Ri(>) = >δi for all i ∈ I

⊥ … Δ-structure with one vertex and no edges; ⊥ =
{1}; Ri(⊥) = ∅ for all i ∈ I∐

j∈J Aj; A + B … sum of relational structures [see ..]∏
j∈J Aj; A × B … product of relational structures [see ..]
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ƾ Introduction
Whatever you can do or
dream you can, begin it.
Boldness has genius, magic
and power in it. Begin it now.

(JohannWolfgang von Goethe)
ƾ.ƾ Motivation and overview
In this thesis, we study homomorphisms of finite relational structures. Fi-
nite relational structures can be viewed in several ways. �e view we adopt
consists in seeing them as a generalisation of graphs. Relational structures
may actually be described as oriented uniform hypergraphs with coloured
edges. �ere are three main differences from ordinary graphs: edges are
ordered, they are tuples of possibly more than two vertices, and there are
various kinds of edges.

Homomorphisms are mappings between vertex sets of relational struc-
tures. Homomorphisms preserve edges; so the image of an edge is an edge.
Moreover, it is an edge of the same kind.

�us homomorphisms endow graphs and relational structures with an
algebraic structure that will be familiar to an algebraist or category theorist.

�e unifying concept in the thesis is the question of existence of homo-
morphisms. It interconnects the two main topics presented here.

�e first topic is homomorphism dualities. �ere the existence of a ho-
momorphism between structures is equivalent to the non-existence of a
homomorphism between other structures. In particular, we study situ-
ations where a class of relational structures is characterised both by the
non-existence of a homomorphism from some finite set of structures, and
by the existence of a homomorphism to some other finite set of structures.
Such situations are called finite homomorphism dualities. We provide a full
characterisation of finite homomorphism dualities.

�e other topic is the homomorphism order, where the existence of a ho-
momorphism defines a relation that turns out to induce a partial order on
the class of relational structures. We examine especially finite maximal an-
tichains in the homomorphism order. We find a surprising correspondence
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between maximal antichains and finite dualities. Many finite maximal an-
tichains have the splitting property; we derive a structural condition on
those antichains that do not have this property.

�e main results of the thesis are the characterisation of all finite ho-
momorphism dualities (�eorem ..) and the splitting property of finite
maximal antichains in the homomorphism order with described exceptions
(�eorem .. and �eorem ..).

Other results include a new construction of dual structures, which gen-
eralises two previous constructions (Section .). Furthermore we extend
our results on homomorphism dualities for relational structures into the
context of lattices (Section .). And finally we state several consequences
of these results in the area of computational complexity (Chapter ).

ƾ.ƿ Relational structures
First things first. We study homomorphisms of relational structures, so let
us first define relational structures.

.. Definition. A type Δ is a sequence (δi : i ∈ I) of positive integers; I is
a finite set of indices. A (finite) relational structure A of type Δ is a pair(
X, (Ri : i ∈ I)

)
, where X is a finite nonempty set and Ri ⊆ Xδi ; that is,

Ri is a δi-ary relation on X. Relational structures of type Δ are denoted by
capital letters A, B, C, …

... �ere are many natural examples of relational structures. Perhaps
the simplest are digraphs (with loops allowed), which are simply Δ-struc-
tures of type Δ = (2). �is example is also the motivation for our termi-
nology. �e class of all partially ordered sets is a subclass of the class of all
Δ-structures for Δ = (2), requiring that the relation be reflexive, transitive
and antisymmetric.

�e class of all (2)-structures whose relation is symmetric is the class of
all undirected graphs. �is is an important example and we shall keep it in
mind as we define properties and operations on Δ-structures; all of them
carry over immediately to undirected graphs. For an undirected graph G,
the base set is usually called the vertex set and denoted by V(G).

... In a logician’s words, relational structures are models of theories with
no function symbols; and finite relational structures are such models in the
theory of finite sets.

.. Definition. If A =
(
X, (Ri : i ∈ I)

)
, the base set X is denoted by A

and the relation Ri by Ri(A). We often refer to a relational structure of
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type Δ as Δ-structure. �e type Δ is almost always fixed in the following
text. �e elements of the base set are called vertices and the elements of
the relations Ri are called edges. For the set of all edges of a Δ-structure A

we use the notation R(A), that is

R(A) :=
∪
i∈I

Ri(A).

To distinguish between various relations of a Δ-structure we speak about
kinds of edges (so the elements of Ri(A) are referred to as the edges of the
ith kind).

.. Unary relations. Some of the relations of Δ-structures may be unary
(this is the same as saying that some of the numbers δi may be equal to
one). In this thesis, however, we consider only relational structures with
no unary relations. �is is a rather technical assumption. All the results
and proofs remain valid even for structures with unary relations, but some
adjustments would have to be made.

For example, in �eorem .. we suppose that there are at most two
relations. In fact, we should suppose that there are at most two relations
of arity greater than one and an arbitrary number of unary relations.

Elsewhere the statements would have to be slightly altered, like in �eo-
rem ... If we allow unary relations, the upper bound has to be replaced
by nn+|I|.

Such adjustments would, in our opinion, make the text less clear and
more difficult to read, so we find it useful to assume that structures have
no unary relations.

Substructures of relational structures are what we are familiar with from
graph theory as induced subgraphs. It is possible to define “non-induced”
substructures as well, but in our context it is more convenient not to do so.

..Definition. A substructure of a Δ-structure A is any structure
(
S, (R ′

i :

i ∈ I)
)

such that S is a subset of A and R ′
i = Ri ∩ Sδi . It is also called the

substructure of A induced by S; and it is a proper substructure if S $ A.

Next we introduce a factorisation construction. �is construction can be
viewed as gluing equivalent vertices together. An example of the construc-
tion (for digraphs) is in Figure ..

..Definition. Let A be a Δ-structure and let ≈ be an equivalence relation
on A. We define the factor structureA/≈ to be the Δ-structure whose base
set is the set of all equivalence classes of the relation ≈, so A/≈ = A/≈, and
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a δi-tuple of equivalence classes is in the relation Ri of A/≈ if we can find
an element in each of the classes such that these elements form an edge
of A,

Ri(A/≈) =
{(

[a1]≈, [a2]≈, . . . , [aδi
]≈

)
: (a1, a2, . . . , aδi

) ∈ Ri(A)
}

, i ∈ I.

A A/≈

Figure .: Factor structure

Finally, et us once more stress the two restrictions posed on relational
structures in this thesis: All structures we consider are finite and have no
unary relations.

ƾ.ǀ Homomorphisms
Familiar with the notion of relational structures, we continue by defining
homomorphisms. As one might expect, they are mappings of base sets that
preserve all the relations.

.. Definition. Let A and A ′ be two relational structures of the same
type Δ. A mapping f : A → A ′ is a homomorphism from A to A ′ if for
every i ∈ I and for every u1, u2, . . . , uδi

∈ A the following implication
holds:

(u1, u2, . . . , uδi
) ∈ Ri(A) ⇒ (

f(u1), f(u2), . . . , f(uδi
)
)
∈ Ri(A

′).
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.. Definition. �e fact that f is a homomorphism from A to A ′ is de-
noted by

f : A → A ′.

If there exists a homomorphism from A to A ′, we say that A is homo-
morphic to A ′ and write A → A ′; otherwise we write A 9 A ′. If A is
homomorphic to A ′ and at the same time A ′ is homomorphic to A, we say
that A and A ′ are homomorphically equivalent and write A ∼ A ′. If on
the other hand there exists no homomorphism from A to A ′ and no ho-
momorphism from A ′ to A, we say that A and A ′ are incomparable and
write A ‖ A ′.

.. Definition. A homomorphism from A to itself is called an endomor-
phism of A.

Next we give two simple examples of homomorphisms.

.. Example. �is is a trivial example: Let Δ = (2), so we consider di-
graphs. Let ~Pk be the directed path on vertices {0, 1, . . . , k − 1} with edge
set

{
(j, j + 1) : j = 0, 1, . . . , k − 1

}
. �en f : V(~Pk) → V(G) is a homomor-

phism if and only if f(0), f(1), . . . , f(k) is a directed walk in G.

.. Example. For an undirected graph G, a homomorphism to the com-
plete graph Kk is essentially a k-colouring of G: imagine the vertices of Kk

as colours, and since edges of G have to be preserved, distinct vertices of G

have to be mapped to distinct vertices of Kk, in other words they have to
be assigned distinct colours.

.. Composition of homomorphisms. It is a very important aspect of
homomorphisms that they compose – the composition of two homomor-
phisms is a homomorphism as well. �is composition operation endows
a set of Δ-structures with a structure of an algebraic flavour. Homomor-
phisms of relational structures share this property with morphisms of other
structures, like topological spaces, semigroups, monoids, partial orders and
many others. �is flavour is discussed in more detail in Section . but it is
omnipresent throughout the thesis.

.. Definition. As usual, a homomorphism from A to A ′ is an isomor-
phism if it is a bijection and f−1 is a homomorphism of A ′ to A. If there
exists an isomorphism between A and A ′, we say that A and A ′ are iso-
morphic and write A ∼= A ′. An isomorphism of A with itself is called an
automorphism of A.
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ƾ.ǁ Retracts and cores
In this section, we introduce the notion of cores. Cores are Δ-structures
that are minimal in the following sense: A core is not homomorphically
equivalent to any smaller structure.

For the formal definition, we use retractions. A retraction is an endomor-
phism that does not move any vertex in its image.

.. Definition. Let A be a Δ-structure. An endomorphism f : A → A is
a retraction if it leaves its image fixed, in other words if f(x) = x for all
x ∈ f[A]. A substructure B of A is called a retract of A if there exists a
retraction of A onto B; a retract is proper if it is a proper substructure.

Later we will need the fact that a retract is homomorphically equivalent
to the original structure.

.. Lemma. If B is a retract of A, then A and B are homomorphically
equivalent.

Proof. If B is a retract of A, then B is a substructure of A and so the iden-
tity mapping is a homomorphism from B to A. On the other hand, the
retraction is a homomorphism from A to B.

.. Definition. A Δ-structure C is called a core if it has no proper retracts.
A retract C of A is called a core of A if it is a core.

Several other conditions are equivalent to the one we chose for the defi-
nition of a core.

.. Lemma (Characterisation of cores). For a Δ-structure C the following
conditions are equivalent.

() C is a core (that is, C has no proper retracts).

() C is not homomorphic to any proper substructure of C.

() Every endomorphism of C is an automorphism.

Proof. () ⇒ (): Suppose that f is a homomorphism of C to a proper sub-
structure of C. �en f is a permutation of its image f[C] and so there exists
a positive integer k such that fk restricted to f[C] is the identity mapping.
�en fk is a retraction of C onto a proper retract.

() ⇒ (): Let f : C → C be an endomorphism. �e mapping f is surjec-
tive, so it is a bijection (C is finite). �ere exists a positive integer k such
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that fk is the identity mapping. �en f−1 = fk−1 is a homomorphism, so
f is an automorphism.

() ⇒ (): Every retraction is an endomorphism, so every retraction of C

is an automorphism. �us the image of every retraction of C is C, hence
C has no proper retracts.

Next we prove that every relational structure has exactly one core (up to
isomorphism). For the proof we use two lemmas.

.. Lemma. Let A and B be two Δ-structures. If there exist surjective ho-
momorphisms f : A → B and g : B → A, then A and B are isomorphic.

Proof. �e existence of f shows that |A| ≥ |B| and the existence of g shows
|A| ≤ |B|, so |A| = |B|. �is means that f is a bijection and that g ◦ f is a
bijection, so there exists a positive integer k such that (g◦f)k is the identity
mapping. �en (g ◦ f)k−1 ◦ g = f−1, therefore f−1 is a homomorphism and
f an isomorphism.

.. Lemma. Let C and C ′ be two cores. If C and C ′ are homomorphically
equivalent, they are isomorphic.

Proof. Let f : C → C ′ and g : C ′ → C. �e mapping f ◦ g is an en-
domorphism of C ′. Since C ′ is a core, it is an automorphism, therefore
both f and g are surjective. �e existence of an isomorphism follows from
Lemma ...

�is lemma implies in particular that every Δ-structure is homomorphi-
cally equivalent to at most one core. �e next proposition asserts that it is
actually exactly one.

.. Proposition. Every Δ-structure A has a unique core C (up to isomor-
phism). Moreover, C is the unique core to which A is homomorphically equiv-
alent.

Proof. Proof of existence: select the retract C of A of the smallest size. Any
potential proper retract C ′ of C would be a smaller retract of A, and so C

is a core.
Let C and C ′ be two distinct cores of G. By the definition of a core, there

exist homomorphisms f : G → C and f ′ : G → C ′. �e restrictions f¹C ′ and
f ′ ¹C show that C and C ′ are homomorphically equivalent; by Lemma ..
they are isomorphic.

.. Corollary. A Δ-structure C is a core if and only if it is not homomor-
phically equivalent to a Δ-structure with fewer vertices.
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Proof. Suppose that C and D are homomorphically equivalent and D has
fewer vertices than C. �en the core of D has at most |D| vertices, but |D| <

|C|, so C is not the unique core to which D is homomorphically equivalent.
Hence C is not a core.

Conversely, if C is not a core, then it is homomorphically equivalent to its
core C ′. �e core C ′ is a proper retract of C, hence it has fewer vertices.

�us we can summarise four equivalent definitions of a core.

.. Corollary (Characterisation of cores revisited). For aΔ-structureC the
following conditions are equivalent.

() C is a core (that is, C has no proper retracts).

() C is not homomorphic to any proper substructure of C.

() Every endomorphism of C is an automorphism.

() C is not homomorphically equivalent to a Δ-structure with fewer ver-
tices.

ƾ.ǂ 
e category of relational structures and
homomorphisms

It is little surprising that structures of an algebraic nature, like Δ-struc-
tures, with suitably selected mappings among them, should form a category.
Here, we observe some basic properties of the category of Δ-structures and
homomorphisms. �e reader may consult [] or [] for an introduction to
category theory.

... For a fixed type Δ = (δi : i ∈ I), let C(Δ) be the category of all
Δ-structures (objects) and their homomorphisms (morphisms).

.. Definition. Let J be a nonempty finite index set and let Aj, j ∈ J be
Δ-structures. We define the sum

∐
j∈J Aj to be the disjoint union of the

structures Aj; formally the base set of the sum is defined by∐
j∈J

Aj =
∪
j∈J

(
{j} × Aj

)
,
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and the relations by

Ri

∐
j∈J

Aj

 =
∪
j∈J

{(
(j, x1), (j, x2), . . . , (j, xδi

)
)

:

(x1, x2, . . . , xδi
) ∈ Ri(Aj)

}
, i ∈ I.

.. Proposition. �e Δ-structure A =
∐

j∈J Aj with embeddings ιj : Aj →
A such that ιj : x 7→ (j, x) for j ∈ J is the coproduct of the Δ-structures Aj in
the category C(Δ).

Proof. Clearly the embeddings ιj are homomorphisms. Suppose we have
another structure A ′ and homomorphisms gj : Aj → A ′. �en f : (j, x) 7→
gj(x) is the unique homomorphism from A to A ′ such that fιj = gj for all
j in J.

.. Corollary. �e sum
∐

j∈J Aj is homomorphic to a Δ-structure B if and
only if Aj → B for every j ∈ J.

For the sum of two Δ-structures, we use the notation A + B, or more
generally, we can write A1 + A2 + · · · + An for the sum of n structures.

We remark here that the sum of graphs, as defined above, is the usual
operation of disjoint union of graphs.

We go on to describe product in the category of Δ-structures.

.. Definition. Let J = {1, 2, . . . , n} be an index set and let Aj, j ∈ J be
Δ-structures. We define the product

∏
j∈J Aj = A to be the Δ-structure

whose base set is the Cartesian product of the vertex sets of the factors,
and there is an edge of a kind if and only if there is an edge of the same
kind in each projection. Formally,

A =
∏
j∈J

Aj,

Ri (A) =
{(

(x1,1, x1,2, . . . , x1,n), (x2,1, x2,2, . . . , x2,n), . . . ,

(xδi,1, xδi,2, . . . , xδi,n)
)

:

(x1,j, x2,j, . . . , xδi,j) ∈ Ri(Aj) for all j ∈ J

}
, i ∈ I.

.. Example. Let Δ = (2, 2). Let A and B be the Δ-structures depicted in
Figure .. Figure . shows the product A × B.
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a b

cd
1

2 3
A B

Figure .: �e Δ-structures A and B

1

2

3

a b c d

Figure .: �e product A × B

.. Proposition. �e Δ-structure A =
∏

j∈J Aj with projections πj : A →
Aj such that πj : (x1, x2, . . . , xn) 7→ xj for j ∈ J is the product of the Δ-struc-
tures Aj in the category C(Δ).

Proof. �e projections are indeed homomorphisms; and whenever A ′ is a
Δ-structure such that gj : A ′ → Aj are homomorphisms, then f : x 7→(
g1(x), g2(x), . . . , gn(x)

)
is the unique homomorphism from A ′ to A such

that πjf = gj for all j in J.

.. Corollary. A Δ-structure B is homomorphic to the product
∏

j∈J Aj if
and only if B → Aj for every j ∈ J.

Analogously to sums, we use the convenient notation A × B and A1 ×
A2 × · · · × An for products.
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Finally, we introduce exponentiation in C(Δ). �e definition is some-
what technical, but exponentiation is important in the context of homo-
morphism dualities.

.. Definition. Let B and C be two Δ-structures. We define the expo-
nential structure CB to be the Δ-structure whose base set is

CB = {f : f is a mapping from B to C},

and the ith relation is the set of all δi-tuples (f1, f2, . . . , fδi
) such that when-

ever the δi-tuple (b1, b2, . . . , bδi
) is an element of Ri(B), then(

f1(b1), f2(b2), . . . , fδi
(bδi

)
)
∈ Ri(C).

0

1

a b

c

A B

(1, 1, 0) (1, 1, 1)

(0, 1, 1) (1, 0, 0) (1, 0, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0)

Figure .: An example of an exponential structure

.. Example. An example of two Δ-structures A and B and the exponen-
tial structure AB for Δ = (2, 2) is shown in Fig. .. A mapping f : B → A is
represented by the triple

(
f(a), f(b), f(c)

)
. �e existence of a unique black

edge in A means that for two functions f1, f2 : B → A to be connected with
an edge in AB, it must hold that f1(a) = f1(b) = 0 (the initial vertices of
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all black edges in B must be mapped to the initial vertex of the only black
edge in A) and f2(c) = 1 (a similar condition for the terminal vertices of
the black edges). Similarly, for outlined edges, (f1, f2) is an outlined edge
in AB if and only if f1(a) = f1(b) = f2(b) = f2(c) = 0.

