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Preface

The Twelfth Prague Midsummer Combinatorial Workshop was held from
July 24 to July 29, 2005 in our newly reconstructed building Malostranské
náměst́ı 25. This of course contributed to the comfort of the participants
as all the activities (including the lunches) could be taken on the same site.
Besides, as it was expressed by several participants, the renovated faculty
building surely belongs to the most beautiful math and CS departments
in the world! The workshop was organized by the Department of Applied
Mathematics (KAM) of Charles University jointly with the DIMATIA cen-
ter. Only a small but distinguished group of mathematicians was invited
and we were particularly happy to have Ralph McKenzie, Zoltán Füredi,
Gyula Katona and Robin Thomas among the participants. The list of par-
ticipants is included in this booklet.

As it already became a tradition, the workshop benefited from partic-
ipation of young researchers and PhD students. For example five under-
graduate students from the USA and three undergraduate students from
Charles University, together with their mentors Martin Bálek and Lara
Pudwell, took part in the workshop, within a joint DIMATIA-DIMACS
program International REU (supported jointly by NSF and Czech Ministry
of Education).

The workshop followed an informal daily routine with morning and early
afternoon discussions and presentations. This report reflects some of the
presentations during the workshop. Perhaps you can digest some of the
atmosphere at the workshop from these proceedings, and you can also see
that the fruitful exchange of ideas led directly to some new results and
papers.

This volume mirrors not only Midsummer Combinatorial Workshop but
also following DDR 2005 workshop. DIMACS–DIMATIA–Rényi (shortly
DDR) cooperation is a joint project of NSF and national grant agencies of
Hungary and Czech Republic in the field of combinatorics, graph theory
and applications. It has been very active for several years.

This volume was edited by Jan Kára. Most of the contributions were
supplied by the authors in an electronic form. In a few cases, slight typo-
graphical changes were necessary. We apologize for any possible inaccuracies
which might have occurred in the editing process.

The Twelfth Midsummer Combinatorial and DDR workshops were sup-
ported by Kontakt CS-US Grants and by our institute ITI (financed by
the Ministry of Education of the Czech Republic as project LN00A056)
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and the publication of these series is supported by the newly approved ITI
1M0021620808. DIMATIA was the main organizer.

The year 2006 is an exceptional year: there will be no Midsummer Com-
binatorial Workshop. This is due to the fact that from July 10 to July 15
we have the Sixth Czech-Slovak International Symposium on Combinatorics,
Graph Theory, Algorithms and Applications. Thus we hope to meet again
in 2006 and then in 2007, the same midsummer week.

Jaroslav Nešetřil
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The Lifting Model for

Reconfiguration

Sergey Bereg
University of Texas, Dallas, USA

Given a pair of start and target configurations, each consisting of n pair-
wise disjoint disks in the plane, what is the minimum number of moves that
suffice for transforming the start configuration into the target configuration?
In one move a disk is lifted from the plane and placed back in the plane at
another location, without intersecting any other disk. We discuss efficient
algorithms for this task and estimate their number of moves under different
assumptions on disk radii. We then extend our results for arbitrary disks
to systems of pseudodisks, in particular to sets of homothetic copies of a
convex object.
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The Complexity of Linear

Constraint Languages

Manuel Bodirsky
Humboldt University, Berlin, Germany

(Joint work with Jan Kára)

In a constraint satisfaction problem we are given a set of variables and a
set of constraints on that variables, and want to find an assignment of values
to the variables such that all the constraints are satisfied. We are interested
in the computational complexity of the constraint satisfaction problem de-
pending on the constraint language that we are allowed to use in the in-
stances of the constraint satisfaction problem; see e.g. [1] for an introduction
to the state-of-the-art of the techniques used to study the computational
complexity of constraint satisfaction problems.

Formally, we can define constraint satisfaction problems (CSPs) as ho-
momorphism problems for relational structures. Let Γ be a (not necessarily
finite) structure with a relational signature τ . Then the constraint satisfac-
tion problem CSP(Γ) is a computational problem, where we are given a finite
τ -structure S and want to know whether there is a homomorphism from S to
Γ. It is easy to see that the class of constraint satisfaction problems equals
the class of problems that is closed under so-called inverse homomorphisms
(if we add constraints to an unsatisfiable instance it stays unsatisfiable) and
disjoint unions (two satisfiable constraints on distinct variables have a joint
solution). We show several examples.

Example 1. Let Γ be the relational structure (Q, <), where < is a binary
relation for the dense linear order of the rational numbers Q. Then CSP(Γ)
is the computational problem of digraph acyclicity, which is tractable.

Example 2. Let Γ be the relational structure (Q, R), where R is the
ternary relation {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < z}. Here, the problem
CSP(Γ) is the NP-complete problem Betweennness [3].
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Example 3. Let Γ be the relational structure (Q; =, 6=). Then CSP(Γ)
is the computational problem to decide for a given set of equalities and
inequalities on a finite set of variables whether the variables can be mapped
to the natural numbers such that variables with a constraint x = y are
mapped to the same, and variables with a constraint x 6= y are mapped to
distinct values.

Clearly, this problem can be solved by an algorithm in polynomial time.
The algorithm iteratively identifies variables with an equality constraint. If
it has to identify two variables with an inequality constraint, it outputs that
the constraint has no solution. Otherwise, we know that we can finally map
all the remaining variables to distinct values and satisfy all the constraints.

Example 4. Let Γ be the relational structure (Q; 6=, Q), where Q is the
relation Q := {(x, y, z) ∈ Q3 | x = y ∨ y = z}. Here the problem CSP(Γ)
turns out to be NP-complete.

In general, we consider in the following the subclass of constraint sat-
isfaction problems for templates of the form Γ = (Q; R1, . . . , Rk) where
Q denotes the rational numbers and each relation Ri, 1 ≤ i ≤ k, is a
Boolean combination of atoms of the form x < y. (A Boolean combination
is an formula built from atomic formulas with the usual logical connectives
of conjunction, disjunction, and negation.) We say that such a relational
structure defines a linear constraint language. If all the relations are Boolean
combination of atoms of the form x = y, we say that it defines an equality
constraint languages. Note that all the four examples shown above are linear
equality languages. Moreover, Example 3 and 4 are also equality constraint
languages. Our main result is the following.

Theorem 1 An equality constraint language with template Γ is tractable if
Γ has a constant endomorphism or an injective homomorphism from Γ2 to
Γ. Otherwise CSP(Γ) is NP-complete.

In Theorem 1, the containment in NP is easy to see: a nondeterministic
algorithm can guess which variables in an instance S denote the same ele-
ment in Γ, and can verify whether this gives rise to a solution for S. Both
the hardness result and the algorithmic tractability result in Theorem 1 are
nontrivial. The hardness proof relies on the algebraic approach to constraint
satisfaction, which was previously mainly applied to constraint satisfaction
with finite templates (see e.g. [1]). However, a general result from [2] states
that the algebraic approach can also be applied to linear constraint lan-
guages. In particular, the computational complexity of linear constraint
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languages with a template Γ is determined by the homomorphisms from
powers of Γ to Γ. The main open problem is the following:

Conjecture 1 Every linear constraint language is either tractable or NP-
complete.

The algorithm for the problems with an injective binary polymorphism
is of a new type, as compared to the known algorithms that are used to
solve tractable constraint satisfaction problems with finite templates. Note
that there are examples that show that the ’simple’ algorithm which was
described in the beginning and solves the problem in Example 1 does not
work in general for problems that are closed under an injective binary poly-
morphism.

References
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The Infinite Locally Random

Graph1

Anthony Bonato
Wilfrid Laurier University, Waterloo, Canada

1 Introduction

A novel feature of countably infinite graphs is that they are limits of finite
graphs. Hence, properties of the finite graphs in the limit may influence
the resulting infinite graph. A well known instance of this is the infinite
random graph, written R. The graph R may be defined as a limit as follows.
Let R0 be a fixed finite graph. For some t ≥ 0, assume that Rt is a finite
graph containing R0. For each subset S of V (Rt), add a new node xS joined
only to the nodes of S. The graph Rt along with the new nodes xS defines
the graph Rt+1. Let R be the graph with vertices

⋃

t∈N
V (Rt) and edges

⋃

t∈N
E(Rt). We will write R = limt→∞ Rt. See the surveys [4, 5] for other

presentations of R.
The graph R satisfies the existentially closed or e.c. adjacency property.

A graph is e.c. if for all disjoint finite sets of nodes A, B, there is a node
z /∈ A∪B joined to each node of A and to no node of B. By a straightforward
back-and-forth argument, a countably infinite graph is e.c. if and only if it
is isomorphic to R. The e.c. property therefore supplies a powerful tool for
studying R. For example, using the e.c. property one may easily derive that
R is inexhaustible: for each node x of R, R − x ∼= R.

The graph R arises naturally via the following infinite random process
which inspires its name. We add new nodes over countably many discrete
time-steps. Fix p ∈ (0, 1). At time t = 0 start with any fixed finite graph. At
time step t+1, add in a new node xt+1. For each of the existing nodes y, add
the edge yxt+1 independently with probability p. Erdős and Rényi proved
in [9] that with probability 1, a limit generated by this random process
is isomorphic to R. This instance of a random process with a seemingly
deterministic conclusion has made R the centre of much research activity.

1The author gratefully acknowledges the support from an NSERC Discovery grant
and from a MITACS grant.
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In real-world, self-organizing networks like the web graph (where nodes
correspond to web pages, and edges represent links between pages), each
node acts as an independent agent, which will base its decision on how to link
to the existing network on local knowledge. As a result, the neighbourhood
of a new node will often be an imperfect copy of the neighbourhood of
an existing node. Both the copying models [1, 10] of the web graph, and
the duplication model [7] of biological networks incorporate this notion of
copying in their design.