.. Proposition. For Δ-structures B and C, the exponential structure CB

together with the homomorphism eval : CB ×B → C defined by eval(f, b) :=
f(b) is an exponential object in the category C(Δ).

Proof. If
(
(f1, b1), (f2, b2), . . . , (fδi

, bδi
)
)
∈ Ri(C

B × B), then

(f1, f2, . . . , fδi
) ∈ Ri(C

B) and (b1, b2, . . . , bδi
) ∈ Ri(B)

by the definition of product. It follows from the definition of edges in the
exponential structure that(

f1(b1), f2(b2), . . . , fδi
(bδi

)
)
∈ Ri(C).

So the mapping eval is indeed a homomorphism.
Let A be a structure and g : A × B → C a homomorphism. Define λg :

A → CB by setting λg(a)(b) := g(a, b). Suppose (a1, a2, . . . , aδi
) ∈ Ri(A).

Now, if (b1, b2, . . . , bδi
) ∈ Ri(B), then(

λg(a1)(b1), λg(a2)(b2), . . . , λg(aδi
)(bδi

)
)

=(
g(a1, b1), g(a2, b2), . . . , g(aδi

, bδi
)
)
∈ Ri(C)

because g is a homomorphism. �erefore
(
λg(a1), λg(a2), . . . , λg(aδi

)
)
∈

Ri(C
B) and λg is a homomorphism from A to CB; it is easy to check that it

is the only such homomorphism that satisfies eval ◦ (λg× idB) = g, that is,
that the following diagram commutes.

A

λg

²²Â
Â
Â
Â
Â
Â A × B

λg×idB

²²Â
Â
Â
Â
Â
Â

g

!!CC
CC

CC
CC

CC
CC

CC
CC

CC

CB CB × B eval
// C

.. Corollary. For any Δ-structures A, B and C,

A → CB if and only if A × B → C.
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Proof. If g : A × B → C, then λg defined in the proof of Proposition ..
is a homomorphism from A to CB. Conversely, if h : A → CB, then eval ◦
(h × idB) is a homomorphism from A × B to C.

... �e base set of CB consists of all mappings from B to C, but not all
of them are homomorphisms. It follows immediately from the definition of
relations of the exponential structure, that homomorphisms from B to C

are exactly those elements f of CB, for which the δi-tuple (f, f, . . . , f) is
in Ri(C

B) for all i ∈ I.

.. Proposition. �e category C(Δ) of Δ-structures and homomorphisms
is Cartesian closed.

Proof. Let V = {1} and let > be the Δ-structure such that

> = V and
Ri(>) = Vδi for i ∈ I.

�ere exists exactly one homomorphism from any Δ-structure to >, namely
the constant mapping to 1. Hence > is the terminal object of C(Δ). Us-
ing Proposition .., we see that there are finite products in C(Δ); and by
Proposition .., there are exponential objects.

ƾ.ǃ Connectedness and irreducibility
In this section, we define connected relational structures. Our notion of
connectedness generalises weak connectedness of digraphs. We define it
in two principally different ways – using auxiliary undirected multigraphs
(shadows and incidence graphs), and by specifying structural conditions.
We show that these two ways are equivalent.

Irreducibility is a dual notion to connectedness in the category C(Δ). We
mention a famous problem connected to irreducibility: Hedetniemi’s prod-
uct conjecture.

.. Definition. �e directed shadow of a Δ-structure A is the directed
multigraph DSh(A) whose vertices are the elements of A and there is one
edge from a to b for each occurrence of the vertices a, b in an edge in
some Ri(A) of arity δi ≥ 2 such that (a1, . . . , aδi

) ∈ Ri(A) with aj = a,
aj+1 = b for some 1 ≤ j < δi.

.. Definition. �e shadow of a Δ-structure A is the undirected multi-
graph Sh(A) that is created from DSh(A) by replacing every directed edge
with an undirected edge (the symmetrisation of DSh).
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.. Example. Let Δ = (2, 3), let A be a Δ-structure,

A =
(
{1, 2, . . . , 6},

(
{(3, 2), (6, 3), (6, 5)}, {(1, 5, 6), (4, 4, 1), (4, 5, 2)}

))
.

�e the directed shadow DSh(A) and the shadow Sh(A) of the Δ-struc-
ture A are shown in Fig. .. �e loop at the vertex 4 is caused by the triple
(4, 4, 1) ∈ R3(A).

1 2 3

4 5 6

DSh(A)
1 2 3

4 5 6

Sh(A)

Figure .: �e directed shadow and the shadow of a Δ-structure

Shadows “preserve homomorphisms” – a homomorphism of Δ-structures
is also a homomorphism of their shadows. �e converse, however, is not
true in general.

.. Lemma. If f : A → B is a homomorphism of Δ-structures, then f is a
graph homomorphism from Sh(A) to Sh(B).

Proof. If {u, v} is an edge of Sh(A), then by definition there is an edge e ∈
Ri(A) for some i ∈ I such that u and v appear as consecutive vertices in e.
�erefore f(u) and f(v) appear as consecutive vertices in the edge f(e) of B,
hence {u, v} is an edge of Sh(B).

.. Definition. �e incidence graph Inc(A) of a Δ-structure A is the bi-
partite multigraph (V1 ∪ V2, E) with parts V1 = A and

V2 = Block(A) :=
{(

i, (a1, . . . , aδi
)
)

: i ∈ I, (a1, . . . , aδi
) ∈ Ri(A)

}
,

and one edge between a and
(
i, (a1, . . . , aδi

)
)

for each occurrence of a as
some aj in an edge (a1, . . . , aδi

) ∈ Ri(A).

.. Example. �e incidence graph Inc(A) of the Δ-structure A from Ex-
ample .. is shown in Figure ..
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1 2 3 4 5 6

(
1, (3, 2)

) (
1, (6, 3)

) (
1, (6, 5)

) (
2, (1, 5, 6)

) (
2, (4, 4, 1)

) (
2, (4, 5, 2)

)
Figure .: �e incidence graph

Next we formulate three structural conditions and show that they are
equivalent with each other as well as with the connectedness of the shadow
and the incidence graph.

.. Lemma. For a core G, the following are equivalent:
() If G → A + B for some structures A, B, then G → A or G → B.
() If G ∼ A + B for some structures A, B, then B → A or A → B.
() If G ∼ A + B for some structures A, B, then G ∼ A or G ∼ B.
() �e shadow Sh(G) is connected.
() �e incidence graph Inc(G) is connected.

Proof.
() ⇒ (): If G ∼ A + B, then G → A + B, and using () we have G → A

or G → B. In the first case B → A+B ∼ G → A, hence B → A. In the latter
case A → A + B ∼ G → B, and so A → B.

() ⇒ (): Suppose G ∼ A + B. By () we have B → A, and therefore
A ∼ A + B ∼ G; or we have A → B, and then B ∼ A + B ∼ G.

() ⇒ (): Let G → A+B. Using distributivity, we have (G×A)+(G×B) ∼

G× (G + A)× (G + B)× (A + B) ∼ G, since G is homomorphic to all other
factors.

() ⇒ (): Suppose that () holds but Inc(G) is disconnected. Let A ′ be
a component of Inc(G) and B ′ = Inc(G) − A ′; let A be the substructure
of G induced by V(A ′) ∩ G and let B be the substructure of G induced
by V(B ′) ∩ G. �en G = A + B but both A and B are proper substructures
of G, so if G ∼ A or G ∼ B, then G is not a core, a contradiction.

() ⇒ (): In Inc(G), if any two vertices u, v ∈ G have a common neigh-
bour e in Block(G), they belong to the same edge e of G, and so there is a
path from u to v in Sh(G). �erefore the existence of a path from u to v

in Inc(G) implies the existence of a path from u to v in Sh(G).
() ⇒ (): First observe that since every edge of A + B is either an edge

of A or an edge of B, we have that Sh(A + B) = Sh(A) + Sh(B). Let f :
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G → A + B. �en f : Sh(G) → Sh(A + B) = Sh(A) + Sh(B) by Lemma ...
Because Sh(G) is connected, f[G] ⊆ A or f[G] ⊆ B: otherwise there is
an edge {u, v} of Sh(G) such that f(u) is a vertex of Sh(A) and f(v) is a
vertex of Sh(B), but then {f(u), f(v)} is not an edge of Sh(A) + Sh(B), a
contradiction with f being a homomorphism. �erefore f : G → A or
f : G → B.

... �e conditions ()–() above are equivalent even for structures that
are not cores; if a Δ-structure G satisfies ()–(), its core satisfies all the
conditions ()–(). Similarly, the conditions ()–() are equivalent for all
structures G.

.. Definition. A Δ-structure is called connected if it satisfies the equiv-
alent conditions ()–() of Lemma ... Maximal connected substructures
of a Δ-structure A are called the components of A.

... It is easy to see that every Δ-structure is the sum of its components;
and that the decomposition into components is unique.

A part of the previous lemma holds in the dual category too.

.. Lemma. For a structure G, the following are equivalent:
() If A × B → G for some structures A, B, then A → G or B → G.
() If G ∼ A × B for some structures A, B, then B → A or A → B.
() If G ∼ A × B for some structures A, B, then G ∼ A or G ∼ B.

Proof. Repeat the proof of Lemma ..; reverse all arrows and replace +
with ×.

..Definition. A Δ-structure is called irreducible if it satisfies the equiv-
alent conditions of Lemma ...

... One might expect to find conditions involving Inc(G) and Sh(G),
similar to () and () of Lemma .. to be equivalent with irreducibility of
a Δ-structure. But in spite of being dual to connectedness, irreducibility is
much more tricky. For example, it is an easy exercise to devise an efficient
algorithm for testing connectedness of a Δ-structure. On the other hand,
irreducibility is not even known to be decidable.

... Another difference from connectedness is that it is not true that ev-
ery Δ-structure can be decomposed as a finite product of irreducible struc-
tures (dually to the decomposition into connected components).
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Here it is worthwhile to mention that our terminology is inspired by al-
gebra, and lattice theory in particular (see Section .). In the past, other
names for this property have been used; namely productive in [] and mul-
tiplicative in [] and by many other authors. We believe that the word
irreducible fits the meaning of the property better.

�e term multiplicative is motivated by a property of irreducible struc-
tures described in the next paragraphs.

Hedetniemi’s product conjecture
.. Definition. Let A be a class of Δ-structures that is closed under ho-
momorphic equivalence. We say that A is multiplicative if A1 ∈ A and
A2 ∈ A implies that A1 × A2 ∈ A.

A famous conjecture of Hedetniemi [] states that the chromatic num-
ber of the product of two (undirected) graphs is equal to the minimum of
the chromatic numbers of the two graphs. �is conjecture is equivalent to
the following.

.. Conjecture. �e class K̄k of all graphs that are not k-colourable is
multiplicative for every positive integer k.

For some graph classes, such as the class of all graphs that are not ho-
momorphic to a fixed graph, multiplicativity has an equivalent description.
�is is in fact not restricted to graphs, but holds for relational structures as
well.

.. Proposition. Let H be a Δ-structure. �en the class

H := {X : X 9 H}

of all Δ-structures that are not homomorphic to H is multiplicative if and
only if H is irreducible.

Proof. Let H be irreducible. By condition () of Lemma .., if the prod-
uct A1 × A2 is homomorphic to H, then A1 → H or A2 → H. �us if
A1 × A2 /∈ H, then A1 /∈ H or A2 /∈ H.

Conversely, if H is multiplicative, then condition () of Lemma .. is
satisfied. Hence the Δ-structure H is irreducible.

Recall from Example .. that a graph is k-colourable if and only if it is
homomorphic to the complete graph Kk. �us Hedetniemi’s conjecture has
another equivalent formulation.
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.. Conjecture. �e complete graph Kk is irreducible for every positive
integer k.

�e conjecture is evidently true for k = 1. It merely says that if the
product A1 × A2 has no edges, then A1 or A2 has no edges either.

It is not difficult to show that if both A1 and A2 are non-bipartite, then
A1 × A2 is non-bipartite too; this is the case k = 2. El-Zahar and Sauer []
have proved that K3 is irreducible. Almost no other examples of irreducible
(undirected) graphs are known, though. Some more irreducible graphs
have been found by Tardif []. Nevertheless, Hedetniemi’s product con-
jecture remains wide open for general k.

ƾ.Ǆ Paths, trees and forests
Trees are very important in the context of homomorphism dualities (see
especially �eorem ..). We define them as structures whose shadow
is a tree. Forests are then structures consisting of tree components. In
addition, we define paths in Δ-structures as “linear trees”: every edge has
at most two neighbouring edges.

.. Definition. A Δ-structure A is called a Δ-tree or simply a tree if Sh(A)
is a tree; it is called a Δ-forest or just a forest if Sh(A) is a forest.

... Notice that A is a Δ-tree if and only if Inc(A) is a tree; and that A is
a Δ-forest if and only if each component of A is a Δ-tree.

..Definition. A Δ-tree P is called a Δ-path if every edge of P intersects at
most two other edges and every vertex of P belongs to at most two edges.

... In every Δ-path with at least two edges there are two edges (end
edges) such that each of them shares a vertex with exactly one other edge.
Any other edge (middle edge) shares two of its vertices, each with one
other edge.

As a generalisation of acyclic directed graphs, that is directed graphs with-
out directed cycles, we introduce acyclic relational structures.

.. Definition. A Δ-structure A is called acyclic if there is no directed
cycle in its directed shadow DSh(A).

Evidently, every Δ-tree is acyclic. We need this fact especially in Sec-
tion ..
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ƾ.ǅ Height labelling and balanced structures
Balanced digraphs are digraphs that are homomorphic to a directed path.
�e name originates from the fact that the number of forward edges and
the number of backward edges is the same along every cycle in a balanced
digraph (and such cycles are called balanced). For digraphs being homomor-
phic to a directed path is the same as being homomorphic to an oriented
forest. For relational structures it is not, and the forest definition is the
suitable one.

.. Definition. We say that a Δ-structure A is balanced if A is homomor-
phic to a Δ-forest.

For a balanced digraph, the height of a vertex is defined as the length
of the longest directed path ending in that vertex. As a generalisation, we
define height labelling of relational structures.

..Definition. Let A be a Δ-structure and let ג be a labelling of its vertices
with (

∑
i∈I δi − |I|)-tuples of integers, indexed by (i, 1), (i, 2), . . . , (i, δi −1),

i ∈ I.
We say that ג is a height labelling of A if

• there exists a vertex x of A such that (x)ג = (0, 0, . . . , 0), and

• whenever (x1, x2, . . . , xδi
) ∈ Ri(A) and 1 ≤ j < δi, then(

(xj+1)ג
)
(i,j)

=
(
(xj)ג

)
(i,j)

+ 1, and(
(xj+1)ג

)
(i ′,j ′)

=
(
(xj)ג

)
(i ′,j ′)

for (i ′, j ′) 6= (i, j).
(.)

�e first condition in the above definition is purely technical; it facilitates
the exposition of arguments. It is possible to omit it without altering the
essence of the definition.

.. Proposition. If A is a balanced Δ-structure, then A has a height la-
belling. If a height labelling of a connected structure exists, it is unique up to
an additive constant vector.

Proof. First we prove that a height labelling exists for any Δ-tree T : pick
an arbitrary vertex x and set (x)ג = (0, 0, . . . , 0). On all other vertices the
labelling is defined recursively. If a neighbour y of x in the shadow Sh(T)
has already been assigned a label, the label (x)ג is determined by the condi-
tions (.). In this way, a label is assigned to every vertex, because Sh(T) is
a tree.
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By separately labelling each component, we get a height labelling also for
any Δ-forest.

Now if f : A → T is a surjective homomorphism from a balanced Δ-struc-
ture A to a Δ-forest T , let us fix a height labelling of T and for a vertex x

of A define
(x)ג := ג

(
f(x)

)
.

�e labelling defined in this way is a height labelling; it is not difficult to
check the conditions (.).

Uniqueness follows from the fact that the difference between the labels
of two vertices of A depends only on what edges of A generated the path
between the two vertices in the shadow Sh(A).

... We may picture height labelling as if we replace each edge of the ith
kind by δi − 1 binary edges of various kinds and then count forward edges
and backward edges. A height labelling for a structure exists if and only
if each path (in the shadow) between any fixed pair of vertices counts the
same difference of the numbers of forward edges and backward edges for
all kinds. �is is related to balanced structures and the height of a path, as
defined for digraphs in [].

ƾ.ǆ Partial orders
Here we state the definitions and elementary facts about partial orders and
lattices that we need later (chiefly in Chapter ). Several introductory books
on this topic are available, such as the recommended one by Davey and
Priestley [].

.. Definition. A partial order is a binary relation 4 over a set P which
is reflexive, antisymmetric, and transitive, that is for all a, b, and c in P, we
have that:

. a 4 a (reflexivity);

. if a 4 b and b 4 a then a = b (antisymmetry); and

. if a 4 b and b 4 c then a 4 c (transitivity).

A set with a partial order is called a partially ordered set or a poset. So
formally, a partially ordered set is an ordered pair (P,4), where P is called
the base set and 4 is a partial order over P.
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.. Definition. A subset Q ⊆ P of the poset (P,4) is a downset if, for all
elements p and q, if p is less than or equal to q and q is an element of Q,
then p is also in Q. For an arbitrary subset S ⊆ P the downset generated
by S is the smallest downset that contains S; it is denoted by S↓ .

.. Definition. Similarly, a subset Q ⊆ P of the poset (P,4) is an upset
if, for all elements p and q, if q 4 p and q is an element of Q, then p is also
in Q. For an arbitrary subset S ⊆ P the upset generated by S is the smallest
upset that contains S; it is denoted by S↑ .

.. Definition. Suppose 4 is a partial order on a nonempty set P. �en
the elements p, q ∈ P are said to be comparable provided p 4 q or q 4 p.
Otherwise they are called incomparable. A subset Q of P is an antichain
if all elements of Q are pairwise incomparable. An antichain is maximal if
there is no other antichain strictly containing it.

.. Definition. Given a subset Q of a poset P, the supremum of Q is the
least element of P that is greater than or equal to each element of Q; so the
supremum of Q is an element u in P such that

. x 4 u for all x in Q, and

. for any v in P such that x 4 v for all x in Q it holds that u 4 v.

Dually, the infimum of Q is the greatest element of P that is less than or
equal to each element of Q.

.. Definition. A lattice is a poset whose subsets of size two all have a
supremum (called join; the join of p and q is denoted by p ∨ q) and an
infimum (called meet; the meet of p and q is denoted by p ∧ q).

�ere are many natural examples of lattices.

.. Example. �e natural numbers in their usual order form a lattice,
under the operations of minimum and maximum.

�e positive integers also form a lattice under the operations of taking
the greatest common divisor and least common multiple, with divisibility
as the order relation: a ≤ b if a divides b.