Through the study of self-organizing networks, new interesting limit
graphs have been recently discovered; see [2]. For a node y of a graph
G, define N(y) = {x ∈ V (G) : xy ∈ E(G)} and N [y] = N(y) ∪ {y}. Fix a
finite graph H and let X0 be isomorphic to H. For some t ≥ 0, assume that
Xt is a finite graph containing X0. For each node y of Xt, and each subset
S of N(y) in V (Rt), add a new node xy,S joined only to the nodes of S. The
graph Xt along with all the nodes xy,S defines Xt+1. Let RH = limt→∞ Xt.
We define ↑ H similarly, but replacing N(y) by N [y]. Hence, ↑ H is formed
by extending all the subsets of closed neighbour sets.

The graphs RH and ↑ H were first studied in [2], which includes the
following result. A graph G is inexhaustible if for all nodes x of G, G−x ∼= G.

Theorem 1 1. For all finite graphs H and J, ↑ H ∼=↑ J.

2. For all finite graphs H, RH and ↑ H are inexhaustible.

3. For all finite graphs H, RH and ↑ H have one- and two-way Hamilton
paths.

By Theorem 1 (1), the initial graph H has no impact on the limit graph ↑
H. Hence, we name this unique isomorphism type the infinite locally random
graph, written RN . In contrast, there are exactly ℵ0 many isomorphism
types of graphs RH .

The graph RN has other striking properties. For example, for each node
x of RN , the subgraph induced by N(x) is isomorphic to R. This justifies
the name of the graph. As R is an induced subgraph of RN , the graph RN

is ℵ0-universal ; that is, it embeds all countably infinite graphs as induced
subgraphs. Further, RN consists of infinitely many disjoint, connected,
pairwise isomorphic graphs whose isomorphism type we name c(RN ). The
graph c(RN ) arises naturally by extending only nonempty sets S in the
construction of RN given above.
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The graphs RH were studied in [2, 3]. The goal of the present article
is to summarize some new results on the graph RN and pose some prob-
lems surrounding it. Proofs and additional details may be found in the
forthcoming journal version of this extended abstract.

2 Isomorphic representations

Suppose that H, J are finite graphs such that H is an induced subgraph
of J, and let v ∈ V (J). Define H 4v J if there is a node u in J − v
such that N(v) ⊆ N [u], and H = J − v. We write H 4 J if there is
a nonnegative integer m, graphs H0 = H, H1, . . . , Hm = J , and nodes
v0, . . . , vm−1 ∈ V (J) so that Hi 4vi Hi+1 for all 0 ≤ i ≤ m−1. We say that
the graph J strongly folds onto H. For example, K1 4 Kn for all n ∈ N,
but K1 64 C5. This ordering has been studied in the context of domination
elimination orderings of graphs; see [6, 8].

We extend folding to countable graphs as follows. Let H and J be
countable graphs. The relation H 4v J is defined exactly as in the finite
case. Fix I as either N or one of the sets {0, 1, . . . n}, where n ∈ N. We
write H 4 J if there exists a sequence of countable graphs (Ht : t ∈ I) so
that H0 = H, Ht 4v Ht+1 for all t ∈ I, and J = limt→∞ Ht if I = N, or
J = Hn if I is of the form {0, 1, . . . n}. For example, K1 4 Kℵ0

, Kℵ0
. Note

that for all t > 0, H 4 Xt, and Xt 4 Xt+1. Hence, H 4 RN , and so RN

folds to every graph by Theorem 1 (1).
A graph G is locally closed e.c. if for each node y of G, for each finite

X ⊆ N [y], and each finite Y ⊆ V (G) \ X , there exists a node z not in
{y} ∪ X ∪ Y that is joined to X and not to Y. The locally e.c. property is
therefore a variant of the e.c. property that applies only to sets contained
in the closed neighbour set of a node. The graphs RN and R satisfy the
locally closed e.c. property. In contrast to the e.c. property, it was proved
in [2] that there are 2ℵ0 many non-isomorphic locally closed e.c. countable
graphs (note that in [2], the locally closed e.c. property is referred to as
property (A)).

The following theorem ties together the relation 4, the graph c(RN ),
and the locally closed e.c. property.

Theorem 2 The graph c(RN ) is the unique isomorphism type of connected
countable graph with the property that it is locally closed e.c. and strongly
folds to a finite graph.
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For the closed duplication model (based on the duplication model of [7]),
we add new nodes over a countable number of discrete time-steps. Fix
p ∈ (0, 1). At time t = 0 start with any fixed finite graph. At time step
t + 1, choose a node u uniformly at random from the nodes of time t. Add
a new node xt+1, and for each of the nodes y in N [u], add the edge yxt+1

independently with probability p.

Theorem 3 With probability 1, a nontrivial connected component of a limit
generated by the closed duplication model is isomorphic to c(RN ).

If we take H in ↑ H to be countable, then the graph ↑ H remains
countable and locally closed e.c. A graph H is finitely approximated if H
folds to some finite graph. For example, the graphs Kℵ0

and Kℵ0
are finitely

approximated. By definition, RN and each RH are finitely approximated.
Finitely approximated graphs always generate RN .

Theorem 4 If H is a finitely approximated countable graph, then ↑ H ∼=
RN .

Not all countable graphs, however, are finitely approximated. For ex-
ample, consider the graph H formed from the infinite one-way path, where
each node of the path is attached to a distinct C5. The graph H is not
finitely approximated, but we do not know if ↑ H ∼= RN .

3 Isometric subgraphs and indestructibility

The graph RN displays rich metric properties, unlike R which is of diameter
2. A graph G isometrically embeds in H if there is an embedding of G into H
that preserves distances. A graph is isometric ℵ0-universal if it isometrically
embeds all countable graphs. A graph G is isometrically constructible if G
is a limit of sequence (Gt : t ∈ N) with the property that Gt isometrically
embeds in Gt+1, for all t ∈ N.

Theorem 5 The graph RN is isometrically constructible and isometrically
ℵ0-universal.

Theorem 5 gives an alternate proof of an early result of Pach [11].

Corollary 1 Every countable graph isometrically embeds in a countable iso-
metrically constructible graph.
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We know from results of [2] that RN is inexhaustible. Inexhaustibility
is only one type of fractal property a graph may satisfy. For example,
the infinite random graph R satisfies the pigeonhole property : if S is a
set of nodes so that the subgraph induced by S is not isomorphic to R,
then R − S ∼= R. Hence, inexhaustibility is the case where S is finite. The
pigeonhole property is sometimes called a fractal or vertex partition property
of a graph.

For RN , the picture is more complex. For example, for any node x the
subgraph induced by N(x) is isomorphic to R, but RN −N(x) contains an
isolated node and so is not isomorphic to RN . Despite this example, certain
subsets S may be deleted leaving an isomorphic copy of RN .

Theorem 6 If S is a clique in RN , then RN − S ∼= RN .

It is not known exactly which sets of nodes S satisfy RN −S ∼= RN . We
leave this as an open problem. It would be interesting to know the answer
in the case where S is an infinite independent set.

Some things are known about algebraic properties of RN . For exam-
ple, RN is vertex- and edge-transitive, and the automorphism group and
endomorphism monoid of RN are an ℵ0-universal group and monoid, re-
spectively. Unlike the situation for R, the automorphism group of RN is
not oligomorphic. Further details will be included in the journal version of
this extended abstract.
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Coveringpoint setswith two

disjoint disks

Sergio Cabello
Institute for Mathematics, Physics and Mechanics,

Ljubljana, Slovenia

(Joint work with J. Miguel Dı́az-Báñez, Carlos Seara, J. Antoni Sellarès,
Jorge Urrutia and Inma Ventura)

Consider a point set R with at most n red points, a point set B with at
most n blue points, and let CR and CB denote a red and a blue unit disk,
respectively. We consider the following geometric optimization problem:
place CR and CB on the plane such that the number of red points covered
by CR plus the number of blue points covered by CB is maximized. We
allow CB and CR to cover some red (resp. blue) points, but require them
to have disjoint interiors. The requirement for disjoint interiors is relevant,
for example, in facility location problems where the facilities may interfere
negatively or when their influence area is not allowed to overlap.

We provide a solution to this problem that needs O(n8/3 log2 n) time.
The key ingredient is the following result, which can be seen as a general-
ization of the Szemerédi-Trotter Theorem for incidences between points and
lines in the place.

Theorem 1 (Katz and Sharir, 1997) Let M be a set of k congruent an-
nuli and let P be a set of k points, both in the plane. One can compute the
incident annuli-point pairs {(A, p) | A ∈ M, p ∈ P, p ∈ A} as a collection
of {Ms × Ps}s∈S of complete edge-disjoint bipartite graphs in O(k4/3 log k)
time and space. Moreover, it holds that

∑

s |Ms|,
∑

s |Ps| = O(k4/3 log k).

Finally, observe that if we do not require disjoint interiors, then the
problem can be solved for each one of the colors independently. We may
consider also consider the monochromatic variant of the problem, where we
only have one point set and we seek placing two unit disks with disjoint
interiors that maximize the number of covered points. Observe that our
problem is more general than the monochromatic version: given a set of
points for the monochromatic problem, we replace each point by a red and
a blue point, and find the solution to the bichromatic problem. However,
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in the monochromatic version, if we do not require disjoint interiors, then
we have a substantially different problem, whose main difficulty is to avoid
the double counting in the intersection between the disks.
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A Simple Proof for Open Cups

and Caps

Jakub Černý
Charles University, Prague, Czech Republic

All sets of points through out this abstract will be in general position
in the plane. By general position we mean that no three points lie on a
line and no two points have the same x-coordinate. Let X be a set of n
points and denote its points by p1, p2, . . . pn according to the increasing
x-coordinate. Let Y ⊆ X be a set of points q1, q2, . . . qk again ordered by
the x-coordinate. For i = 1,2, . . . k−1, let si be the slope of the line qiqi+1.
The set Y = {q1, . . . , qk} is a k-cup or a k-cap if the sequence s1, s2, . . . , sk

is increasing or decreasing, respectively (see Figure 1). In other word if the
points lie on the graph of a convex, resp. concave function. The set Y is
open in X if there is no point p ∈ X with x(q1) < x(p) < x(qk) lying above
the polygonal line p1p2 . . . pk.

empty
4-cup

empty
5-cap

Figure 1: The set of points on the polygonal line is open. There is also the
empty 4-cup and the empty 5-cap in the figure.

Erdős-Szekeres theorem [1] says that for every positive integer k there
exists positive integer N such that any N -point set contains k points that
are vertices of a convex polygon. There are several proofs of the theorem
using Ramsey theory and a proof using cups and caps. The latter proof
gives much better upper bound on N .

Define f(k, l) to be the smallest positive integer for which X contains a
k-cup or an l-cap whenever X has at least f(k, l) poinst. Erdős and Szekeres
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[1] proved that f(k, l) =
(

k+l−4
k−2

)

+ 1.
Erdős also asked if for every k there exists N such that any N -point

set X contain k vertices of an empty convex polygon. Empty polygon is a
polygon with no point of X in its interior. We say that Y ⊆ X is a k-hole
if Y lies in the vertices of an empty convex k-gon. His conjecture holds up
to k = 5. In 1983 Horton [3] showed that it is not true for all k ≥ 7. The
question for k = 6 was open for a long time. Using a computer Overmars [7]
found a configuration of 29 points without empty hexagon and very recently
Gerken [2] showed that the conjecture holds also for k = 6.

What is the sufficient condition for existence of k-hole? The set X is
l-convex if and only if every triangle determined by points of X contains
at most l points of X in its interior. The l-convex sets were introduced by
Valtr [8] and he also showed the following theorem:

Theorem 1 (Valtr) For every positive integers k and l there exists posi-
tive integer N such that any l-convex N -point set X contains a k-hole.

Denote by n(k, l) the smallest positive integer N such that any l-convex
N -point set contains a k-hole. Károlyi, Pach and Toth [4](2001) proved
this theorem for l = 1. Later Karolyi, Valtr [5] determined the exact value
of n(k, 1). The first proof for general l was given by Valtr [8]. He was
followed by Kun and Lippner [6](2002) who improved the bound to n(k, l) ≤

(l+2)(l+2)k−1. Finally Valtr [9](2004) again improved the bound to n(k, l) ≤

2(k+l
k+2)−1. The last Valtr’s proof generalizes Erdős-Szekeres results on cups

and caps to open cups and open caps.

Theorem 2 (Valtr) For every positives integers k and l there exits pos-
itive integer N such that any N -point set in the plane contains an open
k-cup or an open l-cap.

We show a simple proof of theorem 1. The theorem 1 for l-convex sets is a
corrolary of theorem 2. If we have an (l − 3)-convex N -point set X and we
want to find a (k+1)-hole, we use the projective transformation, which sends
one point on the convex hull of X to the infinity. We obtain an (N − 1)-
point set X̄ . We apply the theorem 2 on set X̄ and receive either open k-cup
or open l-cap. In the backward projective transformation the open k-cup
corresponds to a (k + 1)-hole and the open l-cap corresponds to a triangle
cointaing at least (l − 2)-points, but that contradicts the (l − 3)-convexity
of the set X . See Valtr [9] for the details.
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We define g(k, l) as the smallest number N such that any N -point set in
general position contains an open k-cup or an open l-cap. Valtr [9] showed
the following bounds:

2(bk/2c+bl/2c−2

bk/2c−1 ) ≤ g(k, l) ≤ 2(k+l−4

k−2 ).

References
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Planar Graphs without 7-cycles

are 4-choosable

Babak Farzad1

University of Toronto, Toronto, Canada

Choosability of planar graphs has been extensively studied. Thomas-
sen [7] proved that every planar graph is 5-choosable. Voigt [8], Gutner [3]
and Mirzakhani [6] presented examples of non-4-choosable planar graphs.
So, characterizing 4-choosable planar graphs turned out to be one of the
most interesting problems in the choosability of planar graphs.

A graph G is d-degenerate if every subgraph H of G has a vertex of
degree at most d in H . It is easy to see that every d-degenerate graph is
(d+1)-choosable. An easy argument using Euler’s formula shows that every
planar graph without 3-cycles is 3-degenerate. Hence, every planar graph
without 3-cycles is 4-choosable. Wei-fan and Lih [10] proved that every
planar graph without 5-cycles is 3-degenerate. Recently, Fijavz, Juvan,
Mohar and Skrekovski [2] proved that every planar graph without 6-cycles
is 3-degenerate. In summary:

Theorem 1 Let k be an integer, k = 3, 5, or 6. If G is a planar graph with
no cycle of length k, then G is 3-degenerate.

The lack of 4-cycles does not imply the 3-degeneracy of a planar graph,
e.g. the line graph of a dodecahedron. However, Lam, Xu and Liu [5] proved
that every planar graph without 4-cycles is 4-choosable. Thus, we know:

Theorem 2 Let k be an integer, 3 ≤ k ≤ 6. If G is a planar graph with no
cycle of length k, then G is 4-choosable.

Fijavz, Juvan, Mohar, Skrekovski [2] and Wei-Fan, Lih [9] independently
conjectured that the above theorem can be extended to k = 7, i.e. a planar
graph with no 7-cycle is 4-choosable. In proving the above conjecture, one
may not hope to prove the 3-degeneracy of planar graphs without 7-cycles.
In fact, Choudum [1] constructed 4-regular 3-connected planar graphs with-
out k-cycles for each k ≥ 7. We use the discharging method to prove the
above conjecture, that is:

Theorem 3 If G is a planar graph without 7-cycles, then G is 4-choosable.

1This research is supported by a University of Toronto Fellowship.
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(a) (b) (c)

Figure 1: Examples of unexpected configurations in planar graphs without
7-cycles. The shaded areas may contain more vertices and edges.

Planar graphs without cycles of specific lengths

The structure of a planar graph without cycles of specific lengths forbids
several configurations. However, these can be fairly subtle. For example,
in a planar graph G without 7-cycles, it is tempting to conclude that there
are no 7-faces. But this is not necessarily true: G may have a 7-face if the
7-face is non-simple (Figure 1(a)). Similarly, G may have a 6-face adjacent
to a 3-face, e.g. when the 6-face is non-simple.

Unfortunately, the existence of non-simple faces is not the only source
of unexpected configurations. Similar unexpected configurations may occur
when two adjacent faces intersect in more than one edge, e.g. graph G
without 7-cycles might have a simple 6-face adjacent to a 3-face as shown in
Figure 1(b). Unexpected configurations may also occur when two different
neighbours of a face f intersect outside of f , e.g. G may have a 4-face
adjacent to three 3-faces as shown in Figure 1(c).

We emphasize that we are not just being overly pedantic here. In fact
a number of published papers contain fatal errors of this sort. Here is an
example:

One of the main results of Lam, Shiu and Xu in [4] is that every planar
graph without 6-cycles is (4m, m)-choosable. Their proof is based on the
following observations on planar graphs without 6-cycles (page 288 of [4]):

(i) a k-vertex, where k ≥ 5, is incident to at most b 3k
4 c in total, of 3- or

4-faces;

(ii) a 5-face is not adjacent to any 3-face;
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(iii) a 4-face is adjacent to at most one 3-face;

(iv) a 3-face is adjacent to at most two 3-faces;

(v) if f1 and f2 are adjacent 3-faces, then none of them is adjacent to a
4-face.

All of these observations are incorrect as shown in Figure 2.
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Figure 2: The shaded areas may contain more vertices and edges. (a) a
5-vertex incident to four 3- or 4-faces; (b) a 5-face adjacent to a 3-face; (c)
a 4-face adjacent to two non-adjacent 3-faces; (d) a 4-face adjacent to three
3-faces; (e) two adjacent 3-faces where one of them is adjacent to a 4-face.
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Constructionof Transitive

GraphsAccording to Given

Degree Structure

Jiř́ı Fiala
Charles University, Prague, Czech Republic

For a graph we encode the degree structure as a partition of its vertices
into the smallest number of blocks B1, . . . , Bk such that whenever two ver-
tices belong to the same block, they have the same number of neighbors
inside any block: u, v ∈ Bi ⇒ ∀j : |N(u) ∩ Bj | = |N(v) ∩ Bj = mij We
arrange constants mij into the degree matrix or order k.

We ask whether for a given degree matrix M , exists a graph G such that
M is the degree matrix of G, and in addition for any two edges e, f ∈ EG

connecting the same pair of blocks there exists an automorphism of G that
swaps edges e and f .
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Symmetries in Ramsey Theory:

RecentResults and

Applications

Willem Fouché
University of South Africa, Pretoria, South Africa

1 Introduction

In this survey we discussed the role of symmetry in structural Ramsey the-
ory. For a survey of this subject, the reader is referred to Nešetřil [14].

In the seventies, largely because of the work by Nešetřil, Rödl [15, 16,
18] and, independently, by Abramson, Harrington [1], remarkable progress
was made with the problem of determining the Ramsey objects in various
classes of combinatorial configurations. Recently, it was shown by Kechris,
Pestov and Todorcevic [12] that these results have, among other things,
major applications to the study of the extremely amenable subgroups of
the symmetry group Sω of a countably infinite set, where Sω has the usual
pointwise convergence topology. In particular, they showed how the notion
of a Ramsey degree, to be discussed below, can be generalised to infinite
Ramsey theory.