.. Example. For any set A, the collection of all subsets of A can be or-
dered via subset inclusion to obtain a lattice bounded by A itself and the
empty set. Set intersection and union interpret meet and join, respectively.

.. Example. All subspaces of a vector space V form a lattice. Here the
meet is the intersection of the subspaces and the join of two subspaces W

and W ′ is the minimal subspace that contains the union W ∪ W ′.
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An important property of lattices is distributivity. We meet it again in
Lemma .. and the following paragraphs.

.. Definition. A lattice L is distributive if the following identity holds
for all x, y, and z in L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

�is says that the meet operation preserves non-empty finite joins. It is a
basic fact of lattice theory that the above condition is equivalent to its dual:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

.. Example. Not every lattice is distributive. From our examples above,
the three lattices in .. and .. are all distributive. However, the lattice
of subspaces of a vector space from .. is not distributive: Consider the
space R2 and let A, B and C be three distinct subspaces of dimension 1

(straight lines). �en A ∨ B = R2 and A ∩ C = B ∩ C = 0, and thus

C = (A ∨ B) ∩ C 6= (A ∩ C) ∨ (B ∩ C) = 0.

Next we introduce the notion of a gap, which is an island of non-density
in a partially ordered set.

.. Definition. A pair (p, q) of elements of a poset P is a gap if p ≺ q,
and for every r ∈ P, if p 4 r 4 q then r = p or r = q.

In a dense poset there exists r such that p ≺ r ≺ q for any pair (p, q)
with p ≺ q. �us a poset is dense if and only if it has no gaps. Gaps are
further discussed in Sections . and ..
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ƿ Homomorphism dualities
It was one more argument
to support his theory that
nice things are nicer
than nasty ones.

(Kingsley Amis, Lucky Jim)

Homomorphism dualities are situations where a class of relational struc-
tures is characterised in two ways: by the non-existence of a homomor-
phism from some fixed set of structures, and by the existence of a homo-
morphism to some other fixed set of structures.

For example, an (undirected) graph is bipartite if and only if it is homo-
morphic to the complete graph K2; so the existence of a homomorphism
to K2 is determined by the non-existence of a homomorphism from odd
cycles.

An important aspect of dualities is that in some cases they make the re-
spective class more accessible. Duality guarantees the existence of a certifi-
cate for positive as well as negative answers to the membership problem.
In both cases it is a homomorphism, either a homomorphism from the “for-
bidden” set or a homomorphism to the other (“dual”) set of structures.

In special cases this provides an example of a good characterisation in
the sense of Edmonds []. �is may mean that an effective algorithm for
testing membership is available.

Homomorphism dualities have been studied for many years now. �eir
roots go back to the early ’s, appearing already in Nešetřil’s textbook on
graph theory []. �e pioneering work was done by Nešetřil and Pultr [].
�ey found the first instances of homomorphism dualities – the duality
pairs of directed paths and transitive tournaments (see Example ..).
More duality pairs were later discovered by Komárek [], and his work
led to a characterisation theorem for digraphs []. Nešetřil and Tardif []
found a connection to the homomorphism order (Chapter ) and gener-
alised the notion for relational structures and together with the author
of this thesis they have recently found a full characterisation [] (�eo-
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rem .. here). Meanwhile, dualities have again been generalised in two
different contexts [, ].

In this chapter, we first investigate dualities with homomorphisms to a
single structure characterised by the non-existence of a homomorphism
from a single structure (duality pairs) and show some properties of such
structures. �en we fully characterise finite dualities. Finally, we address
some extremal problems related to the size of the involved structures.

ƿ.ƾ Duality pairs
Duality pairs are the simplest cases of homomorphism dualities. Here a
class of relational structures is characterised by the existence of a homo-
morphism to a single structure D and at the same time by the non-existence
of a homomorphism from a single structure F.

.. Definition. Let F, D be relational structures. We say that the pair
(F,D) is a duality pair if for every structure A we have F → A if and only if
A 9 D.

One should view the Δ-structure F as a characteristic obstacle, which pre-
vents a Δ-structure from being homomorphic to D.

We introduce the following short notation for a symbolic description of
duality pairs.

... Let

F9 := {A : F 9 A},→D := {A : A → D}.

�en (F,D) is a duality pair if and only if

F9 = →D.

For proving that a certain pair of structures is indeed a duality pair, the
following characterisation is frequently convenient.

.. Lemma. Let F and D be Δ-structures. �en (F,D) is a duality pair if
and only if F 9 D, and whenever F 9 A, then A → D.

Proof. If (F,D) is a duality pair, then F → F and hence F 9 D by the defini-
tion of a duality pair. �is proves one implication.

Next is the proof of the opposite implication. According to the definition,
it has to be shown that if F → A, then A 9 D. Suppose that F → A
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and A → D. �en by composition of homomorphisms F → D. �at is a
contradiction.

... In our notation for duality pairs, the letter F stands for forbidden and
the letter D for dual.

As a warm-up, we state a few results, which are not difficult to prove but
they provide the first experience with homomorphism dualities.

�e first proposition states the obvious: that replacing F or D in a dual-
ity pair with a homomorphically equivalent structure does not change the
duality.

.. Proposition. Let (F,D) be a duality pair. If F ′ is homomorphically
equivalent to F, and D ′ is homomorphically equivalent to D, then (F ′, D ′) is
also a duality pair.

Proof. By Lemma .. we have F 9 D. By the same lemma it suffices to
prove that F ′ 9 D ′, and that whenever F ′ 9 A, then A → D ′.

First we prove that F ′ 9 D ′. Suppose on the contrary that F ′ → D ′.
�en F → D because F → F ′ → D ′ → D since homomorphisms compose.
�at is a contradiction.

Now we show that whenever F ′ 9 A, then A → D ′. Suppose that F ′ 9
A, then also F 9 A, so A → D because (F,D) is a duality pair. Since D → D ′,
we have A → D ′ by composition of homomorphisms.

Next we show that in a duality pair (F,D) the structure D is uniquely
determined by F up to homomorphic equivalence. Vice versa, up to homo-
morphic equivalence the structure F is determined by D.

.. Proposition. Let F, F ′, D, D ′ be Δ-structures. If (F,D) and (F,D ′) are
duality pairs, then D and D ′ are homomorphically equivalent. If (F,D) and
(F ′, D) are duality pairs, then F and F ′ are homomorphically equivalent.

Proof. Suppose that both (F,D) and (F,D ′) are duality pairs. Lemma ..
implies that F 9 D since (F,D) is a duality pair, so D → D ′ because (F,D ′) is
a duality pair. Moreover F 9 D ′ because (F,D ′) is a duality pair, so D → D ′

because (F,D) is a duality pair. Hence D ∼ D ′.
�e proof of the second part is analogous.

.. Corollary. If (F,D) is a duality pair, then there exists a unique core D ′

such that (F,D ′) is a duality pair.

�is corollary motivates the following definition.





.. Definition. Let D be a core and let (F,D) be a duality pair. �en the
Δ-structure D is called the dual of F; it is denoted by D(F).

Now we present the first example of duality pairs.

.. Example ([]). Let us first consider digraphs, that is Δ-structures
with Δ = (2). Let ~Pk denote the directed path with k edges and ~Tk the
transitive tournament on k vertices. �en for k ≥ 1 the pair (~Pk,~Tk) is a
duality pair.

Proof. We proceed by induction on k. For k = 1, clearly ~P1 9 ~T1, and if
~P1 9 A, then A has no edges, whence A → ~T1. So (~P1,~T1) is a duality pair
by Lemma ...

Now we prove the induction step for k ≥ 2. Again, obviously ~Pk 9 ~Tk.
Moreover, suppose that ~Pk 9 A. �en the digraph A is acyclic (it contains
no directed cycles). �erefore there exists a vertex of A with out-degree
zero, that is with no outward edges going from it. Let A ′ be the digraph
created from A by deleting all vertices with out-degree zero. It is easy to
see that ~Pk−1 9 A ′, so by induction we have that f ′ : A ′ → ~Tk−1. We
can extend the homomorphism f ′ to a homomorphism from A to ~Tk: the
vertices of A ′ are mapped in the same way as by f ′, to the subgraph of ~Tk

consisting of non-zero out-degree vertices, which is isomorphic to ~Tk−1;
and the remaining vertices of A are mapped to the terminal vertex (sink)
of ~Tk.

�e next example is due to Komárek []. It is presented here without
proof. However, let us point out that the example is the essence of the
mosquito construction (see Section .) and historically it was an important
milestone on the way to the description of all duality pairs.

.. Example ([]). For two positive integers m, n, define the digraph
Pm,n = (V, E) to be the oriented path with vertices

V = {a0, a1, . . . , am, b0, b1, . . . , bn}

and edges

E =
{
(aj, aj+1) : j = 0, 1, . . . ,m − 1

}
∪

{
(bj, bj+1) : j = 0, 1, . . . , n − 1

}
∪

{
(b0, am)

}
(see Figure .).
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a0 a1 a2 a3 a4 a5

b0 b1 b2

Figure .: �e path P5,2

Furthermore, let Dm,n = (W,F) be the digraph with the vertex set de-
fined by

W =
{
(i, j) : i ≥ 0, j ≥ 0, 0 ≤ i + j ≤ m + n − 2

}
and edges by

F =
{(

(i, j), (i ′, j ′)
)

: i < i ′, j > j ′, and i < m or j < n

}
.

An example is in Figure ..

(0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

(0, 3)

(1, 2)

(2, 1)

(3, 0)

Figure .: �e digraph D2,3

�en (Pm,n, Dm,n) is a duality pair.

In the next example, we consider Δ-structures with more than one rela-
tion. It shows that if some relations of a Δ-structure F are empty, then in
the dual structure the corresponding relations contain all possible tuples of
vertices.
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.. Example. Let Δ = (δi : i ∈ I), let F =
(
F, (Ri : i ∈ I)

)
be a Δ-struc-

ture and let I ′ ⊆ I be a set of indices such that Ri = ∅ for all i ∈ I\I ′. Define
Δ ′ = (δi : i ∈ I ′) and let F ′ be the Δ ′-structure

(
F, (Ri : i ∈ I ′)

)
. Suppose

that there exists a Δ ′-structure D ′ such that (F ′, D ′) is a duality pair. By
adding complete relations to D ′ we get the Δ-structure D with

D = D ′,

Ri(D) =

{
Ri(D

′) if i ∈ I ′,

(D)δi if i ∈ I \ I ′.

�en the pair (F,D) is a duality pair.

Proof. We use Lemma ... First, F 9 D because F ′ 9 D ′. Now let A be
a Δ-structure such that F 9 A. �is means that F ′ 9 A ′ =

(
A, (Ri(A) :

i ∈ I ′)
)

and therefore there exists a homomorphism f ′ : A ′ → D ′. Obvi-
ously f : a 7→ f ′(a) is a homomorphism from A to D.

�e following theorem characterises all duality pairs.

..�eorem ([]). If (F,D) is a duality pair, then F is homomorphically
equivalent to a Δ-tree. Conversely, if F is a Δ-tree with more than one vertex,
then there exists a unique (up to homomorphic equivalence) structureD such
that (F,D) is a duality pair.

Proof. �e proof is split into two parts. Here we prove that if (F,D) is a
duality pair and F is a core, then F is a tree. �e second part of the proof can
be found in Section ., which contains a construction of the dual structure
for any tree F. Uniqueness follows from Proposition ...

Our proof uses an idea of Komárek [], who proved the characterisation
of duality pairs for digraphs. We assume that in a duality pair (F,D) the Δ-
structure F is a core that is not a Δ-tree. �e idea of the proof is to construct
an infinite sequence of Δ-structures Fk such that F is not homomorphic to
any of them. By duality, all the structures Fk are homomorphic to D, and
we will show that this implies that F → D. �at is a contradiction with the
definition of a duality pair (see Lemma ..).

Hence if (F,D) is a duality pair and F is a core, then F is a Δ-tree. If (F ′, D)
is a duality pair and F ′ is arbitrary, then by Proposition .. also the pair
(F,D) is a duality pair, where F is the core of F ′. So F is a Δ-tree, and therefore
F ′ is homomorphically equivalent to a Δ-tree.

�is part of the proof is split into eight steps (..–..).
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... F is connected. Because: If F → A + B, then A + B 9 D, and so
either A or B is not homomorphic to D, and so F → A or F → B. �is is
one of the equivalent descriptions of connectedness in Lemma ...

We proceed to define the structures Fk for all positive integers k.

... We suppose that F is not a Δ-tree; thus Sh(F) contains a cycle. Let
{u, v} be an edge of Sh(F) that lies in a cycle. �is edge was added to the
shadow Sh(F) because there is an edge e ∈ Rj(F) that contains u and v as
consecutive vertices. Now, F1 will be the Δ-structure constructed from F by
removing the edge e. Furthermore, F2 is constructed by taking two copies
of F1 and by joining them by two edges of the jth kind in the way depicted
in Figure ..

e

u
v

F

u
v

F1

u u
v

v

F2

Figure .: �e construction of F1 and F2

In general, for k ≥ 2, take k copies of F1 and join each with all other
copies by edges of the jth kind. Two edges are used to connect each pair
of copies of F1, so altogether 2

(
k

2

)
new edges are introduced. �e resulting

structure is Fk.
Formally, if e = (e1, . . . , u, v, . . . , eδj

), define Fk in the following way:

Fk := {1, 2, . . . , k} × F,

Rj(Fk) :=
{(

(q, x1), (q, x2), . . . , (q, xδj
)
)

:

e 6= (x1, x2, . . . , xδj
) ∈ Rj(F), 1 ≤ q ≤ k

}
∪

{(
(q, e1), (q, e2), . . . , (q, u), (q ′, v), . . . , (q ′, eδj

)
)

:

1 ≤ q, q ′ ≤ k, q 6= q ′
}

,
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Ri(Fk) :=
{(

(q, x1), (q, x2), . . . , (q, xδi
)
)

:

(x1, x2, . . . , xδi
) ∈ Ri(F), 1 ≤ q ≤ k

}
for i 6= j.

Next we prove several properties of the structures Fk.

... Fk → F. Because: �e identity mapping is indeed a homomorphism
from F1 to F. For k ≥ 2, mapping each vertex (q, x) to the corresponding
vertex x of F provides a homomorphism (let us call this homomorphism h;
so h : (q, x) 7→ x).

... F 9 F1. Because: �e structures F and F1 have the same number of
vertices but F1 has fewer edges. So a potential homomorphism from F to F1

cannot be injective and so it would actually map F to a proper substructure
of F. �is is impossible because F is a core.

In the following four paragraphs, let n := |F| and let the vertices be enu-
merated in such a way that F = {x1, x2, . . . , xn} with u = x1 and v = x2.

... If f : F → Fk is a homomorphism, then the image f[F] consists of
exactly one copy of each vertex of F1 in Fk. In particular, any homomorphism
f : F → Fk is injective. Because: If f : F → Fk is a homomorphism, then the
image f[F] contains vertices of at least two distinct copies of F1 in Fk because
of ... If some vertex appears in more than one copy, say f(xi) = (p, xl)
and f(xi ′) = (q, xl) for some p 6= q, then the composed homomorphism
hf : F → F is not an automorphism. �is is a contradiction, since F is a core.
Here h is the homomorphism (q, x) 7→ x defined in ...

... If F → Fk for some k, then F → F2. Because: Let f : F → Fk.
By .., the image f[F] contains exactly one vertex (p, x1) and exactly
one vertex (q, x2). As F is connected, the image contains vertices of only at
most two copies of F1 in Fk, namely vertices in the form (p, xi) and (q, xi).
So the image f[F] lies entirely in a substructure of Fk that is isomorphic
to F2. �us F → F2.

... F 9 Fk. Because: Suppose F → Fk. �en there is a homomorphism
f : F → F2 because of ... We may assume that (1, x1) and (2, x2) are
images under f of some vertices of F.

Now, f[F] = V1 ∪ V2, where V1 contains vertices in the first copy and
V2 vertices in the second copy of F1 in F2, that is Vl :=

{
x : x ∈ f[F] and x =

(l, xi) for some i
}

for l = 1, 2. �en (1, x1) ∈ V1 and (2, x2) ∈ V2.





For a Δ-structure A, let r(A) denote the number of all edges of A, so

r(A) :=
∣∣∣∪
i∈I

Ri(A)
∣∣∣.

Let G be the substructure induced in F2 by V1 ∪ V2. �e homomorphism f

is injective by .., and as a result it maps every edge of F to an edge of G.
�us r(G) ≥ r(F).

�e edges of G are split into three groups: the edges induced by V1 (let
their number be m1), the edges induced by V2 (let their number be m2)
and the edge (

(1, e1), (1, e2), . . . , (1, u), (2, v), . . . , (2, eδj
)
)
.

Hence r(G) = m1 + m2 + 1.
Let the base set F be partitioned into W1 and W2 by setting Wl :=

{
x :

(l, x) ∈ Vl

}
. So W1 consists of those vertices x of F whose copy (1, x) is in

the image f[F]; similarly for W2.
Because of .. we indeed have that F = W1 ∪ W2 and W1 ∩ W2 = ∅.

Observe that the set W1 induces m1 edges in F and the set W2 induces m2

edges. Recall that to get F1 we deleted the edge e = (e1, . . . , u, v, . . . , eδj
)

of F. �e edge e contains vertices e1, . . . , u ∈ W1 and v, . . . , eδj
∈ W2, so

it is not induced by either W1 or W2. Moreover, u and v are vertices of a
cycle in Sh(F), so there has to be another edge in the cycle with one end
in W1 and the other end in W2. �is edge appears in yet another edge of F.
�erefore r(F) ≥ m1 + m2 + 2.

We conclude that m1 + m2 + 1 = r(G) ≥ r(F) ≥ m1 + m2 + 2, a contra-
diction.

Now we can derive a contradiction, thus disproving the assumption that
F is not a Δ-tree.

... As a consequence of duality, Fk → D for all k, because F 9 Fk

by ... If e = (e1, . . . , et = u, v = et+1, . . . , eδj
) is the deleted edge, let

k > |D|t and let f : Fk → D be a homomorphism. �en for some p, q such
that p 6= q we have f(p, el) = f(q, el) for all l satisfying that 1 ≤ l ≤ t.

Define g : F → D by setting g(x) := f(p, x). If (x1, x2, . . . , xδi
) ∈ Ri(F)

is an edge distinct from e, then
(
(p, x1), (p, x2), . . . , (p, xδi

)
)
∈ Ri(Fk) and

therefore (
g(x1), g(x2), . . . , g(xk)

)
∈ Ri(D).