2 Ramsey degrees

If r is a natural number, we write [r] for the set {1, · · · , r}. The set of
non-negative integers is denoted by ω. If C is a class of finite structures for
which we have a notion of a copy (image under an embedding) of an object
A in an object B of C, then A is said to be a Ramsey object in C if for
each object B and r < ω, there is an object C such that for each partition
χ : [C, A] −→ [r], where [C, A] is the set of copies of A in C, there is a copy
B′ of B in C such that all the elements of [B′, A] are in one block of the
partition.

It is well-known that in the class of finite graphs, the complete graphs
and their complements are the only Ramsey objects. In the class of finite
posets the only Ramsey objects are the ordinal sums of antichains [17].
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In the papers [3, 6, 7] the author studied the following problem: For a
given object in a class C, how can one measure the extent to which this is
a Ramsey object? We answered this question by finding for various classes
C, for each A in C, the smallest natural number, t(A), with the following
property: For each r < ω, for each B in C, there is some C in C, such that,
for each partition χ : [C, A] → [r], there is some copy B′ of B in C such that
χ assumes at most t(A) values on [B′, A]. The number, t(A), if it exists, is
called the Ramsey degree of A. Thus A is a Ramsey object iff t(A) = 1. In
each of the classes, we found that the Ramsey degree of an object A can
be expressed in terms of its symmetries. This has the implication that only
the most symmetric configurations are Ramsey objects.

If P = (X, P ) is a poset, we frequently write x < y(P ) or x < y(P)
instead of (x, y) ∈ P . We recall that a total order L on the underlying
set X of P is a linear extension of P if, for all x and y in X we have:
x < y(P ) ⇒ x < y(L), i.e if P ⊆ L.

For a finite poset P, let e(P) denote the number of linear extensions of
P and write A(P) for the automorphism group of P. We set

t(P) = e(P)/|A(P)|.

It is easily seen that t(P) is always a natural number. An embedding of
a poset P into a poset Q is a one-to-one map λ : P → Q such that, for all
x, y ∈ P, we have that x < y iff λ(x) < λ(y). We refer to an image under
an embedding of P in Q as a copy of P in Q. The set of copies of P in Q
is denoted by [Q,P]. In [5] we proved the following theorem.

Theorem 1 For finite posets P and Q and a natural number r, there exists
a finite poset R such that, for any r-colouring χ of the copies of P in R,
there is a copy, Q′, of Q in R such that χ assumes at most t(P) values on
[Q′,P]. Conversely, for any P and r ≥ t(P), there is a poset Q such that
for any R containing a copy of Q, an r-colouring of [R,P] can be found
which assumes, on any set of the form [Q′,P], with Q′ a copy of Q in R,
at least t(P) values.

It follows that t(P) is the Ramsey degree of the poset P. In order to
unfold the meaning of this theorem, we introduce the following notation: If
P and Q are posets, we write P ⊕ Q for their ordinal sum. For a natural
number n, we write n for the antichain of size n. The symmetric group
on n elements is denoted by Sn. We shall use the one-line notation for the
elements of Sn; that is, if π is a permutation of [n] which maps i to πi, say,
for i = 1, · · · , n, then we denote π by the word π1 . . . πn.
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If n1, · · · , nk are natural numbers then

A(n1 ⊕ . . . ⊕ nk) ' Sn1
× . . . × Snk

;

moreover, this ordinal sum of antichains clearly has exactly n1! . . . nk! lin-
ear extensions. It follows that n1 ⊕ . . .nk has Ramsey degree one and is,
therefore, a Ramsey object in the class of finite posets.

The number t(P) has the following order theoretic interpretation: Let
L1, L2 be linear extensions of P. We say that L1 and L2 are equivalent and
write L1 ∼ L2, if the unique order preserving map (X, L1) → (X, L2), where
X is the underlying set of P, induces an automorphism of P. Then, t(P) is
the number of equivalence classes with respect to ∼. To see this, fix some
linear extension L of P and label the elements of P by natural numbers
1, · · · , n in such a way that L will order the elements of P as 1 < . . . < n.
In this context, any linear extension L′ of P corresponds to a permutation
π of [n] such that, for all i, j ∈ [n]:

i < j(P ) ⇒ π−1(i) < π−1(j)(ω). (1)

Indeed, let π = π(1) . . . π(n) be such that L′ orders the elements of P as
π(1) < . . . π(n). We then have, for i, j ∈ [n], that i < j ↔ x < y(ω) where
x, y are such that π(x) = i and π(y) = j. Conversely, any permutation π
of [n] satisfying (1), corresponds to a unique linear extension of P. Let A
be the set of π ∈ Sn satisfying (1). Then A has exactly e(P) elements. If
σ ∈ A(P) ≤ Sn and π ∈ A, then σπ ∈ A. Indeed, if i < j in P, then
σ−1i < σ−1j in P and π−1σ−1i < π−1σ−1j in ω, since π satisfies (1). This
means that A(P) acts on A; it is obvious that this action is faithful. Now,
π1, π2 ∈ A correspond to equivalent linear extensions of P iff π1 = σπ2 for
some σ ∈ A(P). Let s(P) be the number of nonequivalent linear extensions
of P. It is now clear that there are exactly s(P) orbits under the group
action of A(P) on A. Each orbit with respect to this action has size |A(P)|.
It follows that s(P) = e(P)/|A(P))| = t(P), as required.

It is readily seen that if P is not an ordinal sum of antichains, then
one can find two non-equivalent linear extensions of P. Indeed, for x ∈ P,
write ρ(x) for the maximum size of the chains having x as a maximum
element. If P is not an ordinal sum of antichains, it has elements x, y and z
satisfying ρ(x) = ρ(y), ρ(z) = ρ(y) + 1; moreover, y < z(P) but x and z are
independent. Let L be a linear extension of P such that x < y(L) and there
is no element t such that x < t < y (i.e., y covers x with respect to the order
L). Moreover, we require that x1 < x2(L) whenever ρ(x1) < ρ(x2). (Any
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total order with this property is a linear extension of P, for if x < y(P),
then ρ(x) < ρ(y).) Let L′ be the linear order that is the same as L with
the only exception that y < x(L′). Then L and L′ are nonequivalent linear
extensions of P.

In this way we recover the result of Nešetřil and Rödl [17] that the
ordinal sums of antichains are the only Ramsey objects in the class of finite
posets.

The proof of Theorem 1 revolves around the observation that a partial
order is the intersection of all its linear extensions. The proof then uses the
partition theorems of parameter words of Graham and Rothschild [11].

Kechris et al mentioned in [12] that the result has the following dy-
namical interpretation: Let Pω be the random poset (i.e., the Fräıssé limit
of the class of finite posets) and let L be an appropriate linear extension
of Pω. Then the automorphism group G of the pair (Pω , L) is extremely
amenable, i.e., every compact flow of G has a fixed point. (Here we consider
G as a closed subgroup of Sω where the latter has the pointwise convergence
topology.) Equivalently, the universal minimal flow M(G) of G is actually
trivial, a singleton. Moreover, the universal minimal flow of the automor-
phism group of the random poset Pω can be parametrised by the space of
all linear extensions of Pω. In [12] it is shown that one can also express the
extreme amenability of G as follows:

For any open subgroup V of G, every colouring c : G/V → [k], of the
set of left cosets hV of V in G, and every finite A ⊂ G/V , there is some
g ∈ G and 1 ≤ i ≤ k, such that c(g.a) = i, for all a ∈ A, where G acts on
G/V in the usual way: g.hV = ghV .

In [12] the reader will also find a dynamical interpretation of a vast array
of results by Nešetřil and Nešetřil, Rödl.

In collaboration with Pretorius and Swanepoel, the Ramsey degrees of
posets of a fixed height was determined [10]. For other structures (including
trees, bipartite graphs), see [9, 6]. The dynamical interpretation of these
results will be discussed in [7].

It is an open problem whether every finite lattice has a Ramsey degree.
In fact, even the simpler problem of finding all the Ramsey objects in the
class of finite lattices is still open. In [17] it is shown that points and 2-chains
are Ramsey objects in the class of finite lattices. It is tempting to guess that
ordinal sums of antichains which are also lattices are Ramsey objects in this
class. For distributive lattices, the problem is solved. One can deduce from
the arguments in Prömel, Voigt[21] that, for a finite distributive lattice D,
its Ramsey degree is given by (Sn : A(D)), where n is the smallest natural
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number such that D can be embedded in the Boolean algebra Bn.
In his doctoral thesis, Devlin [2] showed that the Ramsey degree tk of the

finite total order k in the dense order (Q,≤) is equal to the (2k+1)st tangent
number T2k+1 given by the formula tan z =

∑∞
n=0 Tnzn/n!. Note that the

existence of these Ramsey degrees was known to R. Laver before Devlin’s
work. The existence follows rather directly from results of K. Milliken [13].
For a recent (and very beautiful) proof of Devlin’s result (which still is
unpublished) see Vuksanovic [23]. For results about other Fräıssé limits such
as for example the random graph, the reader is referred to Pouzet-Sauer
[19] and Sauer [22]. For random partitions of Fräıssé limits, see Fouché,
Potgieter [8]. In general, though, the determination (or even the existence!)
of Ramsey degrees of finite substructures of Fräıssé limits is wide open.

The following result displays an unavoidable symmetry in words. This
result was proved by the author in [3].

Theorem 2 For given n, r > 0, there is some N = N(n, r), such that any
word w of length N over an alphabet of r elements will contain, for every
permutation π ∈ Sn, factors w1, · · · , wn and Z, such that

w1 . . . wnZwπ(1) . . . wπ(n)

is another factor of the word w.