Besides, (
g(e1), g(e2), . . . , g(et)

)
∈ Rj(D)
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because f is a homomorphism,(
g(e1), g(e2), . . . , g(et)

)
=

(
f(p, e1), f(p, e2), . . . , f(p, et)

)
=

(
f(q, e1), . . . , f(q, et), f(p, et+1), . . . , f(p, eδj

)
)

and (
(q, e1), . . . , (q, et), (p, et+1), . . . , (p, eδj

)
)
∈ Rj(Fk).

Hence g is a homomorphism from F to D, a contradiction with duality.

�is proves that F is a Δ-tree.

ƿ.ƿ 
ree constructions
In this section, we first show two ways to construct the dual of a Δ-tree F.
�e first construction is by Komárek [] for digraphs (we will call it the
mosquito construction), the second by Nešetřil and Tardif [, ] for gen-
eral Δ-structures (called here the bear construction).

�is section’s main purpose is to present a more general construction, of
which both cited constructions are special cases.

Mosquito construction
For the mosquito construction, we consider digraphs, so let Δ = (2). Let F

be a core tree. �e duals of directed paths are described in Example ..,
so here we suppose that F is a core digraph other than a directed path.

First we introduce some notation.

... We define the function µ : F → N2 by µ(x) := (d, u), where d is
the length of the longest directed path ending in the vertex x and u is the
length of the longest directed path starting from x.

Further, let r(F) be the length of the longest directed path in F, that is
r(f) := max{r : ~Pr → F}.

Note that r(F) = max
{
d + u : (d, u) = µ(x), x ∈ F

}
.

... Let p(F) be the height of F defined as the length of the shortest
directed path that F is homomorphic to:

p(F) := min{r : F → ~Pr}.

For any p, q ≥ 0 define

Φ(p, q) :=
{
a ∈ F : µ(a) = (d, u), d ≤ p, u ≤ q

}
.
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Now follows the definition of the mosquito dual of the oriented tree F.

.. Definition. Let F be an oriented tree. �e vertices of the mosquito
dualDm(F) are triples (p, q,φ), where 0 ≤ p, q < p(F) and p+q < p(F) and
φ : Φ(p, q) → F is a function such that φ(a) is a neighbour (in-neighbour
or out-neighbour) of a for all a ∈ Φ(p, q).

�e edges of the dual Dm(F) are pairs
(
(p, q,φ), (p ′, q ′, φ ′)

)
such that

(i) p < p ′ and q > q ′, and

(ii) there is no edge (a, b) of F such that φ(a) = b and φ ′(b) = a.

�e correctness of the construction is asserted by the following theorem.

..�eorem ([]). For an oriented tree F that is not a directed path, the
pair

(
F,Dm(F)

)
is a duality pair.

Bear construction
Next we present a construction of the dual by Nešetřil and Tardif, which
works for Δ-structures of an arbitrary type Δ.

.. Definition ([]). Let F be a core Δ-tree. Remember the definition of
Block(F) and Inc(F) from ... Define the bear dual Db(F) as the Δ-struc-
ture on the base set

Db(F) :=
{

f : F → Block(F) :
{
x, f(x)

}
∈ E

(
Inc(F)

)
for all x ∈ F

}
with relations

Ri

(
Db(F)

)
:=

{
(f1, f2, . . . , fδi

) : for all e = (x1, x2, . . . , xδi
) ∈ Ri(F)

there exists j ∈ {1, . . . , δi} such that fj(xj) 6= (i, e)
}
.

.. �eorem ([]). For any Δ-tree F, the pair
(
F,Db(F)

)
is a duality pair.

A generalisation: 
e animal construction
In this subsection we provide a common framework for both constructions.
We present a construction with a parameter called a positional-function
family. Depending on what family we take, we get distinct dual structures.
Later we will show what positional-function families have to be considered
to give the mosquito construction and the bear construction.

We start with the definition of a positional-function family.
Recall the definition of an acyclic Δ-structure from ...
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.. Definition. Let (Q, 4) be a partially ordered set. A positional-func-
tion family is a family

{µA : A is an acyclic structure}

of functions such that

(i) µA : A → Q for all acyclic structures A,

(ii) whenever A and B are acyclic structures and there exists a homomor-
phism f : A → B such that f(x) = y, then µA(x) 4 µB(y),

(iii) for any non-empty finite downset S in Q (see ..) there exists an
acyclic representing structure Θ = Θ(S) with

. a mapping Ω : Θ → S such that for any homomorphism f from
an acyclic structure A to Θ and for any vertex a ∈ A, we have
µA(a) 4 Ω

(
f(a)

)
, and

. a mapping Ψ : S → Θ such that for every acyclic structure A

with µA[A] ⊆ S the mapping given by a 7→ Ψ
(
µA(a)

)
is a homo-

morphism from A to Θ.

In order to construct the dual of a tree F, we need a positional-function
family satisfying a certain finiteness condition, as we will see shortly. �is
condition is trivially satisfied if the poset Q is finite, as is the case of the
bear construction. �e condition is as follows.

.. Definition. Let (Q,4) be a partially ordered set. Let us have a posi-
tional-function family M = {µA : A acyclic} with µA : A → Q and with
representing structures Θ(S) for all non-empty finite downsets S.

Let F be a Δ-tree. Let
T :=

∪
F9A

A acyclic

µA[A]

and let S(F) := T ↓ . So S(F) is the smallest downset that contains T as a
subset. We say that the positional-function family M is suitable for the
Δ-tree F if the following condition is satisfied:

�e downset S(F) is finite. (.)

... We define the mapping Φ : Θ → 2F by

Φ(θ) :=
{
y ∈ F : µF(y) 4 Ω(θ)

}
.

It is obvious from the definition that if y ∈ F is mapped to θ by some
homomorphism from F to Θ, then y ∈ Φ(θ).
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Now we proceed to define the animal dual of a Δ-tree F with respect to a
positional-function family M = {µA : A acyclic} that is suitable for F.

.. Definition. �e base set Da of the animal dual Da consists of pairs
(θ,φ) such that θ is a vertex of Θ and φ : Φ(θ) → Block(F) is a mapping
such that y and φ(y) are adjacent in Inc(F), that is y appears in the edge
given by φ(y) in F.

�e δi-tuple
(
(θ1, φ1), (θ2, φ2), . . . , (θδi

, φδi
)
)

is an element of the rela-
tion Ri(Da) if and only if (θ1, θ2, . . . , θδi

) ∈ Ri(Θ) and there is no edge e =
(y1, y2, . . . , yδi

) ∈ Ri(F) such that φ1(y1) = φ2(y2) = · · · = φδi
(yδi

) =
(i, e). (Some φj(yj) may be undefined but that does not matter; in such a
case the edge e does not satisfy the equality.)

To prove that the animal construction is correct and the structure Da

forms indeed a duality pair with F, we will use Lemma ... First we prove
that F is not homomorphic to Da; this is shown by the following two lem-
mas. �e other part of the proof follows the statement of �eorem ...

.. Lemma. Let A be an arbitrary Δ-structure and let f : A → Da be a
homomorphism. Let the mapping g : A → Θ be defined by g(a) := θ such
that f(a) = (θ,φ). �en g is a homomorphism from A to Θ.

Proof. If (a1, a2, . . . , aδi
) ∈ Ri(A), then

(
f(a1), f(a2), . . . , f(aδi

)
)
∈ Ri(Da)

because f is a homomorphism. Hence
(
g(a1), g(a2), . . . , g(aδi

)
)
∈ Ri(Θ)

by the definitions of g and the dual structure.

.. Lemma. �e tree F is not homomorphic to Da.

Proof. Reductio ad absurdum: Suppose that there is a homomorphism f :
F → Da. Let y be an arbitrary element of F and let f(y) = (θ,φ). By
Lemma .., there is a homomorphism g : F → Θ that maps y to θ,
whence y ∈ Φ(θ) by ... So φ(y) is defined; let

φ(y) =:
(
i, (y1, y2, . . . , yδi

)
)

and let
e := (y1, y2, . . . , yδi

) ∈ Ri(F).

Since f is a homomorphism,
(
f(y1), f(y2), . . . , f(yδi

)
)
∈ Ri(Da). By the

definition of edges of Da, there is an index j such that φj(yj) 6= (i, e) if
f(yj) = (θj, φj). Let φj(yj) = (i ′, e ′). So we have a walk of length four
in Inc(F), namely y, e, yj, e

′, with the property that y 6= yj and e 6= e ′.
Repeating the procedure we can get an arbitrarily long walk

z1, e1, z2, e2, . . . , zn, en
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in Inc(F) such that zj 6= zj+1 and ej 6= ej+1. �is is a contradiction, because
Inc(F) is a tree.

Now we prove the correctness of the animal construction.

..�eorem. Let (Q, 4) be a partially ordered set. Let {µA : A acyclic} be
a positional-function family with representing structure Θ(S) for every non-
empty finite downset S in Q. If F is a Δ-tree such that the condition (.)
holds, and Da is the Δ-structure defined in .., then the pair (F,Da) is a
duality pair.

Proof. We have just seen that F 9 Da, and so by Lemma .. it remains
to show that whenever F 9 X, then X → Da. �e proof uses an idea of the
proof for the bear dual []. �is idea is reworked so as to fit the animal
construction.

Fix a labelling ℓ of the vertices of Inc(F) by positive integers such that
different vertices get different labels and the subgraph of Inc(F) induced
by

{
u : ℓ(u) ≥ n

}
is a connected subtree for all positive integers n. Such

a labelling can be defined by repeatedly labelling and deleting the leaves
of Inc(F).

For a vertex y ∈ F and for its neighbour b = (i, e) ∈ Block(F) in Inc(F),
let Ty,b be the maximal subtree of Inc(F) that contains y and b but no other
neighbour of y. Let Fy,b be the Δ-tree such that Inc(Fy,b) = Ty,b (so Fa,b is
a substructure of F). For a vertex y and for b 6= b ′, the subtrees Fy,b and
Fy,b ′ intersect in exactly one vertex: the vertex y.

Let X be a Δ-structure such that F 9 X; we will define a mapping f : X →
Da and prove that it is a homomorphism.

For every x ∈ X and y ∈ F we define

K(x, y) :=
{
b ∈ Block(F) : {b, y} ∈ E(Inc(F)),

and there is no homomorphism g : Fy,b → X s.t. g(y) = x
}
.

For every x ∈ X and y ∈ F, the set K(x, y) is non-empty. Otherwise there
would be a homomorphism gb : Fy,b → X for all edges b incident with y,
satisfying gb(y) = x, and so their union would define a homomorphism
from F to X.

Let x ∈ X be an arbitrary vertex. Define f(x) := (θx, φx) by setting

θx := Ψ
(
µX(x)

)
and let φx : Φ(θx) → Block(F) be defined by letting φx(y) be the element b

of K(x, y) with the smallest label ℓ(b). �e element θx is well-defined be-
cause µX[X] ⊆ S by the definition of S.
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Suppose that (x1, x2, . . . , xδi
) ∈ Ri(X). We want to show that(

f(x1), f(x2), . . . , f(xδi
)
)
∈ Ri(Da).

Let f(xj) = (θj, φj). �en

(θ1, θ2, . . . , θδi
) =

(
Ψ

(
µX(x1)

)
, Ψ

(
µX(x2)

)
, . . . , Ψ

(
µX(xδi

)
))

∈ Ri(Θ)

by the definition of a representing structure.
�us it remains to prove that there is no edge e = (y1, y2, . . . , yδi

) ∈
Ri(F) such that φ1(y1) = φ2(y2) = · · · = φδi

(yδi
) = (i, e). For the

sake of contradiction, suppose that such an edge exists. Let N(yj) de-
note the set of all neighbours of yj in Inc(F) different from (i, e) and let
N :=

∪
1≤j≤δi

N(yj). Among the elements of N, there may be at most
one with its ℓ-label bigger than the label of (i, e) because of the way ℓ was
defined.

If there is no such element, then for any j, no element of N(yj) belongs
to K(xj, yj), because otherwise we would not have selected (i, e) as the
value of φj(yj). �erefore for all j and all b ∈ N(yj) there is a homomor-
phism gj,b : Fyj,b → X such that gj,b(yj) = xj and the union of all these
homomorphisms defines a homomorphism from F to X, a contradiction.

�us there is a unique element b ′ ∈ N such that ℓ(b ′) > ℓ(i, e). Hence
b ′ ∈ N(yj ′) and for all b ∈ N different from b ′ we can find a homomor-
phism gj,b as above.

�en the mapping g such that

g(y) :=

{
xj ′ if y = yj ′ ,
gj,b(y) if y ∈ Fyj,b and y 6= yj ′ ,

is a homomorphism from Fyj, (i,e) to X, proving that (i, e) /∈ K(xj ′ , yj ′) and
so contradicting the value of φj ′ .

Bear and mosquito are animals
In the beginning of this section we promised a generalisation of both the
bear and the mosquito constructions. We have seen a metaconstruction:
it produces different results depending on what positional-function family
we plug in. Here we show what to plug in to get the two previous con-
structions. �at proves that indeed the bear construction and the mosquito
construction are special cases of the animal construction.
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.. Example (bear). Let Q = {♦} be a one-element poset. For an acyclic
structure A define µA to be the constant mapping that maps all vertices
of A to ♦. �e conditions (i) and (ii) of Definition .. are trivially satis-
fied. Let Θ be the Δ-structure defined by Θ = Q and Ri(Θ) = Θ

δi for all
i ∈ I, and let Ω and Ψ be the identity mapping on Q = Θ. �e structure Θ

is the representing structure Θ(Q) for the only downset Q, since the con-
stant mapping from any Δ-structure to Θ is a homomorphism. Also the
condition (.) is satisfied trivially.

It is easy to see that for any Δ-tree F the dual structures Da(F) and Db(F)
are isomorphic; the mapping defined by (θ,φ) 7→ φ is an isomorphism.

.. Example (mosquito). Now, let (Q, 4) be the product (N,≤)×(N,≤),
that is Q = N × N and (d, u) 4 (d ′, u ′) if and only if d ≤ d ′ and u ≤ u ′.
For an acyclic structure A, the positional function µA is defined as in ..:
µA(a) = (d, u), where d is the length of the longest directed path ending in
the vertex a and u is the length of the longest directed path starting in a. As
a homomorphism to an acyclic structure maps a directed path bijectively,
the condition (ii) of Definition .. is satisfied.

For a downset S, the representing digraph is Θ = (S, E), where(
(p, q), (p ′, q ′)

)
∈ E if and only if p < p ′ and q > q ′.

Furthermore, we define Ω = Ψ = idS. It can be checked easily that this
correctly defines a representing structure.

Because (in the context of digraphs) every tree is homomorphic to a di-
rected path, for any tree F the set S(F) contains pairs (p, q) with p + q

bounded from above by the height of F. �erefore the condition (.) is
satisfied for any oriented tree F.

Evidently, Da(F) and Dm(F) are isomorphic.

.. Problem. Find other suitable positional-function families and repre-
senting structures to get essentially new constructions of the dual structure
for a general type Δ.

ƿ.ǀ Properties of the dual

Two particular properties of dual structures are worthwhile to mention:
connectedness and irreducibility.
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Dual is irreducible
Recall that a Δ-structure D is called irreducible if A × B → D implies that
A → D or B → D for every two structures A, B (see Lemma ..).

We show that the dual of a Δ-tree is irreducible. �is statement is dual
to the connectedness of the left-hand side of a duality pair (see ..).

.. Proposition. If (F,D) is a duality pair, then the Δ-structure D is irre-
ducible.

Proof. Let A, B be structures such that A × B → D. By duality, F 9 A × B.
�erefore F 9 A or F 9 B; and using duality once more, it follows that
A → D or B → D.

Dual is connected
We have seen that in a duality pair (F,D) the core of F is connected (..).
Now we prove that the dual D is connected too.

.. Proposition. If (F,D) is a duality pair and D is a core, then the Δ-struc-
ture D is connected.

Proof. Suppose that F and D are core Δ-structures, the pair (F,D) is a duality
pair and D is not connected. Hence F has edges of all kinds; otherwise the
dual is connected, see ...

Let Δ = (δi : i ∈ I). Let K be the Δ-structure that consists of isolated
edges, one edge of each kind; formally

K =
{
(i, u) : i ∈ I and 1 ≤ u ≤ δi

}
,

Ri(K) =
{(

(i, 1), (i, 2), . . . , (i, δi)
)}

.

Now, the structure J is obtained from K by gluing all edges at the first vertex,
and J ′ is obtained by gluing them at the last vertex. In other words, we have
two equivalence relations on K, namely ≈ and ≈ ′, defined by

(i, u) ≈ (j, v) if u = v = 1 or (i, u) = (j, v),

(i, u) ≈ ′ (j, v) if u = δi and v = δj or (i, u) = (j, v).

Define J and J ′ as factor structures (see ..): J := K/≈ and J ′ := K/≈ ′.
�e construction is illustrated in Figure ..

Suppose F is homomorphic to both J and J ′. �e structure F is connected,
so it has at least two incident edges e, e ′ of distinct kinds. As F → J, the ver-
tex these two edges share is the starting vertex of each of them, because all
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J J′

Figure .: �e construction of J and J ′

other vertices are distinct as they are homomorphically mapped to distinct
vertices of J. But since F → J ′, the starting vertices of e and e ′ are distinct;
a contradiction.

�erefore either J or J ′ is homomorphic to D if at least two relations have
arity greater than two.

In any case, D has a component that contains edges of all kinds. �is is
satisfied trivially if there is only one kind of edges, that is if |I| = 1.

So we can connect all components of D with long zigzags, see Figure ..
We get a connected Δ-structure D ′; if the zigzags are long enough, any
substructure E of D ′ induced by at most |F| vertices contains vertices of
only one of the components of D; hence E is homomorphic to D. Because
F is not homomorphic to D, it is not homomorphic to D ′ either.

But then, by duality, the connected structure D ′ is homomorphic to D,
so it is homomorphic to a component of D. �erefore D is homomorphic
to a proper substructure of D, a contradiction with D being a core.

Connectedness of duals was originally proved for digraphs by Nešetřil and
Švejdarová [] in a different way, by examining the bear construction.

Dually, we would expect all trees to be irreducible. But this shows another
difference between the dual notions of connectedness and irreducibility;
not all trees, not even all paths are irreducible, as the following example
demonstrates.

.. Example. Let Δ = (2). Figure . shows two oriented paths P1 and P2

and their product P1 × P2. We can see that the core P of P1 × P2 is an
oriented path. �us P is homomorphically equivalent to the product of two
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Figure .: Connecting the components of a dual with zigzags

incomparable structures P1 and P2. It follows from Lemma .. that P is
not irreducible.

ƿ.ǁ Finite dualities
Introduction
In this section, we generalise duality pairs in a natural way: instead of forbid-
ding homomorphisms from a single structure, we forbid homomorphisms
from a finite set of structures; and on the other side, we allow structures
to map to some of a finite number of structures.