Even though the proof of this theorem is constructive, it yields an upper
bound for N(n, r) which just misses to be primitive recursive. (It is of the
same recursive complexity as the well-known Ackermann function.) It is an
interesting open problem whether one find primitive recursive upper bounds
for N .
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On Empty ConvexHexagons In

Planar Point Sets

Tobias Gerken
Technical University Munich, Garching, Germany

In 1935 Erdős and Szekeres [3] proved that for any positive integer k
there exists a smallest positive integer g(k) such that any planar set of at
least g(k) points in general position (that is, no three points are collinear)
contains k points that are the vertices of a convex k-gon. The best known
bounds for g(k) are 2k−2 +1 ≤ g(k) ≤

(

2k−5
k−2

)

+1 due to Erdős and Szekeres
[4] and Tóth and Valtr [9]. The lower bound is sharp for k ≤ 5 and has
been conjectured to be sharp for all k. Later Erdős [2] posed the problem
of determining the smallest positive integer h(k), if it exists, such that any
set X of at least h(k) points in general position in the plane contains k
points which are the vertices of an empty convex polygon, that is, a convex
k-gon whose interior does not contain any point of X . Trivially, h(k) = k
for k ≤ 3. It is easy to see that h(4) = 5. In 1978 Harborth [5] proved that
h(5) = 10, while Horton [6] showed in 1983 that for all k ≥ 7, h(k) does
not exist. The problem of determining the existence of h(6) has since been
open. Based on computer experiments, Overmars [8] showed that h(6) ≥ 30
(if it exists). In our talk, we present a promising new approach for a proof
which would imply that every sufficiently large planar point set in general
position contains the vertex set of an empty convex 6-gon:

Conjecture 1 h(6) ≤ g(9) < ∞.

The above bounds yield 129 ≤ g(9) ≤ 1717. Note that there exist sets of
points without empty convex 6-gons that have eight points on the convex
hull ([8]). For a survey of results related to the Erdős–Szekeres theorem,
see [1, 7, 9].

The new approach goes as follows: Let X denote any finite planar set
of points in general position that contains the vertex set of a convex 9-gon
which by the Erdős–Szekeres theorem [3] is always the case if the cardinality
of X is larger than or equal to g(9). Let H ⊂ X denote the vertex set of a
convex 9-gon in X with the smallest possible |X∩conv(H)|, where conv(M)
denotes the convex hull of the set M . Let I := conv(H) ∩ (X \ H) be the
points of X inside the convex hull of H . Note that conv(I) is a convex
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Figure 1: Basic notation

polygon and denote by ∂I its vertex set. If |I | > 2, let J := conv(I)∩(X\∂I)
be the points of X inside the convex hull of ∂I . Note that conv(J) is again a
convex polygon and denote by ∂J its vertex set. Finally, set K := conv(J)∩
(X\∂J), confer Figure 1. Let i := |∂I | and j := |∂J | denote the cardinalities
of the vertex sets of conv(I) and conv(J) respectively. Note that 0 ≤ i, j ≤ 8
as otherwise there would be a 9-gon H ′ with smaller |X ∩ conv(H ′)|. This
leaves us with the 57 cases 0 ≤ i ≤ 2 and (i, j) ∈ {3, . . . , 8} × {0, . . . , 8}.
Now argue that in each case either the vertex set of an empty convex u-
gon can be found (u ≥ 6) or the vertex set of a convex 9-gon H ′ with
smaller |X∩conv(H ′)| is present which contradicts the minimality condition
imposed on H .
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NonrepetitiveColorings of

Graphs

Jarek Grytczuk
University of Zielona Góra, Zielona Góra, Poland

A sequence S = s1s2...s2n is called a repetition if si = sn+i for each
i = 1, ..., n. A coloring of the vertices of a graph G is nonrepetitive if no
simple path of G looks like a repetition. The minimum number of colors
needed for a nonrepetitive coloring of G is denoted by π(G) and is called
the Thue chromatic number of G.

The celebrated 1906 theorem of Thue [5] asserts that π(Pn) = 3 for all
n ≥ 4, where Pn is a path with n vertices. Let π(d) denote the supremum
of π(G) where G ranges over all graphs with ∆(G) ≤ d. In [1] it was proved
by the probabilistic method that there are absolute positive constants c1

and c2 such that

c1
d2

log d
≤ π(d) ≤ c2d

2.

Recently Kündgen and Pelsmajer [3] proved that π(G) ≤ 4t for graphs of
treewidth at most t. This implies, by the result of Robertson and Seymour
[4], that any minor-closed class of graphs with unbounded Thue chromatic
number must contain all planar graphs. This makes the following natural
question even more intriguing:

Is the Thue chromatic number bounded for planar graphs?
In a seemingly weaker version of the problem we ask for the minimum

number of colors t = t(F) needed for a family of graphs F such that there
exists, possibly huge, but finite k allowing for a t-coloring of every member
of F with no k identical blocks on a path. For instance, for graphs of
maximum degree at most d this threshold value of t is between (d + 1)/2
and d + 1, as shown in [2].

Is t finite for planar graphs?
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Some Problems on Matchings

and Toughness

Tomáš Kaiser
University of West Bohemia, Pilsen, Czech Republic

We present a couple of problems related to generalizations of the famous
1-factor theorem of Tutte [6]. For a graph H , let ωodd(H) denote the number
of components of H of odd order, and let ω(H) be the total number of
components of H . Tutte’s theorem says:

Theorem 1 (Tutte) A graph G has a 1-factor if and only if for all X ⊂
V (G),

ωodd(G − X) ≤ |X | .

There are several extensions of Theorem 1 dealing with systems of dis-
joint paths. The first such result was proved by Gallai [1]. Let (G, T ) be a
graft ; that is, let G be a graph and T ⊂ V (G) with |T | even. A T -path is
defined to be a path with ends in T .

Theorem 2 (Gallai) The maximum number of vertex-disjoint T -paths is
equal to

min
X⊂V (G)

(

|X | +
∑

K

⌊ |K ∩ T |

2

⌋)

,

where K ranges over components of G − X.

Recent work on [3] motivated us to examine systems of disjoint T -paths
spanning all of T , which we called T -path coverings (in a given graft (G, T )).
Specifically, we needed to show that if G is cubic and 3-connected, then every
edge is contained in a T -path covering. This is somewhat reminiscent of a
theorem of Plesńık [5] for 1-factors:

Theorem 3 (Plesńık) Every edge of a k-regular (k − 1)-edge-connected
graph is contained in a 1-factor.

However, simple examples show that the direct analogue of Theorem 3
is not true for T -path coverings. On the other hand, we established [2] the
following:
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Theorem 4 Every edge of a k-regular k-edge-connected graph is contained
in a T -path covering.

We obtained Theorem 4 as a corollary of Theorem 5 below, a result on
tough graphs. Recall that a graph G is tough if for all X ⊂ V (G),

ω(G − X) ≤ |X | .

Note that by a simple counting argument, every k-regular k-edge-connected
graphs is tough.

Theorem 5 Let (G, T ) be a graft with G tough. An edge uv ∈ E(G) is not
contained in a T -path covering if and only if there is a set X ⊂ V (G) such
that:

1. {u, v} ⊂ X ⊂ T ,

2. G − X has precisely |X | components, and

3. each of these components contains an odd number of vertices in T .

It is natural to ask whether the above characterization could be extended
to pairs of edges:

Problem 1 For a graft (G, T ) with G tough, characterize the pairs of edges
that are not contained in a T -path covering.

The line of proof of Theorem 5 does not seem to work for Problem 1.
More specifically, the proof involves a reduction to the following result of
Mader [4] that generalizes Theorem 2. Given a graph G and a system S
of disjoint subsets of V (G), an S-path is defined to be a path with ends in
distinct sets in S.

Theorem 6 (Mader) The maximum number of vertex-disjoint S-paths
equals

min
X,F

(

|X | +
∑

K

⌊ |K ∩ (T ∪ V (F ))|

2

⌋)

,

where the minimum is taken over all X ⊂ V (G) and all F ⊂ E(G − X)
containing no S-paths, and K ranges over components of G − X − F .
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Problem 1, however, cannot be directly reduced to Mader’s theorem.
Instead, a result involving the structure of the S-paths, in the following
sense, would be useful. Let us define a subgraph of G to be S-acyclic if the
corresponding subgraph in G/S is a forest, where G/S is the graph obtained
by contracting each set in S to a vertex.

Problem 2 Is there a relation, similar to the one in Theorem 6, for the
maximum number of disjoint S-paths whose union is S-acyclic?

We conclude with a problem concerning a possible generalization of The-
orem 1 along different lines:

Problem 3 Is there a sufficient condition in the spirit of Tutte’s theorem
for the existence of two edge-disjoint 1-factors? How about the simplest
candidate:

ωodd(G − X) ≤
|X |

C
,

for all X ⊂ V (G), where C is a large constant?
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Random Planar Structures

Mihyun Kang
Humboldt University, Berlin, Germany

Recently random planar structures have received much attention [1, 3,
5, 6, 12, 13, 17, 18, 21, 24, 25, 27]. Typical questions one would ask about
them are the following: how many of them are there, can we sample a
random instance uniformly at random, and what properties does a random
planar structure have ?

We first answer those questions about labeled cubic planar graphs, i.e.,
graphs that can be embedded in the plane, and in addition each of whose
vertices has degree three [11]. We show that the number of labeled cubic pla-
nar graphs on n vertices is asymptotically cn−7/2γnn!, where γ

.
= 3.132595

and c are analytic constants. Based on this we show that the number of
components isomorphic to K4 in a random cubic planar graph on n ver-
tices has asymptotically poisson distribution with mean γ−4/4! and that a
random cubic planar graph on n vertices contains at least linearly many
triangles with probability tending to 1 as n converges to ∞. Using these
facts, we derive that the chromatic number of a random cubic planar graph
is four with probability tending to 1−e−γ−4/4!, and is three with probability
tending to e−γ−4/4! .

= 0.999568.
For this we decompose the cubic planar graphs along their connectivity.