.. Definition. Let F and D be two finite sets of core Δ-structures such
that no homomorphisms exist among the structures in F and among the
structures in D. We say that (F, D) is a finite homomorphism duality
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P1 P2 P

P1

P2 P1 × P2

Figure .: A non-irreducible path

(often just a finite duality) if for every Δ-structure A there exists F ∈ F

such that F → A if and only if for all D ∈ D we have A 9 D.

... For a symbol like →D, two definitions are possible. It may denote ei-
ther the set of all structures that admit a homomorphism to some structure
in D, or the set of structures that map to each structure in D.

It is convenient for us to use the positive symbols →D and F→ in the
former sense, while the negative symbols F9 and 9D will be used in the
latter sense. So we define

F→ := {A : F → A for some F ∈ F},

F9 := {A : F 9 A for all F ∈ F},
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→D := {A : A → D for some D ∈ D},

9D := {A : A 9 D for all D ∈ D}.

In this notation, (F, D) is a finite homomorphism duality if and only if

F9 = →D.

Since the classes F→ and F9 are complementary and so are the classes→D and 9D, the pair (F, D) is a duality pair if and only if

F→ = 9D.

We begin exploring the world of finite dualities by considering situations
where the set D has only one element. Here we remark that forbidding
homomorphisms from a finite set of structures is equivalent to forbidding
a finite number of substructures. �is is again characteristic of finite du-
alities, since all the classes →D are characterised by forbidden subgraphs
(although in many cases by infinitely many of them).

.. Proposition. Let D be a core Δ-structure. �en the following are equiv-
alent:

() �ere exists a finite set F of Δ-structures such that the pair
(
F, {D}

)
is

a finite homomorphism duality.

() �ere exists a finite set F ′ of Δ-structures such that any Δ-structure A

is homomorphic to D if and only if it contains no element of F ′ as its
substructure.

Proof. Suppose () holds and set F ′ to be the set of all homomorphic images
of structures in F. �en () follows from the definition of duality.

Conversely, if () holds, let F be the set of all cores of the structures in F ′.
If A 9 D, then A contains some element F ∈ F ′ as a substructure, so the
core of F is homomorphic to A. And if A → D and F ∈ F, then F 9 A,
for otherwise F → D, a contradiction with (). �erefore

(
F, {D}

)
is a finite

duality.

Next we characterise all finite dualities (F, D) with a singleton right-hand
side, that is dualities such that |D| = 1.

.. �eorem ([]). If
(
F, {D}

)
is a finite homomorphism duality, then all

elements of F are Δ-trees and

D ∼
∏
F∈F

D(F). (.)
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Conversely, for any finite collection F of Δ-trees, if (.) holds, then the pair(
F, {D}

)
is a finite homomorphism duality.

Proof. For the proof we need some terminology and results of Section ..
Let

(
F, {D}

)
be a finite duality. Suppose some F ∈ F is disconnected,

F = F1 + F2. �en no element of F is homomorphic to any of F1 and F2, so
F1 → D and F2 → D, and also F = F1 + F2 → D, a contradiction with the
fact that

(
F, {D}

)
is a duality. �erefore all elements of F are connected.

Let F ∈ F. Suppose that D → A → F + D, but that A 9 D. By duality,
there exists F ′ ∈ F such that F ′ → A. Since F ′ is connected, F ′ 9 D, and
A → F + D, we have that F ′ → F. Hence F ′ = F because distinct elements
of F are incomparable. �erefore A 9 D and D → A → F + D implies that
F + D → A. �is proves that (D, F + D) is a gap, as D < F + D because
F 9 D by duality.

By Proposition .., there exists a duality pair (T ′, D ′) such that T ′ →
F+D → T ′ +D ′ and D ∼ (F+D)×D ′ (see the following diagram, in which
gaps are marked by double arrows).

T ′ + D ′

F + D

66mmmmmmmmmmmm

T ′

66mmmmmmmmmmmmmm
D ′

KS

D ∼ (F + D) × D ′

KS

66nnnnnnnnnnnnn

T ′ × D ′

KS

66nnnnnnnnnnnn

If F → D ′, then by duality T ′ 9 F, and because T ′ is connected (it is in fact
a Δ-tree), T ′ → D → D ′, a contradiction with (T ′, D ′) being a duality. So
F 9 D ′.

Since F is connected and F 9 D ′, we get that F → T ′; moreover, from
duality we know that T ′ → F. We conclude that T ′ ∼ F and D ′ ∼ D(F) is
the dual of F. In this way, we have proved that D → D(F) for all F ∈ F, and
hence also D → ∏

F∈F D(F).
On the other hand, F 9

∏
F∈F D(F) for any F ∈ F, and so the product





∏
F∈F D(F) is homomorphic to D because

(
F, {D}

)
is a finite duality. �ere-

fore D ∼
∏

F∈F D(F) → D.
Conversely, if (.) holds then F 9

∏
F∈F D(F) for any F ∈ F, and in addi-

tion if F 9 A for any F ∈ F then A → ∏
F∈F D(F). Hence

(
F,

∏
F∈F D(F)

)
is a finite duality.

.. Corollary. IfF is a finite set ofΔ-trees, then there exists a unique coreD

such that
(
F, {D}

)
is a finite homomorphism duality.

... �is uniquely determined dual core D is denoted by D(F).

Transversal construction
Having characterised all finite dualities with a singleton right-hand side, we
carry on by providing a construction of finite dualities. Later we will see
that all finite dualities result from this construction.

�e construction, which we will call the transversal construction, starts
with a finite set of Δ-forests. �e forests are decomposed into components
and we consider sets consisting of the components. Some of these sets sat-
isfy certain properties and are called transversals. Each transversal is a set
of Δ-trees. �e dual side of the finite duality is then constructed by taking
the dual structures for each transversal (structures from �eorem ..).

... Let F = {F1, F2, . . . , Fm} be an arbitrary fixed non-empty finite set
of core Δ-forests that are pairwise incomparable (Fj 9 Fk for j 6= k). Let
Fc = {C1, . . . , Cn} be the set of all distinct connected components of the
structures in F; each of these components is a core Δ-tree.

First we define quasitransversals to be certain sets of components ap-
pearing in the structures in F.

.. Definition. A subset M ⊆ Fc is a quasitransversal if it satisfies

() any two distinct elements of M are incomparable, and

() M supports F, that is for every F ∈ F there exists C ∈ M such that
C → F.

... For two quasitransversals M, M ′ we define that M 4 M ′ if and only
if for every C ′ ∈ M ′ there exists C ∈ M such that C → C ′. Note that this
order is different from the homomorphism order of forests corresponding
to the quasitransversals. On the other hand, we have the following.
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.. Lemma. Let M, M ′ be two quasitransversals. �en the dual struc-
tures D(M) and D(M ′) exist, and D(M) → D(M ′) if and only if M 4 M ′.

Proof. By �eorem .., the dual structures D(M) and D(M ′) exist and

D(M) =
∏

C∈M

D(C), D(M ′) =
∏

C ′∈M ′

D(C ′).

Let M 4 M ′; we want to show that D(M) → D(M ′). By the properties
of product, it suffices to show that D(M) → D(C ′) for any C ′ ∈ M ′. So,
let C ′ ∈ M ′. Because M 4 M ′, there exists C ∈ M such that C → C ′. By
the definition of a duality pair, C → C ′ implies that C ′ 9 D(C) and this
implies that D(C) → D(C ′). We conclude that D(M) → D(C) → D(C ′).

For the converse implication, let D(M) → D(M ′). We want to show that
for any C ′ in M ′ there is C in M with C → C ′. Indeed, for C ′ ∈ M ′ we
have D(M) → D(M ′) → D(C ′); using duality, C ′ 9 D(M), and therefore
C ′ 9 D(C) for some C ∈ M. By duality C → C ′.

.. Lemma. �e relation 4 is a partial order on the set of all quasitrans-
versals.

Proof. Obviously, 4 is both reflexive and transitive (a preorder).
Suppose now that M 4 M ′ and M ′ 4 M, and let C ∈ M. �en there

exists C ′ ∈ M ′ such that C ′ → C and there exists C ′′ ∈ M such that
C ′′ → C ′. Consequently C ′′ → C, hence by () we have C = C ′ = C ′′,
so M ⊆ M ′. Similarly we get that M ′ ⊆ M. �erefore M = M ′ whenever
M 4 M ′ and M ′ 4 M. So 4 is antisymmetric; it is a partial order.

.. Definition. A quasitransversal M is a transversal if

() M is maximal with respect to the order 4.

... Set D = D(F) =
{
D(M) : M is a transversal

}
.

.. Lemma (Transversal construction works). �e pair (F,D) is a finite
homomorphism duality.

Before presenting the proof, we illustrate the construction by three ex-
amples.

.. Example. First, suppose that F = {T1, T2, . . . , Tn} is a set of pairwise
incomparable trees and let D1, D2, …, Dn be their respective duals. By (),
every quasitransversal contains all these trees. �erefore there exists only
one quasitransversal M = {T1, T2, . . . , Tn} and it is a transversal. So D ={
D(M)

}
= {D1 × D2 × · · · × Dn}. �is corresponds to the situation in

�eorem ...
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.. Example. Now, let T1, T2, T3 and T4 be pairwise incomparable trees
with duals D1, D2, D3, D4. Let F = {T1+T2, T1+T3, T4}. �e partial order 4
of quasitransversals is depicted in the following diagram:

{T1, T4} {T2, T3, T4}

{T1, T3, T4}

ooooooooooo
{T1, T2, T4}

{T1, T2, T3, T4}

OOOOOOOOOOO

~~~~~~~~~~~~~~~~~~~

We have two transversals {T1, T4} and {T2, T3, T4}; and D = {D1 × D4, D2 ×
D3 × D4}.

.. Example. Finally, let T1 → T3 and F = {T1 + T2, T3 + T4}. �is time,
we get the following order of quasitransversals:

{T1} {T2, T3} {T2, T4}

{T1, T4} {T1, T2}

LLLLLLLLLL

{T2, T3, T4}

NNNNNNNNNNN

{T1, T2, T4}

LLLLLLLLLL

ppppppppppp

�e transversals are {T1}, {T2, T3} and {T2, T4}. Hence D = {D1, D2 × D3,

D2 × D4}.

Proof of Lemma ... By the definition of F, any two distinct elements
of F are incomparable. Any two distinct elements of D are incomparable
too, because any two transversals are incomparable with respect to 4 (they
are all maximal in this order) and because of Lemma ...

Let X be a Δ-structure such that X → D for some D ∈ D. We want to
prove that Fi 9 X for i = 1, . . . ,m. To obtain contradiction, assume that
Fi → X for some i. Let M be the transversal for which D(M) = D. By (),
there exists C ∈ M such that C → Fi → X, therefore X 9 D(C). �is is a
contradiction with the assumption that X → D → D(C) (here D → D(C)
because D is the product of the duals of the structures in M, the component
C is an element of M, and the projection is a homomorphism).
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Now, let X be a Δ-structure such that Fi 9 X for i = 1, . . . ,m. We
want to prove that there exists D ∈ D such that X → D. Let Cji

be a
component of Fi such that Cji

9 X for i = 1, . . . ,m. Let M ′ = min→ {Cji
:

i = 1, . . . ,m}, where by min→ S we mean the set of all elements of S that
are minimal with respect to the homomorphism order →. Because M ′ is a
quasitransversal, there exists a transversal M such that M ′ 4 M. We have
that C 9 X for each C ∈ M, and thus X → D(M) ∈ D.

Characterisation
We will now prove that actually all finite homomorphism dualities are ob-
tained from the transversal construction.

... Let (F, D) be a finite homomorphism duality. Suppose that F =
{F1, F2, . . . , Fm} and D = {D1, D2, . . . , Dp}. By definition, we assume that
all the structures in F and also all the structures in D are pairwise incompa-
rable cores. Consistently with the above notation, let Fc = {C1, C2, . . . , Cn}

be the set of all distinct connected components of the structures in F.
Quasitransversals and transversals are defined in the same way as above;
notice that neither for their definition nor for proving Lemma .. we
needed the fact that the elements of Fc are trees.

... For a quasitransversal M, let M = {C ′ ∈ Fc : C ∈ M ⇒ C 9 C ′} be
the set of all components “not supported” by M.

.. Lemma. If M ⊆ Fc is a transversal, then there exists a unique Δ-
structure D ∈ D that satisfies

() C 9 D for every C ∈ M,

() C ′ → D for every C ′ ∈ M.

Proof. If M = ∅, let D ∈ D be arbitrary. Otherwise set S =
∐

C ′∈M C ′.
Because (F, D) is a finite homomorphism duality, either there exists F ∈ F

such that F → S or there exists D ∈ D such that S → D. If F → S, by ()
some C ∈ M satisfies C → F → S, and since C is connected, C → C ′ for
some C ′ ∈ M, which is a contradiction with the definition of M. �erefore
there exists D ∈ D that satisfies S → D.

Obviously, such D satisfies ().
Further, we will prove that D satisfies () as well. For the sake of contra-

diction, suppose that there is C ∈ M such that C → D.
Consider M ′ = M \ {C}. �e set M ′ is not a quasitransversal, because

otherwise we would have M ≺ M ′ and M would not satisfy (). Hence M ′
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fails to satisfy (), and we can find F ∈ F which is not supported by M ′. It
follows that C → F.

Consider Q ′, the set of all elements of F that are not supported by M ′.
We know that Q ′ is non-empty because F ∈ Q ′.

�ere exists F ′ ∈ Q ′ such that C is a connected component of F ′: other-
wise let M∗ be the set of all components C∗ of Δ-structures in Q ′ such that
C → C∗, and let M ′′ := min→ (M ′ ∪ M∗) be the set of all structures in the
union of M ′ and M∗ that are minimal with respect to the homomorphism
order. �e set M ′′ is a quasitransversal but M ≺ M ′′, contradicting the fact
that M is a transversal.

All the components of F ′ are elements of M ∪ {C}. �e assumption that
C → D leads, using (), to the conclusion that F ′ → D. �at is a contradic-
tion with the definition of finite duality.

It remains to prove uniqueness. If D,D ′ ∈ D both satisfy () and ()
and D 6= D ′, that is D ‖ D ′, then D + D ′ violates the definition of finite
homomorphism duality: D + D ′ is homomorphic to no Ď in D, otherwise
the elements of D would not be incomparable, contradicting the definition
of finite duality; at the same time no F in F is homomorphic to D + D ′,
because (by the definition of a transversal) for every F ∈ F there is C ∈ M

such that C → F, but C 6→ D + D ′, because C is connected and by () it is
homomorphic to neither D nor D ′.

... For a transversal M, the unique D ∈ D satisfying the conditions ()
and () above is denoted by d(M).

.. Lemma. D =
{
d(M) : M is a transversal

}
.

Proof. Let D ∈ D. We want to show that D = d(M) for some transversal M.
Let M ′ = min→ {C ′ ∈ Fc : C ′ 9 D} be the set of all components that are
not homomorphic to D, minimal in the homomorphism order. �e set M ′

is a quasitransversal: if some F ∈ F is not supported by M ′, then all its
components are homomorphic to D, and so F → D, a contradiction.

Let M be a transversal such that M ′ 4 M. To prove that D = d(M), it
suffices to check conditions () and () of Lemma ...

If C ∈ M, then there exists C ′ ∈ M ′ such that C ′ → C. �erefore C 9 D,
so condition () is satisfied.

Now condition (): Suppose on the contrary that there exists Č ∈ M

such that Č 9 D. Consider the Δ-structure X = Č + D. If F → X for
some F ∈ F, then by the property () of M there exists C ∈ M that is
homomorphic to F. But since Č ∈ M, we have that C 9 Č, hence C → D.
�is is a contradiction with the condition (). It follows that X → Ď for





some Ď ∈ D, hence D → Ď, so D = Ď. �at is a contradiction with Č 9 D

and Č → Ď.

.. Lemma. For two distinct transversals M1, M2, we have

(a) M1 ∩ M2 6= ∅,

(b) d(M1) 9 d(M2).

Proof.
(a) By (), M1 � M2, and therefore there exists C2 ∈ M2 such that

C1 9 C2 for any C1 ∈ M1. Obviously C2 ∈ M1 \ M2 ⊆ M1. Since we
selected C2 ∈ M2, we have that C2 ∈ M1 ∩ M2.

(b) Let C2 ∈ M1 ∩ M2, as above. �en C2 → d(M1) and C2 9 d(M2).
Consequently d(M1) 6→ d(M2).

.. Lemma. If M is a transversal, then the pair
(
M, {d(M)}

)
is a finite

homomorphism duality, and consequently d(M) = D(M).

Proof. We want to prove that

M9 = →d(M).

We claim that for a Δ-structure A, the following statements are equiva-
lent:

() A ∈ M9 =
∩

C∈M(C 9)

() C 9 A for any C ∈ M

() C 9 A +
∐

Č∈M Č for any C ∈ M

() A +
∐

Č∈M Č → d(M)

() A → d(M)

() A ∈ →d(M)

Because: (1) ⇔ (2) and (5) ⇔ (6) by definition. (4) ⇒ (5) immediately.
(5) ⇒ (2) by Lemma ..(). (2) ⇒ (3) follows from the definition of M

and the fact that C is connected.
It remains to prove that (3) ⇒ (4): Let X = A +

∐
Č∈M Č. If F → X for

some F ∈ F, then by () there exists C ∈ M such that C → F → X, a
contradiction. �us no element of F is homomorphic to X, hence X → D

for some D ∈ D. By Lemma .., D = d(M ′) for a transversal M ′; by
Lemma .. and Lemma ..(a), M ′ = M.

�e equivalence () ⇔ () is precisely the definition of finite duality.
By �eorem .., the dual is uniquely determined if it is a core, so d(M) =

D(M).
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Lemma .. and �eorem .. imply that any element of a transversal
is a Δ-tree, but we have not proved that every structure in Fc is an element
of some transversal. However, we have the following lemma, for whose
proof we will once again use the characterisation of gaps in Section ..

.. Lemma. Each component C ∈ Fc is a Δ-tree.

Proof. Suppose that C ∈ Fc is not a tree. By Lemma .., �eorem ..,
and �eorem .., C is an element of no transversal. Set

A =
∐

C ′∈Fc

C ′<C

C ′ +
∐

C ′∈Fc

C ′‖C

(C × C ′).

Clearly, A < C because all the summands are less than C and C is con-
nected. As C is not a tree, it has no dual; because it is connected, the pair
(A,C) is not a gap by Lemma ... Let X be a structure satisfying that
A < X < C.

�en for any C ′ ∈ Fc such that C 6= C ′, we have C ′ → X if and only
if C ′ → C and X → C ′ if and only if C → C ′. Indeed: if C ′ → C, then
C ′ → A → X; if C → C ′, then X → C → C ′. On the other hand, if
C ‖ C ′, then X → C ′ implies X → C × C ′ → A (because C × C ′ is one of
the summands in the above definition of A), a contradiction with A < X.
Moreover C ′ → X implies C ′ → C.

Let F ∈ F be such that C is a component of F and let G be the structure
obtained from F by replacing C with X.

Suppose F → G. �en C → G. Because C is connected, it is homomorphic
to a component of G. Since C 6→ X, it is homomorphic to some other
component of F, contradicting that F is a core. �erefore F 6→ G.

In addition, F ′ 9 G for any F 6= F ′ ∈ F, because F ′ → G implies F ′ → F.
�erefore G → D for some D ∈ D. Let M be the transversal such that
D = D(M). Recall that C is an element of no transversal, so C 6∈ M. �e
structure D is a product of duals and hence C ′ 9 G for any C ′ ∈ M; there-
fore C ′ 9 X and C ′ 9 C for any C ′ ∈ M. Consequently C → D. We know
that all components of G are homomorphic to D, so all components of F are
homomorphic to D as well. We conclude that F → D, a contradiction.

We finish this section by a theorem that characterises all finite dualities.

..�eorem (Characterisation of finite dualities). If (F, D) is a finite ho-
momorphism duality, then all elements of F are Δ-forests and D = D(F) re-
sults from the transversal construction. In particular, D is determined by F

uniquely up to homomorphic equivalence.
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Conversely, for any finite collection F of core Δ-forests,
(
F, D(F)

)
is a finite

homomorphism duality.

Proof. All elements of F are forests because of of Lemma ... �e set D

is uniquely determined as a consequence of Lemma .. and because of
Lemma .. and �eorem .. it is determined by the transversal con-
struction.

�e second part is Lemma ...

Now we can view the notation (F, D) from a different perspective: the
letter F stands for forbidden, as we mentioned in .., but it may also be
understood to stand for forests.

.. Back from duals to forests. Our construction of duals from forests
relied heavily on the fact that every finite Δ-structure is a finite sum of com-
ponents, structures that are connected. Although we mentioned in ..
that some structures are not a finite product of irreducible structures. How-
ever, it can be shown that the set F in a duality pair (F, D) is determined
uniquely by D too.

�e characterisation of finite homomorphism dualities implies that dual
structures can be factored into a product of irreducible structures. A con-
struction dual to the transversal construction produces the forests from the
dual set. �is is covered in more detail when we discuss a complexity issue
in Section ..

ƿ.ǂ Extremal aspects of duality
Extremal theories are concerned with questions how large can an object be
if it satisfies certain conditions, or has certain properties.

... In the context of homomorphism dualities, we are interested in the
following four questions.

() Given a Δ-tree, how large can its dual be?

() Given a right-hand side of a duality pair, how large can the corre-
sponding Δ-tree be?

() Given a finite set F of Δ-forests, how large can the set D(F) be?

() Given a right-hand side of a finite duality, how large can the corre-
sponding left-hand side be?





Naturally, one has to define a suitable notion of size for this purpose.

Results have been published about questions () and (), partially also
about (). Finite dualities have been studied in full generality only recently,
so questions () and () have not yet been thoroughly investigated.

... When examining extremal problems about homomorphism duali-
ties, we consider only cores. �at is, we ask how large the core of the dual
of a core Δ-tree is, and analogously for the other questions.

�e reason for this is clear: in every class of homomorphic equivalence
there are arbitrarily large structures. �e smallest structure in such a class
is the (unique) core in it. By taking sums of an arbitrary number of dis-
joint copies of the core, we can produce arbitrarily large homomorphically
equivalent structures.

Concerning question (), an upper bound on the size of a Δ-tree’s dual
follows from the bear construction. �e bound on the size of the base set
of the dual is exponential in terms of the size of the base set of the Δ-tree.

.. �eorem ([]). Let Δ = (δi : i ∈ I). Let (F,D) be a duality pair such
that D is a core and let n := |F|. �en

|D| ≤ nn.

Proof. Let F be a Δ-tree. Consider the bear construction from ... A vertex
of the dual Db(F) is a function that assigns each vertex x of F an edge e of F

such that x appears in e. Since F is a tree, no two distinct edges contain
more than one vertex in common. �us the number of edges containing
a fixed vertex x is at most n. Hence the number of vertices of Db(F) is at
most nn, as we were supposed to prove.

Nešetřil and Tardif [] also provide a construction of paths whose duals
indeed have exponential size.

.. �eorem ([, �eorem ]). For any sufficiently large positive inte-
ger N there exists a core Δ-tree F such that |F| ≥ N and if D is the core for
which (F,D) is a duality pair, then

|D| ≥ 2n/7 log2 n,

where n := |F|.

For question (), it is easier to measure the size of the forbidden Δ-tree
in terms of its diameter.
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We assume that the reader knows that the distance of two vertices in an
undirected graph is the number of edges of the shortest path connecting
them, and that a graph’s diameter is the maximum distance of a pair of its
vertices. �e notion of diameter of an undirected graph is used to define
the diameter for Δ-structures.

.. Definition. �e diameter of a Δ-structure A is half the diameter of
its incidence graph Inc(A).

Larose, Loten and Tardif [] proved an upper bound on the diameter of
forbidden trees in a finite duality with a singleton right hand side.

.. �eorem. If
(
F, {D}

)
is a finite duality, F ∈ F is a core, and n = |D|,

then the diameter of F is at most nn2 .

�is theorem implies a bound on the number of edges of such forbidden
trees, see Lemma ... However, this bound is very rough, even though no
examples are known that have an exponential number of edges in terms of
the number of vertices of the dual.





ǀ Homomorphism order

ere is nothing more di
cult
to take in hand, more perilous
to conduct or more uncertain
in its success than to take
the lead in the introduction
of a new order of things.

(Niccolo Machiavelli)

�e relation of existence of a homomorphism on the class of all Δ-structures
induces a partial order, called the homomorphism order.

Properties of this partial order have been widely studied in algebraic, cate-
gory theory, random and combinatorial context. �e homomorphism order
motivates several questions linked to problems of existence of homomor-
phisms, see Section ..

Density- and universality-related issues have attracted special attention.
Universality of the homomorphism order of undirected graph was proved
already in  by Hedrlín []; in particular, it was shown that any count-
able partial order is an induced suborder of the homomorphism order. Uni-
versality was also studied for special classes of digraphs, and it has recently
been proved that even the relatively small class of all directed paths induces
a universal countable partial order [, ].

�e examination of density has a long history too. A complete descrip-
tion of all non-dense parts, called gaps, for the homomorphism order of
undirected graphs, was given in  by Welzl [].

For directed graphs and general relational structures, density has a non-
obvious link to duality. It was shown by Nešetřil and Tardif [] that all
gaps correspond to duality pairs; we survey their results in Section .. �is
connection can be extended from the homomorphism order to lattices sat-
isfying some extra axioms (Heyting algebras with finite connected decom-
positions). Such an extension is presented in Section .. Some of the ideas
are contained in a paper of Nešetřil, Pultr and Tardif []. We add the de-
scription of finite dualities.
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Our further interest concentrates on another issue. In Section . we
study finite maximal antichains in the homomorphism order. In particular,
we show that with a few characterised exceptions finite maximal antichains
have the splitting property. �is by itself provides a connection to finite
homomorphism dualities but in the case of relational structures with at
most two relations we can prove that even the exceptional antichains are
formed from dualities. For structures with more than two relations this
question remains open.

ǀ.ƾ Homomorphism order
... �e relation → of being homomorphic is reflexive, as the identity
mapping is a homomorphism from a Δ-structure to itself, and it is transi-
tive, since the composition of two homomorphisms, if possible, is a homo-
morphism too. �us → is a preorder.

�ere are standard ways to transform a preorder into a partial order. It
may be done by identifying equivalent objects, or by choosing a particu-
lar representative for each equivalence class. �e resulting partial order is
identical in both cases.

For →, a suitable representative for each equivalence class is a core Δ-
structure. We have already observed in .. that there is a unique core in
each class of homomorphic equivalence; unique up to isomorphism.

.. Proposition. Let Δ be a fixed type. �en the relation → of being ho-
momorphic is a partial order on the set of all core Δ-structures (taken up to
isomorphism).

Proof. Follows from the discussion above.

.. Definition. �e partial order → from Proposition .. is called the
homomorphism order and denoted by C(Δ).

Any treatise on the homomorphism order is substantially simplified by
talking about the order of Δ-structures rather than cores or equivalence
classes. For instance, when we say that A is less than B in the homomor-
phism order, we mean that the core of A is less than the core of B in the
homomorphism order. Similarly, when we (soon) say that A × B is the
infimum of A and B in the homomorphism order, we mean that the core
of A×B is actually the infimum. �is approach is fairly standard in algebra.

With all this in mind, we observe that the homomorphism order is a nice
partial order: it is a lattice, and moreover a Heyting algebra.
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.. Proposition. �e homomorphism order C(Δ) is a Heyting algebra. In
particular, for A,B ∈ C(Δ)

() the product A × B is the infimum (meet) of A and B,

() the sum A + B is the supremum (join) of A and B,

() one vertex with no edges
(
{1}, (∅, ∅, . . . ∅)

)
=: ⊥ is the least element,

and one vertex with all loops
(
{1}, ({1}δi : i ∈ I)

)
=: > is the greatest

element in C(Δ),

() the exponential structure BA is the Heyting operation A ⇒ B.

Proof. () By .., C → A × B if and only if C → A and C → B. So A × B

is the infimum of A and B.
() By .., A + B → C if and only if A → C and B → C. So A + B is the

supremum of A and B.
() Let A be an arbitrary Δ-structure. By definition, A is non-empty and

clearly any function mapping v to an arbitrary element of A is a homomor-
phism from ⊥ to A. So ⊥ is the least element.

On the other hand, let f be the constant function from A to {v} such that
f(a) = v for all a ∈ A. Since > has all loops, all edges of A are preserved by f

and hence it is a homomorphism from A to >. �erefore > is the greatest
element.

() By .., C → BA if and only if A×C → B. Since products are infima,
this is exactly the Heyting axiom (see Definition ..).

To illustrate the homomorphism order’s power, we give (without proof)
one more example of its properties. �e homomorphism order is a uni-
versal countable partial order. Several proofs of this can be found in the
literature [, , , , ].

..�eorem. LetΔ be a type with at least one relation of arity at least two.
Every countable partial order is an induced suborder of the homomorphism
order of Δ-structures.

ǀ.ƿ Gaps and dualities
In this section we briefly survey the results of [] about a connection be-
tween duality pairs (see Section .) and gaps in the homomorphism order.
�e explicit description of gaps, besides being of interest by itself, provides
a different proof of the characterisation of duality pairs (�eorem ..).
We have also used it for proving �eorem ...
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�e first fact we state is that the top of a gap, if connected, is the left-hand
side of a duality pair.

.. Lemma ([]). Let (A, B) be a gap pair and let B be connected. �en
(B,AB) is a duality pair.

Hence a connected top of a gap is (homomorphically equivalent) to a Δ-
tree.

�e following proposition characterises all gaps.

.. Proposition ([]). Gaps are exactly all the pairs (A,B) such that there
exists a duality pair (F,D) with F → B → F + D and A ∼ B × D. Moreover,
B ∼ A + F.

�e correspondence is depicted in the following two diagrams, in which
double arrows denote gaps. Here (F,D) is a duality pair.

F + D

F + A

::uuuuuuuuu

F

::uuuuuuuuuu
D

KS

A

KS

::tttttttttt

F × D

KS

::uuuuuuuuuu

F + D

B

::tttttttttt

F

::ttttttttttt
D

KS

B × D

KS

::tttttttttt

F × D

KS

::ttttttttt

ǀ.ǀ Dualities and gaps in Heyting algebras
�e previous section presents a connection between finite dualities and
gaps in the homomorphism order. However, few properties typical of the
homomorphism order were used to prove them. Here we look at a more
general case. We provide conditions under which a theory of gaps and du-
alities can be developed for partially ordered sets.

Gaps, duality pairs and combined dualities (which correspond to finite
dualities with a singleton right-hand side) in Heyting algebras have been
studied by Nešetřil, Pultr and Tardif []. We extend their results to a com-
plete description of dualities.
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At the same time, Proposition .. implies that dualities for relational
structures are a special case of this general theory.

.. Definition. A lattice P with an additional binary operation ⇒ is a
Heyting algebra if a least element and a greatest element exist in P and for
all p, q, r ∈ P,

p 4 q ⇒ r if and only if p ∧ q 4 r.

Of course, not every lattice is distributive. However, it is well known that
every Heyting algebra is distributive.

.. Lemma. Every Heyting algebra is a distributive lattice.

Proof. First we show that (a ∧ b) ∨ (a ∧ c) 4 a ∧ (b ∨ c). �is is true in
every lattice. Clearly a ∧ b 4 a and a ∧ b 4 b ∨ c, so a ∧ b 4 a ∧ (b ∨ c).
Similarly a ∧ c 4 a ∧ (b ∨ c). Hence the inequality holds.

Next, it suffices to prove that whenever a ∧ b 4 y and a ∧ c 4 y, then
a ∧ (b ∨ c) 4 y. In connection with the previous paragraph, it implies that
a ∧ (b ∨ c) is the supremum of a ∧ b and a ∧ c.

So suppose that a∧b 4 y and a∧ c 4 y. �en b 4 a⇒y and c 4 a⇒y.
�us b ∨ c 4 a ⇒ y. Hence a ∧ (b ∨ c) 4 y.

An important property for the development of duality theory for rela-
tional structures was the existence of a decomposition of every relational
structure into connected components. We generalise connectedness in the
context of Heyting algebras.

.. Definition. Let L be a lattice. An element a of L is connected if the
equality a = b ∨ c implies that a = b or a = c.

Next we observe that connectedness in distributive lattices (and thus in
Heyting algebras) has the same equivalent descriptions ()–() as in Lem-
ma ...

.. Lemma. Let a be an element of a distributive lattice L. �en the fol-
lowing conditions are equivalent.
() If a 4 b ∨ c for some elements b, c of L, then a 4 b or a 4 c.
() If a = b ∨ c for some elements b, c of L, then b 4 c or c 4 b.
() �e element a is connected.

Proof.
() ⇒ (): If a = b ∨ c, then a 4 b ∨ c, and using () we have a 4 b or

a 4 c. In the first case c 4 b ∨ c = a 4 b, hence c 4 b. In the latter case
b 4 b ∨ c = a 4 c, and so b 4 c.
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() ⇒ (): Suppose a = b ∨ c. By () we have b 4 c, and therefore
c = b ∨ c = a; or we have c 4 b, and then b = b ∨ c = a.

() ⇒ (): Let a 4 b ∨ c. Here we need distributivity: (a ∧ b) ∨ (a ∧ c) =
a ∧ (a ∨ b) ∧ (a ∨ c) = a since a 4 a ∨ b and a 4 a ∨ c.

�e existence of connected components is then generalised by the fol-
lowing notion.

.. Definition. We say that a lattice L has finite connected decompo-
sitions if each element x of L is a supremum of a finite set of connected
elements.

Analogously as for relational structures (Definition ..) we define dual-
ity pairs for lattices.

.. Definition. A pair (f, d) of elements of a lattice L is a duality pair if
for any element x ∈ L,

f 4 x if and only if x 64 d.

.. Definition. An element f of a lattice L is called a primal if there exists
d ∈ L such that (f, d) is a duality pair. An element d of a lattice L is called a
dual if there exists f ∈ L such that (f, d) is a duality pair.

�e next proposition is an analogue of ...

.. Proposition ([]). In a distributive lattice, every primal is connected.

Proof. We prove that if (f, d) is a duality pair and f 4 b∨c for some elements
b, c ∈ L, then f 4 b or f 4 c. By Lemma .. it follows that f is connected.

So suppose that f 4 b ∨ c. By duality, b ∨ c � d, thus (by a property
of join) b � d or c � d. Using duality once again we get that f 4 b or
f 4 c.

Recall that a gap in a poset L is a pair (p, q) of elements of L such that
p ≺ q and no element r satisfies that p ≺ r ≺ q (Definition ..). �e
connection between gaps and duality pairs (Proposition .. for relational
structures) is as follows.

..�eorem ([]). �e gaps in a Heyting algebra L with finite connected
decompositions are exactly the pairs (a, b) such that for some duality pair
(f, d)

f ∧ d 4 a 4 d and b = a ∨ f.
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.. Definition. A pair (F,D) of finite subsets of a lattice L is a finite
duality if

. f 64 f ′ if f, f ′ ∈ F and f 6= f ′,

. d 64 d ′ if d, d ′ ∈ D and d 6= d ′, and

. for any x ∈ L there exists f ∈ F such that f 4 x if and only if x 64 d for
any d ∈ D.

�e following theorem is an analogue of �eorem ... It describes finite
dualities with a singleton right-hand side. �e proof is just a translation of
the relational-structure proof of �eorem .. into the language of Heyting
algebras, therefore we do not repeat it here.

.. �eorem. Let L be a Heyting algebra with finite connected decom-
positions. For a finite subset F = {f1, f2, . . . , fn} of L and for an element
d ∈ L, the pair (F, {d}) is a finite duality if and only if there exist elements
d1, d2, . . . , dn such that (fi, di) is a duality pair for i = 1, 2, . . . , n and
d = d1 ∧ d2 ∧ · · · ∧ dn.

�e transversal construction of dualities in a lattice L with finite con-
nected decompositions is defined analogously to the definition in the con-
text of Δ-structures, contained in paragraphs ..–...

.. Definition. Let L be a lattice with finite connected decompositions.
Let F = {f1, f2, . . . , fm} be an arbitrary fixed non-empty finite set of pair-

wise incomparable elements of L. For each element fi of F fix a finite con-
nected decomposition

fi =

ki∨
j=1

ci,j.

Now let Fc be the set of all connected elements appearing in the decompo-
sitions, that is

Fc :=

m∪
i=1

{ci,j : 1 ≤ j ≤ ki}.

�en Fc is called a set of components for F.

Quasitransversals are defined analogously to quasitransversals for rela-
tional structures (see ..).

.. Definition. A subset M ⊆ Fc is a quasitransversal if it satisfies

() any two distinct elements of M are incomparable, and
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() M supports F, that is for every f ∈ F there exists c ∈ M such that
c 4 f.

... For two quasitransversals M, M ′ we define that M E M ′ if and
only if for every c ′ ∈ M ′ there exists c ∈ M such that c 4 c ′.

.. Lemma. �e relation E is a partial order on the set of all quasitrans-
versals.

Proof. Obviously, E is both reflexive and transitive (a preorder).
Suppose now that M E M ′ and M ′ E M, and let c ∈ M. �en there

exists c ′ ∈ M ′ such that c ′ 4 c and there exists c ′′ ∈ M such that c ′′ 4 c ′.
As a result c ′′ 4 c, thus by () we have c = c ′ = c ′′, hence M ⊆ M ′.
Similarly we get that M ′ ⊆ M. Hence M = M ′ whenever M E M ′ and
M ′ E M. �erefore E is antisymmetric; it is a partial order.

.. Definition. A quasitransversal M is a transversal if

() M is maximal with respect to the order E.

A characterisation similar to �eorem .. follows.

..�eorem. Let L be a Heyting algebra with finite connected decompo-
sitions.
Let F ⊆ L be finite. If each element of F is a finite join of primals, and D is

the result of the transversal construction, then (F,D) is a finite duality.
Conversely, if (F,D) is a finite duality, then each element of F decomposes

into a finite join of primals and D is the result of the transversal construction.

In contrast to the homomorphism order, this does not in general mean
that the right-hand (dual) side of a finite duality is uniquely determined
by the left-hand (primal) side. �at is so because the decomposition into
connected components may not be unique, so the transversal construction
produces a different result for different decompositions.

We do not give a detailed proof because the proof is a translation of the
proof of �eorem ... It suffices to check that for proving the lemmas in
Section . we did not use any other properties of relational structures than
the homomorphism order’s being a Heyting algebra with finite connected
decompositions. �at is no longer true in the next section.
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ǀ.ǁ Finite maximal antichains
In this section we study finite maximal antichains in the homomorphism
order. In particular, we are interested in the splitting property of these
antichains.

If Q is an arbitrary maximal antichain in a poset P, then every element
of P is comparable with some element q of Q. In other words, the poset P

is the union of the downset generated by Q and the upset generated by Q,
that is P = Q↑ ∪ Q↓ . �e splitting property of the antichain Q means that
Q can be split into two subsets Q1, Q2 such that the poset P is the union
of the upset generated by Q1 and the downset generated by Q2. So any
element of P is either above some element in Q1 or below some element
in Q2 (see Figure .).

Q

Q↑

Q↓

Q1 Q2

Q1
↑

Q2
↓

Figure .: �e splitting of an antichain

A formal definition follows.
.. Definition. We say that a maximal antichain Q ⊂ P splits if there
exists a partition of S into disjoint subsets Q1 and Q2 such that P = Q1

↑ ∪
Q2

↓ . In such a case we say that (Q1,Q2) is a splitting of the maximal
antichain Q.

�e problem of splitting maximal antichains in the homomorphism order
took on significance when it was observed by Nešetřil and Tardif [] that
except for two small exceptions finite maximal antichains of size two split
in the order of digraphs. �at result is extended here to Δ-structures and to
finite maximal antichains of any size; however, the description of exceptions
is more involved.
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Our approach is direct. In .. we define a partition of any finite maximal
antichain and prove that – apart from exceptional cases described later –
this partition is a splitting of the antichain.

At the end of this section, we suggest an alternative approach that may
lead to a different proof of the splitting property of finite maximal an-
tichains. It is based on a general condition for the splitting of antichains
in arbitrary posets by Ahlswede, Erdős, Graham and Soukup [, ].

�ere is also a link to homomorphism dualities because a splitting of a
finite maximal antichain is trivially a finite homomorphism duality. In the
case of relational structures with at most two relations, we show that the
link is stronger: even those finite maximal antichains that do not split cor-
respond to homomorphism dualities.

For more than two relations this is unknown, but there is a significant
increase in the complexity of the homomorphism order. �is suggests that
the property may not hold in this case.

Splitting ®nite antichains
We would like to partition a finite maximal antichain Q in the homomor-
phism order C(Δ) into disjoint sets F and D in such a way that F↑ ∪ D↓ =
C(Δ). A partition is defined in the next paragraph. In the following we show
that in many cases it satisfies the equality.

.. Splitting a finite antichain. Let Q = {Q1,Q2, . . . ,Qn} be a finite max-
imal antichain in C(Δ). Recursively, define the sets F0, F1, …, Fn in this
way:

. Let F0 = ∅.

. For i = 1, 2, . . . , n: check whether there exists a Δ-structure X satis-
fying

(i) Qi < X,
(ii) F 9 X for any F ∈ Fi−1, and

(iii) Qj 9 X for any j > i.
If such a structure X exists, let Fi = Fi−1 ∪ {Qi}, otherwise let Fi =
Fi−1.

. Finally, let F = Fn and D = Q \ F.

Because Q is a maximal antichain, Q↑ ∪ Q↓ = C(Δ). In addition, F↑ ⊆ Q↑
and D↓ ⊆ Q↓ since F ⊆ Q and D ⊆ Q. �erefore the equality

F↑ ∪ D↓ = C(Δ),
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which characterises the splitting of the antichain Q, is equivalent to the pair
of equalities

F↑ = Q↑ ,
D↓ = Q↓ .

�e following lemma asserts that F↑ = Q↑ .

.. Lemma. Let Q be a finite maximal antichain and F, D be defined
in ... If Q ∈ Q, X is a Δ-structure, and Q < X, then there exists F ∈ F such
that F < X.

Proof. Among the elements of Q that are homomorphic to X, let Qi be
the element of Q with the greatest index i. �en either F → X for some
F ∈ Fi−1, or all the conditions (i), (ii), (iii) are satisfied and Qi ∈ F. So we
have found F ∈ F such that F → X.

If F = Q, then X 9 F by the assumption that Q < X. If on the other hand
F 6= Q, then the existence of a homomorphism from X to F would imply
that Q → F. �is is a contradiction because F and Q are distinct elements
of an antichain. Hence X 9 F and therefore F < X.

To prove that (F,D) is a splitting of Q, it remains to show that D↓ = Q↓ .
However, this is not true for all finite maximal antichains. �e following
lemma provides a simple description of antichains for which (F, D) is not
a splitting.

.. Lemma. Let Q be a finite maximal antichain and F, D be defined
in ... �en exactly one of the following conditions holds:

() �e pair (F,D) is a splitting of Q.

() �ere exists a structure Y such that Q 9 Y for any Q ∈ Q and Y 9 D

for any D ∈ D.

Proof. If (F, D) is a splitting and Y is an arbitrary structure such that Q 9 Y

for any Q ∈ Q, then Y → Q for some Q ∈ Q because Q is a maximal
antichain. Moreover, Q ∈ D because of splitting.

Conversely, suppose (F, D) is not a splitting. So there exists a structure Y

that violates the definition of a splitting: F 9 Y and Y 9 D. Because of
Lemma .. we have Q 9 Y.

If () holds, then the antichain Q splits. Now we investigate those maxi-
mal antichains that satisfy (). �e structure Y has to be comparable with
some element of the maximal antichain Q, and because of the condition ()
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there exists F ∈ F such that Y < F. We show that all such Y’s are bounded
from above by a fairly simple structure.

However, first we need some preparation. �e recursive definition ..
assures that for every element F of F there is a witness X that forces F to be
added to F. �is is formally expressed in the following lemma. �e witness
for F is denoted by F̌.

.. Lemma. Let Q be a finite maximal antichain and F, D be defined
in ... For every F in F there exists a Δ-structure F̌ such that F < F̌ and
moreover F is the only element of F that is homomorphic to F̌.

Proof. �e structure X satisfying the properties (i), (ii), (iii), which caused
F = Qi to be an element of Fi has the required properties for F̌.

We use a tool, which is a generalisation of a famous theorem of Erdős []
(this was one of the first applications of the then emerging probabilistic
method).

.. �eorem ([, , ]). Let Δ be an arbitrary type, and let g and k be
positive integers. �en there exists a Δ-structure G = G(g, k) such that

• every substructure of G induced by at most g vertices is a Δ-forest, and

• whenever the vertices of G are coloured by fewer than k colours, there
exists a colour κ that induces an edge of each kind; that is, for each
kind i ∈ I there is an edge e ∈ Ri(G) such that all vertices of e have
colour κ.

Recall from Definition .. that a balanced structure is a structure that
is homomorphic to a forest.

.. Lemma. Let Q be a finite maximal antichain and F, D be defined
in ... If F ∈ F, then F is balanced.

Proof. Let F ∈ F be arbitrary and let F̌ be the structure whose existence
is guaranteed by Lemma ... Furthermore, let k := max{|Q||F̌| : Q ∈
Q} + 1 and let G be a Δ-structure such that any substructure of G on at
most |F| vertices is a Δ-forest and whenever the vertices of G are coloured
by fewer than k colours, there exists a colour that induces an edge of each
kind (�eorem ..).

Consider the structure H = F̌×G. Suppose that f : H → Q for some Q ∈
Q. For every vertex u of G, the mapping fu : F̌ → Q is defined by fu(x) =
f(u, x). We consider this assignment of mappings to vertices of G as a
colouring of the vertices. Since there are only |Q||F̌| < k possible mappings
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from F̌ to Q, there exists a colour that induces an edge of every kind; so
there exists a mapping g : F̌ → Q satisfying the condition that

for every i ∈ I there exists an edge (u1, u2, . . . , uδi
) of G

such that fu1
= fu2

= · · · = fuδi
= g. (.)

�en g is a homomorphism from F̌ to Q: whenever (x1, x2, . . . , xδi
) ∈

Ri(F̌) for some i ∈ I, we have that(
g(x1), g(x2), . . . , g(xδi

)
)

=
(
fu1

(x1), fu2
(x2), . . . , fuδi

(xδi
)
)

=
(
f(u1, x1), f(u2, x2), . . . , f(uδi

, xδi
)
)
∈ Ri(Q),

because
(
(u1, x1), (u2, x2), . . . , (uδi

, xδi
)
)

∈ Ri(H) and f is a homomor-
phism from H to Q; here (u1, u2, . . . , uδi

) is the edge of G from (.). �at
is a contradiction, because F < F̌ and Q is an antichain containing F. We
conclude that H 9 Q for any Q ∈ Q.

By Lemma .. and because Q is a maximal antichain, there exists F ′ ∈ F

that is homomorphic to H = F̌×G → F̌. But F is the only element of F that
is homomorphic to F̌, so we have F ′ = F, and consequently F → H → G.
�e image of a homomorphism from F to G has no more than |F| vertices,
whence it is a forest. �is concludes the proof.

�e elements of F are balanced for all finite maximal antichains, even for
those for which (F,D) is a splitting.

In the following, we closely investigate the “non-splitting” antichains. We
derive properties of the structures Y that violate the splitting (as in condi-
tion () of Lemma ..). In particular, we show that some paths – called
forbidden paths – are not homomorphic to Y.

.. Definition. Every Δ-path has a height labelling; we say that a core
Δ-path P is a forbidden path if it has two edges of the same kind whose
vertices are not labelled the same. (�is property does not depend on what
height labelling we choose, see Proposition ...)

.. Lemma. Let Q be a finite maximal antichain in C(Δ) and let F, D be
defined in ... If Y is a Δ-structure such that Y 9 D for any D ∈ D and
Y < F for some F ∈ F, and P is a forbidden path, then P 9 Y.

Proof. We may suppose that the two edges of the same kind i ∈ I that are
not labelled the same (which prove that P is indeed a forbidden path) are
the end edges of P. Otherwise we could take a subpath of P (the smallest
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substructure of P that contains both these edges) and show that it is not
homomorphic to Y; consequently P is not homomorphic to Y either.

Let the two end edges of P be (x1, x2, . . . , xδi
), (y1, y2, . . . , yδi

) ∈ Ri(P).
At most one of the vertices x1, xδi

is contained in another edge of P, and so
is at most one of y1, yδi

; if a vertex is contained in only one edge, we call it
free.

Let Z be a long zigzag: a path with 2m or 2m + 1 edges, depending on
the end edges of P. If both x1 and y1 are free or if both xδi

and yδi
are

free, we use an even number of edges; otherwise we use an odd number of
edges. All edges of the zigzag are of the same kind as the end edges of P.

P

x1

xδi

y1

yδi

Figure .: Constructing Z from a forbidden path P

Even though the definition of Z and W should be clear from Figure .,
we may also define them formally here. Suppose x1 and y1 are free vertices
in P. �en

Z :=
{
1, 2, . . . , 2m(δi − 1) + 1

}
,

Ri(Z) :=
{
(k, k + 1, . . . , k + δi − 1), (k + δi − 1, k + δi, . . . , k + 2δi − 2) :

k = 1, 1 + 2(δi − 1), 1 + 4(δi − 1), . . . , 1 + 2(m − 1)(δi − 1)
}
,

≈ is an equivalence relation on P+Z with x1 ≈ 1, y1 ≈ 2m(δi − 1) + 1, and
a ≈ a, and finally

W := (P + Z)/≈.
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If other vertices in the end edges of P are free, the description is analogous.
Clearly, any proper substructure of W that does not contain all vertices

of Z is homomorphic to P. We choose the length of the zigzag (by a suitable
choice of m) in such a way that the number of vertices of Z is bigger than
the number of vertices of any structure in F.

Now observe that if there exists a height labelling of W, the vertices in
the end edges of P have the same labels because they are joined by the
zigzag; at the same time, they have distinct labels, because they are joined
by the forbidden path P. �erefore no height labelling of W exists and by
Proposition .. the structure W is not balanced.

Now consider the sum W + Y. It is comparable with some some element
of the maximal antichain Q. However, W + Y 9 D for any D ∈ D, because
Y 9 D by our assumption on Y; also W + Y 9 F for any F ∈ F, because
W is not balanced and F is (so F is homomorphic to a forest, but W is not).
�erefore F → W + Y for some F ∈ F.

However, because the zigzag Z was very long, the image of a homomor-
phism from F to W + Y does not contain all vertices of Z. As we have ob-
served, therefore F → P + Y. As F 9 Y (by the definition of Y), necessarily
P 9 Y.

In the next lemma we prove that complex structures admit homomor-
phisms from forbidden paths, and correspondingly structures that admit
no homomorphisms from forbidden paths are simple.

.. Lemma. Let C be a connected Δ-structure. If no forbidden path is
homomorphic to C, then C is homomorphic to a tree with at most one edge
of each kind.

Proof. Suppose that no forbidden path is homomorphic to C. If no height
labelling of C exists, then there exist vertices u and v connected by two
distinct paths in Sh(C) such that counting forward steps minus backward
steps on these paths gives a different result (see ..). Let B be the minimal
structure such that its shadow Sh(B) contains both of these paths (B ⊆ C,
but it need not be an induced substructure; include only those edges whose
shadow edges lie in the two paths). Let us “unfold” this structure B, which
in a way resembles a cycle: choose an edge e of B, it intersects two other
edges. �en construct a path P: its end edges are two copies of e, and the
middle edges are the remaining edges of B.

�en P → C but P is a forbidden path, because the copies of e get different
labels. �erefore C has a height labelling .ג

Next observe that any two edges of the same kind are labelled in the same
way. If there were two edges with differently labelled vertices, there would
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be a path in C with these two edges as end edges (because C is connected)
and that would be a forbidden path.

Let T be the structure with base set ,[C]ג all labels used on the vertices
of C. �e edges of T are such that the identity mapping is a height labelling
of T ; in other terms

Ri(T) =
{
(x1, x2, . . . , xδi

) : (xj+1)(i,j) = (xj)(i,j) + 1,

(xj+1)(i ′,j ′) = (xj)(i ′,j ′) for (i ′, j ′) 6= (i, j)
}
.

Because all the edges of the same kind in C have the same labelling, T has
at most one edge of each kind. Moreover, any cycle in Sh(T) would violate
the height labelling of T , so T is a tree. And finally, the height labelling ג
of C is a homomorphism from C onto T .

.. Corollary. Let D∗ be the sum of all Δ-trees with at most one edge of
each kind. If Y satisfies the condition () of .., then Y → D∗.

Proof. �e claim follows immediately from Lemmas .. and ...

�is shows that the cases when the antichain does not split are very spe-
cific (and one would like to say they are rather rare).

..�eorem. Let Q be a finite maximal antichain in C(Δ). Let D∗ be the
sum of all Δ-trees with at most one edge of each kind. Suppose that every
element Q ∈ Q has the property that whenever Y < Q and Y → D∗ then
there exists a Δ-structure X such that Y < X < Q and X 9 D∗. �en the
antichain Q splits; the pair (F,D) defined in .. is a splitting of Q.

Proof. For the sake of contradiction, suppose that the pair (F,D) is not a
splitting of Q. By Lemma .., there exists a structure Y such that Q 9 Y

for any Q ∈ Q and Y 9 D for any D ∈ D. Since Q is a maximal antichain,