For the asymptotic enumeration we interpret the decomposition in terms
of generating funtions and derive the asymptotic numbers of cubic planar
graphs, using singularity analysis [14]. For the exact enumeration and the
uniform generation we use the so-called recursive method [15, 23]: We derive
recursive counting formulas along the decomposition, which yields a deter-
ministic polynomial time algorithm to sample a cubic planar graph that
is uniformly distributed. This sampling procedure is implemented in [20],
where several other empirical properties of a random cubic planar graph are
discussed, e.g., the number of cut-edges and the diameter.

These methods have been successfully applied for several other planar
structures: first for various kinds of planar maps, i.e., graphs that are
embebbed in the plane, e.g., planar maps [3, 19, 27], 3-connected pla-
nar maps [2, 6, 22], triangulations [26], cubic planar maps [16], and then
for labeled planar graphs, e.g., 2-connected planar graphs [4], outerplanar-
graphs [5, 10], series-parallel graphs [5], planar graphs [8, 18]. However,
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concerning unlabeled planar structures, not much is known. Only very re-
cently, uniform sampling algorithms that run in expected polynomial time
are designed for outerplanar graphs [10], cubic planar graphs [7], and 2-
connected planar graphs [9].

One interesting but challenging task is to design such a uniform sampler
for unlabeled planar graphs. Another interesting task is to determine the
asymptotic number of planar graphs with given degree sequences.
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(Joint work with Jan Kratochv́ıl and David R. Wood)

1 Introduction

We study the complexity of finding a ‘balanced’ ordering of the vertices of
the graph that is used by a several graph drawing algorithms as a starting
point. Here balanced means that neighbours of each vertex v are as evenly
distributed to the left and right of v as possible. The problem of determining
such an ordering was recently studied by Biedl et al. [1]. We solve a number
of open problems from [1] and study a few other related problems.

Let G = (V, E) be a multigraph without loops. An ordering of G is a
bijection σ : V → {1, . . . , |V |}. For u, v ∈ V with σ(u) < σ(v), we say that
u is to the left of v and that v is to the right of u. The imbalance of v ∈ V
in σ, denoted by Bσ(v), is

∣

∣|{e ∈ E : e = {u, v}, σ(u) < σ(v)}| − |{e ∈ E : e = {u, v}, σ(u) > σ(v)}|
∣

∣.

When the ordering σ is clear from the context we simply write B(v)
instead of Bσ(v). The imbalance of ordering σ, denoted by Bσ(G), is
∑

v∈V Bσ(v). The minimum value of Bσ(G), taken over all orderings σ
of G, is denoted by M(G). An ordering with imbalance M(G) is called
minimum. Clearly the following two facts hold for any ordering:

• Every vertex of odd degree has imbalance at least one.

• The two vertices at the beginning and at the end of any ordering have
imbalance equal to their degrees.
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These two facts imply the following lower bound on the imbalance of an
ordering. Let odd(A) denote the number of odd degree vertices among the
vertices of A ⊆ V . Let (d1, . . . , dn) be the sequence of vertex degrees of G,
where di ≤ di+1 for all 1 ≤ i ≤ n − 1. Then

Bσ(G) ≥ odd(V ) − (d1 mod 2) − (d2 mod 2) + d1 + d2.

An ordering σ is perfect if the above inequality holds with equality.
perfect ordering is the decision problem whether a given multigraph G
has a perfect ordering. This problem is clearly in NP .

2 Results

Whether the balanced ordering problem is efficiently solvable for planar
graphs with maximum degree four is of particular interest since a number
of algorithms for producing orthogonal drawings of planar graphs with max-
imum degree four start with a balanced ordering of the vertices. We answer
this question in the negative:

Theorem 1 The perfect ordering problem is NP-complete for planar
graphs with maximum degree four.

As the problem we reduce from we use the planar 2–in-4sat. The
NP-completeness of this problem is also show in our paper. Next we study
the case of regular graphs and prove:

Theorem 2 The perfect ordering problem for 5-regular multigraphs is
NP-complete.

Using a few lemmas we also show that:

Corollary 1 It is NP-hard to find a minimum ordering for 5-regular sim-
ple graphs.

In the end we describe algorithms solving at least some special cases in
a polynomial time. The algorithms are base on the following lemma:

Lemma 1 There is an O(n + m) time algorithm to test whether a multi-
graph G with n vertices and m edges has an ordering in which a given list
of vertices imbalanced = (v1, . . . , vk) are the only imbalanced vertices, and
σ(vi) < σ(vi+1) for all 1 ≤ i ≤ k − 1.
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The following theorem is a consequence of the previous lemma:

Theorem 3 There is an algorithm that, given an n-vertex m-edge multi-
graph G, computes a minimum ordering of G with at most k imbalanced
vertices (or answers that there is no such ordering) in time O(nk · (m+n)).

Corollary 2 There is a polynomial time algorithm to determine whether a
given multigraph G has an ordering with imbalance less than a fixed constant
c.

Corollary 3 The perfect ordering problem is solvable in O(n2(n+m))
time for any n-vertex m-edge multigraph with all vertices of even degree.
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(Joint work with Roman Nedela)

A 3-manifold M is a topological space in which every point x ∈ M has a
neighbourhood O(x) homeomorphic to the Euclidean space E3. Throughout
this paper all 3-manifolds will be considered to be closed, connected and
orientable. It is well-known that this class of 3-manifolds can be represented
by means of 4-edge-coloured bipartite graphs. This construction form a base
of the crystallisation theory founded by Mario Pezzana in early 70-th of
the last century. A classical invariant of closed 3-manifolds is the Heegaard
genus. It is well known that the only 3-manifold with Heegaard genus
zero is the 3-sphere S3 and the 3-manifolds with Heegaard genus one are
S1 × S2 and lens-spaces. Classification of 3-manifolds with genera zero
and one is well-known, see Hempel [4, p. 20-22] for the proof. Analysing
”equivalence classes“ of crystallisations we present an alternative approach
to the classification based on combinatorial ideas.

Every closed, connected 3-manifold can be finitely triangulated [5]. Let
us have a 3-manifold M. One can triangulate it constructing the finite sim-
plicial complex S(M). Taking the dual (graph) Γ(M) of the first barycen-
tric subdivision of S(M) we get a combinatorial representation of the man-
ifold M. Since S(M) is of dimension 3 and boundary of M is empty, the
degree of Γ(M) is 4. Orientability of M forces Γ(M) to be bipartite. The
induced colouring of Γ(M) can be easily constructed from the barycen-
tric subdivision. It is proved [6] that this representation is ”faithful“ e.g.
reconstruction of M from Γ(M) is unique. Note that the verices of a crys-
tallisations correspond to a 3-dimensional simplices of simplicial complex
S(M) and edges correspond to ”gluing“ of these simplices in 2-dimensional
sub-simplices.

1This work was supported by Science and Technology Assistance Agency under con-
tract No. APVT-51-012502
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A bipartite 4-edge-coloured graph Γ(M) is called a crystallisation (of
an orientable 3-manifold M) if every subgraph induced by three colours
is planar and connected [6]. Every crystallisation Γ(M) can be naturally
embedded into a surface S. There are 6 such embeddings for the fixed
crystallisation Γ(M). The regular genus of the crystallisation Γ(M) is the
minimal genus of surface taken through all these embeddings. A regular
genus of M is the minimal genus of surfaces into which all crystallisations
Γ(M) embeds. It is proved [2] that the regular genus of 3-manifold M
equals to the Heegaard genus of M, well known in topology.

A 3-manifold M can be triangulated in infinitely many ways. Hence
infinitely many crystallisations represents M. Deciding whether two crys-
tallisations Γ and Θ represent the same 3-manifold is the combinatorial
equivalent of the homeomorphism problem – the most known problem of
the algebraic topology. It is known [3] that the crystallisations Γ and Θ
represents the same 3-manifold M if and only if Γ transforms into Θ in
finitely many applications of elementary dipole-moves. Let us describe the
elementary dipole move of type I. Let u, v ∈ V (Γ(M)) and let u and v are
incident only in one edge coloured by colour, say 0. If u and v belongs
into different 1-2-3 connectivity components, cut the vertices u, v and the
edge uv from Γ(M). After removing this, glue the hanging edges coloured
by 1,2 and 3. This operation is called removing of dipole-move (of type I).
Adding of dipole-move (of type I) is the complementary operation and it
can be done in the following way. Find 3-edge-cut coloured by the colours
1,2 and 3. Cut these edges and insert the dipole-move of type I. There are
also dipole-moves of types II and III, as depicted on Figure 1 and one can
use them in similar way as described.

Compositions of elementary dipole-moves induces the dipole-move equiv-
alence on the set of crystallisations. The crystallisation Γ(M) which does
not allow the removing of dipole-move of any type is called a reduced crys-
tallisation. Such crystallisation Γ(M) can be taken as ”representative“ of
3-manifold M.

As concerns crystallisations of 3-manifolds with regular genus zero we
have the following claim.

Theorem 1 Every bipartite 4-edge-coloured graph of regular genus zero is
dipole-move equivalent to the 4-dipole, in other words, all planar crystalli-
sations are dipole-move equivalent.

The proof of Theorem 1 refers only to the properties of reduced crystallisa-
tions and Euler’s equation.
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Figure 1: Elementary dipole moves
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Figure 2: (a) Shifted rectangular grid of type (2× 10; 4) and (b) its another
drawing

A bit complicated is the classification of crystallisations of regular genus
one. By a shifted toroidal rectangular grid of type (k×n; m) we mean a graph
arising from a k×n rectangular grid by identifying the opposite horizontal an
vertical sides. The vertical sides are identified with shift m ≥ 0. Figure 2
shows the shifted (toroidal) rectangular grid of type (2 × 10; 4). By its
definition every shifted rectangular grid forms a toroidal map of type (4, 4).
Altshuler and in a more general framework Thomassen have proved the
converse implication [1, 7].