Y is comparable with an element Q of Q; thus there exists Q ∈ Q with
Y < Q.

Since Y satisfies the condition () of .., by Corollary .. we have
Y → D∗. �us by assumption there exists X such that Y < X < Q and
X 9 D∗. �e structure X is not homomorphic to any D ∈ D, because
otherwise we would have Y → D by composition. Hence X satisfies the
condition () of .. as well, and by Corollary .. it is homomorphic
to D∗, a contradiction.

�e assumption on the elements of Q posed in the previous theorem
means that no element of Q is “too small”. In particular, it is neither homo-
morphic to D∗ nor “immediately” above a structure homomorphic to D∗,
that is, there is no gap (Y,Q) such that Y → D∗.
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In fact, the assumption can be weakened (and the theorem strengthened)
by requiring that only elements of F constructed from Q by .. have the
property that whenever Y < Q and Y → D∗ then there exists a Δ-struc-
ture X such that Y < X < Q and X 9 D∗. �is is obvious from the proof,
where we exploited the property only for elements of F.

Connection to ®nite dualities
Further examination reveals that in the case of structures with at most two
relations there are no infinite increasing chains below D∗. From that we can
conclude that all elements of F are Δ-forests and thus we get the following
theorem.
.. �eorem. Let Δ = (δi : i ∈ I) be a type such that |I| ≤ 2. �en all
finite maximal antichains in the homomorphism order C(Δ) are exactly the
sets

Q = F ∪ {D ∈ D : D 9 F for any F ∈ F} (.)
where (F, D) is a finite homomorphism duality.
Proof. If (F, D) is a finite duality, then for all F ∈ F and D ∈ D we have
F 9 D, and so Q := F ∪ {D ∈ D : D 9 F for any F ∈ F} is a finite antichain.
Moreover, if F 9 X for all F ∈ F, then X is homomorphic to some element D

of D. Either D ∈ Q or D → F for some F ∈ F; in any case, X is comparable
with some element of Q. Hence Q is a finite maximal antichain.

Conversely, suppose that Q is a finite maximal antichain in C(Δ). Let
(F,D) be the partition of Q defined in ... One of the conditions of
Lemma .. is satisfied. If () is satisfied, then (F, D) is a splitting of F,
and so it is a finite duality in which no element of D is homomorphic to
an element of F and Q = F ∪ D. It remains to examine the case that () is
satisfied.

In the case (), we first prove that all elements of F are forests. �at
implies that there exists a finite duality (F, D ′); we then prove that this is
the duality that satisfies (.).

Suppose that condition () of Lemma .. is satisfied, F ∈ F and C is a
component of F that is not a tree. By Lemma .. there is no gap below C.
�us there exist infinitely many structures X1, X2, . . . such that X1 < X2 <

· · · < C. A simple case analysis reveals that the downset D∗↓ generated
by D∗ contains no infinite increasing chain; this is only true for structures
with at most two relations. Hence C 9 D∗.

Consequently if Y → D∗ and Y → F for some structure Y, then there
exists X such that Y < X < F and X 9 D∗ (just like in �eorem ..). It
follows that no structure Y exists such that Y → F but Y 9 D for all D ∈ D.
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Now it is time to reuse the trick that served to prove Lemma ... As
there is no gap below C, we can find a structure B such that B < C, the
structure B is homomorphic to exactly those components of structures in Q

as C is, and exactly the same components of structures in Q are homomor-
phic to B as to C. Let Y be the structure constructed from F by replacing its
component C with B. Clearly Y → F, but Y is homomorphic to no D ∈ D,
because F is homomorphic to no D ∈ D. �is is a contradiction. �erefore
all components of F are trees, and all elements of F are forests.

Invoke the transversal construction on F and get a finite duality (F,D ′)
(remember that D is defined by splitting the antichain Q). We want to prove
that D contains exactly the elements of D ′ that are not homomorphic to
any element of F.

First, let D ′ be an element of D ′ such that D ′ is homomorphic to no
F ∈ F. As Q is a maximal antichain and D ′ is incomparable to every element
of F, we have D ′ → D for some D ∈ D. If D 9 D ′, then some element of F

is homomorphic to D by duality, a contradiction with Q being an antichain.
Hence D ∼ D ′, and so D = D ′ since both D and D ′ are cores. �erefore
D contains all elements of D ′ that are not homomorphic to anything in F.

Finally, we show that D contains no other elements. Suppose that D ∈ D.
Because Q is an antichain, no F ∈ F is homomorphic to D. �us by duality
D → D ′ for some D ′ ∈ D ′. However, D ′ is homomorphic to no F ∈ F

(otherwise D would also be), and so we know from the previous paragraph
that D ′ ∈ D and consequently D ′ ∈ Q. Once again using the fact that Q is
an antichain we conclude that D ′ = D.

In this way, we have found a finite duality (F,D ′) such that

Q = F ∪ {D ∈ D ′ : D 9 F for any F ∈ F}.

�e case of three or more relations (|I| ≥ 3) is presently open. �ere may
be a “quantum leap” here as indicated by the following result, which can be
deduced from []. It implies that for more than two relations we cannot
rely on the fact that the suborder induced by preimages of D∗ is simple.

.. Proposition. Let Δ = (2, 2, 2). �en the suborder of C(Δ) induced by
all structures homomorphic to D∗ is a universal countable partial order; that
is, any countable partial order is an induced suborder of this order.

Cutting points
Finally, we show a connection of splitting antichains and cutting points.
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.. Definition. Let P be a poset. An element y ∈ P is called a cutting
point if there are x, z ∈ P such that x ≺ y ≺ z and [x, z] = [x, y] ∪ [y, z].
(�e interval [x, z] := {y ∈ P : x 4 y 4 z}.)

�e connection is that every finite maximal antichain without a cutting
point splits. �e following follows from [, �eorem .].

.. �eorem. If S is a finite maximal antichain that does not contain a
cutting point, then S splits.

�us a characterisation of all cutting points may potentially provide an-
other proof of the splitting property for finite maximal antichains. Some
cutting points are actually connected to dualities.

.. Proposition. Let T be a Δ-tree and let D be its dual. �en the Δ-struc-
tures T + D and T ×D are cutting points in the homomorphism order C(Δ).

Proof. Consider the interval [⊥, T ], which is equal to the downset generated
by T . Suppose that X is a Δ-structure such that X < T . �en X → D, because
T 9 X. �us X → T ×D. Hence the interval [T ×D, T ] contains only its end-
points, that is [T×D, T ] = {T×D, T }. Moreover, [⊥, T×D]∪[T×D, T ] = [⊥, T ],
so T × D is a cutting point.

Similarly, if D < X, then T +D → X. Hence [D, T +D]∪[T +D,>] = [D,>]
and so T + D is a cutting point.

However, at present the general problem remains open.

.. Problem. Characterise all cutting points in the homomorphism or-
der.
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ǁ Complexity
Out of intense complexities
intense simplicities emerge.

(Winston Churchill)

�is chapter contains remarks and results on complexity issues; most of
them are implied by the previous chapters. It leaves many questions unan-
swered, though.

First, we introduce a generalisation of the Constraint Satisfaction Prob-
lem (CSP), which is a decision problem whether a homomorphism exists
between two relational structures. We consider a parametrisation of CSP,
where the target structure is fixed and the input is the domain. Our gen-
eralisation fixes a finite set H of structures as the parameter and we ask
whether there exists a homomorphism from the input structure into some
structure in the set H. We observe that if the set H is the right-hand (dual)
side of a finite homomorphism duality, the problem is solvable by a polyno-
mial-time algorithm.

Next we examine the problem of deciding whether an input finite set
of relational structures is the right-hand side of a finite homomorphism
duality. �e complexity of this problem with inputs restricted to sets con-
taining a single structure has recently been determined by Larose, Loten
and Tardif []. Using their result, we are able to prove that this problem
is decidable.

Finally we consider the decision problem whether an input finite set of
relational structures is a maximal antichain in the homomorphism order.
Our characterisation of finite maximal antichains from Section . implies
that this problem is decidable for structures with at most two relations.
Moreover, we show that the problem is NP-hard. It is not known at present
whether it belongs to the class NP.

In this chapter, by a tractable problem we mean a decision problem that
can be solved by a deterministic Turing machine using a polynomial amount
of computation time, that is a problem belonging to the class P.
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ǁ.ƾ Constraint satisfaction problem
First, we define the constraint satisfaction problem.

.. Definition. Let H be a fixed Δ-structure (called a template). �e con-
straint satisfaction problem CSP(H) is the problem to decide for an input
Δ-structure G whether there exists a homomorphism G → H.

Several classical computational problems can be formulated as constraint
satisfaction, as the following three examples show.

.. Example (k-colouring). Recall from Example .. that a homomor-
phism to the complete graph Kk is the same as a k-colouring of G. �erefore
CSP(Kk) is nothing but k-colourability. �is is well-known to be tractable if
k ≤ 2 and NP-complete if k ≥ 3.

.. Example (-SAT). �e widely known -SAT or -satisfiability problem
takes as its input a propositional formula in conjunctive normal form such
that each clause contains three literals; the question is whether the input
formula is satisfiable, that is whether logical values can be assigned to its
variables in a way that makes the formula true.

�is problem is equivalent to CSP(H) for the following template H: let the
type Δ = (3, 3, 3, 3) and let H = {0, 1}. �e Δ-structure H has four relations,
namely R0, R1, R2, and R3. Let

R0 = H
3 \

{
(0, 0, 0)

}
,

R1 = H
3 \

{
(1, 0, 0)

}
,

R2 = H
3 \

{
(1, 1, 0)

}
, and

R3 = H
3 \

{
(1, 1, 1)

}
.

For an input formula φ, we construct the Δ-structure Gφ in such a way
that Gφ will be the set for all variables appearing in φ and for each clause
of φ we add a triple to one of the relations: if there are exactly i negated
literals in the clause, we add a triple to Ri(Gφ) consisting of the three vari-
ables appearing in the clause, with the negated variables first. For instance,
for the clause x1 ∧ ¬x2 ∧ x3 add the triple (x2, x1, x3) to R1(Gφ).

It is straightforward that an edge is preserved by a mapping f from Gφ

to H if and only if the corresponding clause is true in the assignment in-
duced by f of logical values to variables. �erefore this assignment makes
φ true if and only if the mapping f is a homomorphism from Gφ to H, and
consequently φ is satisfiable if and only if G is homomorphic to H.
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�e next example is taken from Tsang’s book []. It is often used for
illustrating algorithms for solving CSP.

.. Example (N-queen problem). Given any integer N, the problem is to
position N queens on N distinct squares in an N×N chessboard, in such a
way that no two queens should threaten each other. �e rule is such that a
queen can threaten any other pieces on the same row, column or diagonal.

�is may be reformulated as the problem of assigning each of N variables
(one for each row) a value from the set {1, 2, . . . ,N}, marking the column in
which the queen is positioned. It is possible to define suitable template and
relations that ensure that a homomorphism from the input to the template
exists if and only if the input encodes a non-threatening position of queens
on the chessboard.

Some of the examples are to an extent artificial. However, many common
problems can be formulated as constraint satisfaction very naturally. �ese
problems appear in numerous areas such as scheduling, planning, vehicle
routing, networks, and bioinformatics. For more details see, for example,
the book [].

As the examples show, the complexity of CSP(H) depends on the tem-
plate H. Considerable effort has recently gone into classifying the complex-
ity of all templates. �is complexity was determined for undirected graphs
by Hell and Nešetřil []. However, already for directed graphs the problem
is unsolved. Various results have led to the following conjecture.

.. Conjecture ([]). Let H be a finite relational structure. �en CSP(H)
is either solvable in polynomial time or NP-complete.

�e following definition is motivated by finite dualities.

..Definition. As an analogy to CSP, we define the generalised constraint
satisfaction problem GCSP(H) to be the following decision problem: given
a finite set H of Δ-structures, decide for an input Δ-structure G whether
there exists H ∈ H such that G → H.

�e existence of a finite duality for a template set H ensures the exis-
tence of a polynomial-time algorithm for solving the particular generalised
constraint satisfaction problem. �is is a classical observation for the stan-
dard constraint satisfaction. We restate it here in view of the fact that the
description of finite dualities is a principal result of the thesis.

..�eorem. If (F, D) is a finite homomorphism duality, then GCSP(D) is
solvable by a polynomial-time algorithm.
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Proof. �e key to the proof is to observe that the algorithm that checks for
all possible mappings from F to G whether they are a homomorphism or
not runs in time O(|G||F|), polynomial in the size of G.

�erefore for an input Δ-structure G, it is possible to check for all F ∈ F

whether F → G; if the response is negative for all F, then G is homomorphic
to some H in H, otherwise it is not. Clearly this testing can be done in time
polynomial in the size of the input structure G.

As in Conjecture .., one could ask whether there is a dichotomy for
GCSP. However, this problem is not very captivating, as the positive answer
to the dichotomy conjecture for CSP would imply a positive answer here as
well.

.. �eorem. Let H be a finite nonempty set of pairwise incomparable
Δ-structures.

. If CSP(H) is tractable for all H ∈ H, then GCSP(H) is tractable.

. If CSP(H) is NP-complete for some H ∈ H, then GCSP(H) is NP-com-
plete.

Proof. �e first claim is evident. For the second claim, there exists a polyno-
mial reduction of CSP(H) to GCSP(H). For an input G of CSP(H), construct
G+H as an input for GCSP(H). Using the pairwise incomparability of struc-
tures in H, it is obvious that G → H if and only if there exists H ′ ∈ H such
that G + H → H ′.

ǁ.ƿ Deciding ®nite duality
We are interested in the following decision problem: For an input finite
set D of Δ-structure, determine whether there exists a set F of Δ-structure
such that (F, D) is a finite homomorphism duality.

�e complexity of the problem was established by Larose, Loten and Tar-
dif [] in the special case where the input set D is a singleton, that is
|D| = 1.

.. �eorem ([, �eorem .]). �e problem of determining whether
for a relational structure D there exists a finite set F of relational structures
such that

(
F, {D}

)
is a finite duality, is NP-complete.

�is special case turns out to be essential. As a consequence we get that
the general problem is decidable, as we show in the rest of this section.
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�eorem .. claims that in a duality pair
(
F, {D}

)
, the diameter of the

elements of F, which are cores by the definition of finite duality, is at most
nn2 , where n = |D|. We would like to generate all core trees with small di-
ameter. It has been established that their number is finite [, Lemma .].
By modifying the proof in the cited paper we get a rough recursive estimate
for the number of such trees and the number of their edges.

.. Lemma. Let Δ = (δi : i ∈ I) be a type and let s := |I| be the number of
relations and r := max{δi : i ∈ I} the maximum arity of a relation.
Let Td be the set of all core trees with a root such that the distance of any

vertex from the root is at most d. Let td := |Td| be the number of such trees
and let md be the maximum number of edges of a tree in Td.
�en

t0 = 1, m0 = 0,

td ≤ 2sr·tr−1
d−1 , md ≤ sr · tr−1

d−1 ·
(
1 + (r − 1) · td−1 · md−1

)
.

Proof. �ere is exactly one rooted tree with all vertices in distance at most 0

from the root: the tree ⊥ with one vertex and no edges. So t0 = 1. �e
tree ⊥ has no edges, hence m0 = 0.

For a rooted tree with maximum distance at most d from the root v, we
can encode every edge (u1, u2, . . . , uδi

) that contains the root by the name
of the relation i ∈ I, the index k such that v = uk and the trees rooted
at uj for uj 6= uk. Such trees belong to Td−1, thus the number of possible
labels for edges is at most sr · tr−1

d−1. In a core tree, all edges containing
the root have pairwise distinct labels. Hence the number of such trees is
td ≤ 2sr·tr−1

d−1 .
In a tree with maximum distance at most d from the root v there are

at most sr · tr−1
d−1 edges that contain the root. Hence there are at most

(r − 1) · sr · tr−1
d−1 vertices other than the root v. In each of these vertices,

no more than td−1 trees from Td−1 are rooted. �erefore the number of
edges in the tree is at most sr · tr−1

d−1 + (r − 1) · sr · tr−1
d−1 · td−1 · md−1 =

sr · tr−1
d−1 ·

(
1 + (r − 1) · td−1 · md−1

)
.

As a consequence, in the duality pair
(
F, {D}

)
the set F is computable

from D.

.. Lemma. �ere exists an algorithm that computes a set F of Δ-struc-
tures from an input Δ-structure D so that

(
F, {D}

)
is a finite homomorphism

duality, provided that such a set exists.
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Proof. According to �eorem .. there is an algorithm that decides wheth-
er such a set F exists.

If it exists, by �eorem .. the diameter of all elements of F is bounded
by d := nn2 , where n = |D|. �us there is a bound m := md on the
number of edges of the elements of F that is computable from Lemma ...
Let F ′ be the set of all core Δ-trees with at most m edges that are not
homomorphic to D. �eorem .. and Lemma .. imply that for any Δ-
structure X that is not homomorphic to D there exists a Δ-tree F with at
most m edges such that F → X but F 9 D. Hence

F ′9 = →D.

�erefore F is the set of all homomorphism-minimal elements of F ′.
It is fairly straightforward to design an algorithm for constructing all core

trees with a bounded number of edges, as well as an algorithm for determin-
ing the homomorphism-minimal elements of a finite set of structures.

We can conclude that the problem to determine whether an input set of
structures is a right-hand side of a finite duality is decidable.
.. �eorem. �ere exists an algorithm that determines whether for an
input finite set D of Δ-structures there exists a finite set F of Δ-structures
such that (F, D) is a finite homomorphism duality.
Proof. �e algorithm is as follows:

. For each element D of D, determine whether it is a core. If not, then
no such duality can exist by definition.

. For each element D of D, determine whether it is a product of duals,
that is whether there exists a finite set F such that

(
F, {D}

)
is a finite

duality (see �eorem ..). If an element of D is not a product of
duals, then D is not a right-hand side of a finite duality because of
�eorem ...

. For each element D of D, compute the set F(D) such that
(
F, {D}

)
is

a finite duality (see Lemma ..).

. Check whether {FD : D ∈ D} is the set of all transversals for some
finite set F of core Δ-forests. �is can be done greedily by considering
all sets of core Δ-forests whose components appear in the sets FD, and
by constructing the transversals (directly from Definition ..).

�eorem .. implies that if the algorithm finds a set F in the last step,
then (F, D) is a finite homomorphism duality; otherwise D is the right-hand
side of no finite duality.
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ǁ.ǀ Deciding maximal antichains
We consider the problem of deciding whether an input finite set of rela-
tional structures forms a finite maximal antichain in the homomorphism
order. �e problem is called the MAC problem; the letters MAC stand for
“aximal ntihain”.

.. Definition. �e MAC problem is to decide whether an input finite
non-empty set Q of Δ-structures is a maximal antichain in the homomor-
phism order C(Δ).

�e characterisation of finite maximal antichains for types with at most
two relations (�eorem ..) implies decidability of the MAC problem.

.. �eorem. Let Δ = (δi : i ∈ I) be a type such that |I| ≤ 2. �en the
MAC problem is decidable.

Proof. �e algorithm is as follows:

. For each element of Q, check whether its core is a forest. �e core of a
Δ-structure is computable (by checking the existence of a retraction
to every substructure). Deciding whether a Δ-structure is a forest is
possible even in polynomial time.

. Let F ⊆ Q be the set of all such structures. Find all transversals over F.
�is can be done directly from Definition ...

. For each transversal M, construct its dual D(M). First use the bear
construction (..) to construct the dual of each element of M and
then take the product of all these duals.

. Check whether Q\F is formed exactly by structures homomorphically
equivalent to the duals of transversals constructed in the previous
step.

�eorem .. implies that the algorithm is correct.

.. �eorem. Let Δ = (δi : i ∈ I) be a type such that |I| ≤ 2. �en the
MAC problem is NP-hard.

Proof. We will use the fact that for any type Δ there exists a Δ-tree T such
that CSP(T) is NP-complete. We construct the following reduction of CSP(T)
to the MAC problem: For an input structure G of CSP(T), let Q(G) :=

{
G +

T,D(T)
}

. �e set Q(G) can be constructed from G in polynomial time. By
�eorem .., Q(G) is a finite maximal antichain if and only if G → T .





However, the algorithm given in the proof of �eorem .. does not en-
sure that the MAC problem is in the class NP. �is is not known at present.

.. Problem. Is the MAC problem in NP?

�e hard part of the problem may actually consist in finding the cores
of the involved structures. Also, in our proof of NP-hardness we actually
reduce the decision whether the core of G + T is T to the MAC problem. So
it makes sense to ask whether the complexity of the MAC problem changes
when inputs are restricted to cores.

.. Problem. What is the complexity of the MAC problem if input is re-
stricted to sets of cores?
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