Theorem 2 A reduced crystallisation of regular genus one is isomorphic
either to a shifted rectangular grid of type (2 × n, m), for some m, n ∈ N
and (m, n) = 2 or it is dipole-move equivalent to the exceptional graph S
depicted on Figure 3

Note that the shifted rectangular grids of type (2 × n, m) determine
crystallisations representing lens spaces L(p, q) where p = m

2 and q = n
2 .

The exceptional graph S determines a crystallisation of the space S1 × S2.
The classification of 3-manifolds with higher genera is intractable in this
sense.

52



Figure 3: Non-simple crystallisation with regular genus one

Dipole-move equivalence gives us many possibilities to study 3-manifolds
using combinatorial methods. The following problems are crucial in the
topic.

Problem 1 Is the problem to decide whether two 4-valent 4-edge-coloured
bipartite graphs, say Γ and Θ, dipole-move equivalent algorithmically soluble,
or not?

Problem 2 Can one find the finite sequence of dipole moves transforming
Γ to Θ if they are dipole-move equivalent?
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Distribution of the Size of a

LargestPlanar Matching and

Largest Planar Subgraph in

Random BipartiteGraphs

Marcos Kiwi1

University of Chile, Santiago, Chile

(Joint work with Martion Loebl)

1 Introduction

Let U and V henceforth denote two disjoint totally ordered sets (both
ordered relations will be referred to by �). Typically, we will consider
the case where |U | = |V | = n and denote the elements of U and V by
u1, u2, . . . , un and v1, v2, . . . , vn respectively. Henceforth, we will always as-
sume that the latter enumeration respects the ordered relation in U or V ,
i.e., u1 � u2 � . . . � un and v1 � v2 � . . . � vn.

Let G = (U, V ; E) denote a bipartite multi–graph with color classes U
and V . Two distinct edges uv and u′v′ of G are said to be noncrossing if
u and u′ are in the same order as v and v′; in other words, if u ≺ u′ and
v ≺ v′ or u′ ≺ u and v′ ≺ v. A matching of G is called planar if every
distinct pair of its edges is noncrossing. We let L(G) denote the number of
edges of a maximum size (largest) planar matching in G (note that L(G)
depends on the graph G and on the ordering of its color classes).

For the sake of simplicity we will concentrate solely in the case where
|E| = rn and G is r–regular.

When r = 1, an r–regular multi–graph with color classes U and V
uniquely determines a permutation. A planar matching corresponds thus
to an increasing sequence of the permutation, where an increasing sequence
of length L of a permutation π of {1, . . . , n} is a sequence 1 ≤ i1 < i2 <

1Gratefully acknowledges the support of MIDEPLAN via ICM-P01–05, and CONI-
CYT via FONDECYT 1010689 and FONDAP in Applied Mathematics.
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. . . < iL ≤ n such that π(i1) < π(i2) < . . . < π(iL). The Longest Increas-
ing Sequence (LIS) problem concerns the determination of the asymptotic,
on n, behavior of the LIS for a randomly and uniformly chosen permu-
tation π. The LIS problem is also referred to as “Ulam’s problem” (e.g.,
in [Kin73, BDJ99, Oko00]). Ulam is often credited for raising it in [Ula61]
where he mentions (without reference) a “well–known theorem” asserting
that given n2 + 1 integers in any order, it is always possible to find among
them a monotone subsequence of n + 1 (the theorem is due to Erdős and
Szekeres [ES35]). Monte Carlo simulations are reported in [BB67], where
it is observed that over the range n ≤ 100, the limit of the LIS of n2 + 1
randomly chosen elements, when normalized by n, approaches 2. Hammer-
sley [Ham72] gave a rigorous proof of the existence of the limit and conjec-
tured it was equal to 2. Later, Logan and Shepp [LS77], based on a result
by Schensted [Sch61], proved that γ ≥ 2; finally, Vershik and Kerov [VK77]
obtained that γ ≤ 2. In a major recent breakthrough due to Baik, Deift,
Johansson [BDJ99] the asymptotic distribution of the LIS has been deter-
mined. For a detailed account of these results, history and related work see
the surveys of Aldous and Diaconis [AD99] and Stanley [Sta02].

From the previous discussion, it follows that one way of generalizing
Ulam’s problem is to study the distribution of the size of the largest pla-
nar matching in randomly chosen r–regular bipartite multi–graphs (for a
different generalization see [Ste77, BW88]). This line of research, originat-
ing in [KL02], turns out to be relevant for the study of several other issues
like the Longest Common Subsequence problem (see [KLM05]), interacting
particle systems [Sep77], digital boiling [GTW01], and is directly related to
topics such as percolation theory [Ale94] and random matrix theory [Joh99].

1.1 Main Results

We establish combinatorial identities which express g(n; d) — the number
of r-regular bipartite multi–graphs with planar matchings with at most d
edges — in terms of:

• The number of pairs of standard Young tableaux of the same shape
and with a “descend-type” property.

• A signed sum of restricted lattice walks in Zd.

Our arguments can be extended in order to characterize the distribution
of the largest size of planar subgraphs of randomly chosen r–regular bipartite
multi–graphs.
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Numbers of nonnested trees and

a historical remark on numbers

of noncrossing trees

Martin Klazar
Charles University, Prague, Czech Republic

A graph G = ([n], E) on the vertex set [n] = {1, 2, . . . , n} is called
noncrossing if no two distinct edges cross each other (min e < min f <
max e < max f for no two edges e, f ∈ E) and it is nonnesting if no two
distinct edges are nested (min e < min f < max f < max e for no two edges
e, f ∈ E); in these definitions G is regarded as an ordered graph, with the
standard total order on [n].

Problem 1. What is the number tn of nonnested trees T = ([n], E) with
n vertices? What about forests?

Problem 2. Can at least nonnested paths P = ([n], E) with n vertices be
enumerated?

Remarks and comments. 1. There is, of course, a trivial algorithm that
after exponentially many steps (in n) outputs, for the input n, the value
tn, and similarly for the other problems. As an answer we accept only
algorithms making polynomially many steps in n (or at least substantially
fewer steps than is the cardinality of the enumerated set, which in all cases
here is easily seen to be exponential in n), preferably in the form of a formula
or a relation for the generating function, see Wilf [7].

2. Formulas for numbers (or corresponding generating functions) of
noncrossing trees, forests, paths, graphs etc. are known and not too hard
to obtain, see Flajolet and Noy [2] and Noy [5]. Also, nonnesting graphs
can be enumerated, see Klazar [4].

3. I use this opportunity to point out a priority claim for the formula

1

2n − 1

(

3n − 3

n − 1

)

for the number of noncrossing trees T = ([n], E) with n vertices. The paper
[1] by Dulucq and Penaud is cited (e.g., Stanley [6, p. 138], Noy [5]) as the
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first explicit source for this result. However, the formula appears explicitly
much earlier in the work of J. Jǐrička [3, Theorem 3 on p. 59] and by the
remark in [3, p. 59] it was obtained even earlier by a different method by
L. Nebeský.

I want to thank Jǐŕı Havelka for providing me a copy of [3].
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Decomposition of Flow

Polynomials1

Martin Kochol
Slovak Academy of Sciences, Bratislava, Slovakia

1 General formula

We consider finite undirected graphs with multiple edges and loops. If G is
a graph, then V (G) and E(G) denote the sets of vertices and edges of G,
respectively. If e is an edge of G, then G − e and G/e denote the graphs
arising from G after deleting and contracting e, respectively.

Let A be an additive Abelian group of order k. Choose an arbitrary
but fixed orientation of G. Then a nowhere-zero A-flow in G is a mapping
ϕ : E(G) → A \ {0} so that for every vertex, the sum of the values of ϕ
on the incoming edges equals the sum on the outgoing ones (see cf [1, 2]).
The number of nowhere-zero A-flows in G does not depend on the chosen
orientation and, by Tutte [5], neither on the structure of A, but only on its
order k. Thus we can denote this number by FG(k). By Tutte [4], FG(k) is
a polynomial function of k. This is called the flow polynomial of G.

Let C = {e1, . . . , en} be an edge cut of a graph G. Then G−G is disjoint
union of two subgraphs I and I ′ so that every edge of C has exactly one end
in each of I and I ′. Let vi and v′i (i = 1, . . . , n) denote the ends of ei in I and
I ′, respectively. For i = 1, . . . , n, apply the following construction: delete
ei and add vertices ui, u′

i and edges uivi, u′
iv

′
i. Let H (H ′) be the graph

arising from I (I ′) after adding edges u1v1, . . . , unvn (u′
1v

′
1, . . . , u

′
nv′n).

Let P = {Q1, . . . , Qr} be a partition of the set {1, . . . , n}. For j =
1, . . . , r, identify the set of vertices {ui; i ∈ Qj} ({u′

i; i ∈ Qj}) to a new
vertex xj (x′

j) and denote the resulting graph by [H, P ] ([H ′, P ]). If one of
Q1, . . . , Qr is a singleton, P is called nonproper, otherwise it is called proper.
Let Pn = {Pn,1, . . . , Pn,pn}, pn = |Pn|, denote the set of proper partitions of
{1, . . . , n}. We write [H, i], [H ′, i], FH,i(k) and FH′ ,i(k) instead of [H, Pn,i],
[H ′, Pn,i], F[H,Pn,i](k) and F[H′,Pn,i](k), respectively. Furthermore, p2 =

1This work was supported by Science and Technology Assistance Agency under the
contract No. APVT-51-027604 and partially by VEGA grant 2/4004/04.
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p3 = 1 and for every n ≥ 4, we have

pn = 1 +

n−2
∑

i=2

(

n − 1
i − 1

)

pn−i.

Take n isolated edges w1w
′
1, . . . , wnw′

n and P, P ′ ∈ Pn, where P = {Q1,
. . . , Qr}, P ′ = {Q′

1, . . . , Q
′
r′}. For j = 1, . . . , r and j′ = 1, . . . , r′, identify

the sets of vertices {wi; i ∈ Qj} and {w′
i; i ∈ Q′

j′} to new vertices yj and
y′

j′ , respectively, and denote the resulting graph by [P, P ′]. We write [i, j]
and Fi,j(k) instead of [Pn,i, Pn,j ] and F[Pn,i,Pn,j ](k), respectively.

Let Mn(k) be the pn × pn a symmetric matrix so that the (i, j)-entry is
Fi,j(k), i, j ∈ {1, . . . , pn}. Let MG,C(k) be the matrix arising from Mn(k)
after adding (pn +1)st row and (pn +1)st column so that the (pn +1, pn+1)-
entry is FG(k), the (pn + 1, i)-entry is FH,i(k) and the (i, pn + 1)-entry is
FH′ ,i(k), i ∈ {1, . . . , pn}. Let M ′

G,C(k) arises from MG,C(k) after replacing
the (pn +1, pn +1)-entry by 0. Let Mn,i,j(k) denote the matrix arising from
Mn(k) after deleting the ith row and the jth column, i, j ∈ {1, . . . , pn}. If
M is a matrix, then |M | denotes the determinant of M .

Theorem 1 Let G be a graph and C = {e1, . . . , en}, n ≥ 2, be an edge cut
of G. Then |Mn(k)| is a nonzero polynomial of degree

∑pn

i=1(n − ri),

|MG,C(k)| = FG(k) · |Mn(k)| +

pn
∑

i=1

pn
∑

j=1

(−1)2pn+1+i+j · FH,i(k) · FH′,j(k) · |Mn,i,j(k)| = 0,

and
FG(k) = −|M ′

G,C(k)|/|Mn(k)| =




pn
∑

i=1

pn
∑

j=1

(−1)2pn+i+j · FH,i(k) · FH′,j(k) · |Mn,i,j(k)|



 |Mn(k)|−1.

In particular, if n = 2 (resp. n = 3), then Pn has exactly one partition,
|Mn(k)| is equal to k − 1 (resp. k2 − 3k + 2), and from Theorem 1 we get
the following (see also Sekine and Zhang [3]).

Corollary 1 Let G be a graph with an edge cut C of cardinality n = 2 or
3. Then FG(k) = FH,1(k) · FH′,1(k)/|Mn(k)|, where |M2(k)| = k − 1 and
|M3(k)| = k2 − 3k + 2.
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2 Planar case

We identify a planar graph with its embedding in the plane. An edge cut
C of a planar graph G is called planar if there exists a closed Jordan curve
in the plane which intersects each edge of C exactly once and does not
intersect any other edge or vertex of G.

Let P = {Q1, . . . , Qr} be a partition of the set {1, . . . , n}. Take a
circuit Cn having vertices v1, . . . , vn and add vertices u1, . . . , un and edges
v1u1, . . . , vnun. For j = 1, . . . , r, identify the set of vertices {ui; i ∈ Qj}
to a new vertex xj . Suppose that the resulting graph has an embedding
in the plane so that no vertex xj , j = 1, . . . , r, is inside the circuit Cn

and no two edges intersect. Then P is called planar. Let Pn be the set
of nontrivial planar partitions of {1, . . . , n} and pn = |Pn|. Then p1 = 0,
p2 = p3 = p0 = 1, and for every n ≥ 4,

pn =

n−1
∑

i=1

pi−1(pn−i−1 + pn−i).

Let Mn(k), MG,C(k) and M
′

G,C(k) be the matrices arising from Mn(k),
MG,C(k) and M ′

G,C(k) after deleting the rows and columns corresponding

to nonplanar partitions of Pn, respectively. Let Mn,i,j(k) denote the matrix
arising from Mn(k) after deleting the ith row and the jth column, i, j ∈
{1, . . . , pn}.

Theorem 2 Let G be a planar graph and C = {e1, . . . , en}, n ≥ 2, be
a planar edge cut of G. Then |Mn(k)| is a nonzero polynomial of degree
∑pn

i=1(n − ri),
|MG,C(k)| = FG(k) · |Mn(k)| +

pn
∑

i=1

pn
∑

j=1

(−1)2pn+1+i+j · FH,i(k) · FH′ ,j(k) · |Mn,i,j(k)| = 0,

and
FG(k) = −|M

′

G,C(k)|/|Mn(k)| =




pn
∑

i=1

pn
∑

j=1

(−1)2pn+i+j · FH,i(k) · FH′,j(k) · |Mn,i,j(k)|



 |Mn(k)|−1.
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Hamilton Cycles in Tough

Chordal Graphs

Daniel Král’
Charles University, Prague, Czech Republic

(Joint work with Tomáš Kaiser and Ladislav Stacho)

The notion of toughness is a well-established notion closely related to
hamiltonian graphs. A graph G is β-tough if for every set A of its vertices,
G\A is connected or the number κ(G\A) of its components does not exceed
|A|/β. Clearly, if G contains a Hamilton cycle, then G is 1-tough. A famous
conjecture of Chvátal asserts that there exists a constant β such that every
β-tough graph is hamiltonian. It is known that the conjecture is not true
with β < 9/4.

The conjecture was verified for several special classes of graphs, among
those interval graphs, split graphs and chordal graphs. Interval graphs
coincide with the intersection graphs of subpaths of a path, split graphs
with the intersection graphs of subtrees of a star and chordal graphs with
the intersection graphs of subtrees of a tree. It is known that 1-tough
interval graphs and 3/2-tough split graphs are hamiltonian and the bounds
are tight. On the other hand, it is known that 18-tough chordal graphs
are hamiltonian but there exist (7/4− ε)-tough chordal graphs that are not
hamiltonian. Motivated by these results, we study the existence of Hamilton
cycles in spider graphs, intersection graphs of subtrees of a subdivision of
a star. We show using the matroid intersection theorem that 3/2-tough
spider graphs are hamiltonian. Since the class of spider graphs includes
both interval and split graphs, our result is tight.
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Edge-coloring of Multigraphs

Naďa Krivoňáková
University of Žilina, Žilina, Slovakia

(Joint work with Martin Kochol and Silvia Smejová)

We introduce a monotone invariant π(G) on graphs and show that it is
an upper bound of the chromatic index of graphs. Moreover, there exist
polynomial time algorithms for computing π(G) and for coloring edges of
a multigraph G by π(G) colors. This generalizes the classical edge-coloring
theorems of Shannon and Vizing.
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Operations With Structures

Ralph McKenzie
Vanderbilt University, Nashville, USA

Consider a family F of similar structures closed under direct (Cartesian)
products — whenever A,B ∈ F then A × B ∈ F . Thus we have an alge-
bra 〈F ,×〉. The relation of isomorphism, ∼=, induces a congruence on this
algebra; and F ,×〉/ ∼= is a commutative semigroup. If G is, for example,
the class of all finite groups, then 〈G,×〉/ ∼= is a denumerably infinite, com-
mutative, monoid. It was shown by R. Remak and J. H. M. Wedderburn,
early in this century, that this monoid is isomorphic to the positive inte-
gers under multiplication. Actually, they proved the fundamental property
of direct product, considered as an abstract operation over finite groups:
namely, that every finite group G can be expressed as a direct product of
directly indecomposable groups, G ∼= H1 × · · · × Hn, in essentially only
one way, if we admit re-ordering the list of factors and replacing factors by
isomorphic groups.

The class P of all finite ordered (i.e., partially ordered) sets under the
operation of direct product does not have this unique factorization property.
However, if we consider P under the two operations A×B (direct product)
and A+B (disjoint union), then there is a nice result available, analogous to
the Wedderburn-Remak theorem. It was proved by J. Hashimoto in 1951,
and states that 〈P ,×, +〉/ ∼= is isomorphic to the semiring Z+[x̄] consisting
of all non-zero polynomials f(x̄) with non-negative integral coefficients in
the indeterminates x̄ = (x0, x1, . . . , xn . . .), and where the operations are or-
dinary multiplication and addition of polynomials. The Hashimoto theorem
encompasses two results: every finite ordered set has an essentially unique
expression as isomorphic to a disjoint union of connected ordered sets; and
every finite, connected, ordered set has an essentially unique expression as
isomorphic to a direct product of directly indecomposable (and connected)
ordered sets.

Alfred Tarski, along with C.C. Chang and Bjarni Jónsson and several
other collaborators, proved in the late 50’s and early 60’s many deep re-
sults about direct product considered, up to isomorphism, as an operation
on various classes of structures. He asked if it is true for any two finite
structures or algebras of the same signature, A and B with A 6∼= B, that
for all positive integers n, An 6∼= Bn . Laszlo Lovasz proved that this is
true with an elegant counting argument. Lovasz’ entire argument occupies
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only seven pages in his 1967 paper, Operations with structures. He actually
proves the following: Let F be the class of all finite structures of some fixed
signature. Then 〈F,×〉/ ∼= is embeddable into the monoid 〈N, ◦〉ω (the de-
numerable direct power of the non-negative integers under multiplication).
He does this by showing that if for all finite C similar to A and to B, the
sets hom(C,A) and hom(C,B) are of the same size, then A ∼= B follows.

G. Birkhoff introduced a third binary operation on ordered sets, the
exponent. For ordered sets, A and B = 〈B,≤〉, AB is an ordered set
defined as the set hom(B,A) of all monotone mappings from B to A, with
the order induced by the inclusion of the set hom(B,A) into the direct
power AB . Birkhoff asked, in 1941, if AC ∼= BC implies A ∼= B where
A,B,C are arbitrary finite ordered sets. Lovasz’ result mentioned above
proves that Birkhoff cancellation does hold in the case that C is discrete (an
antichain). I proved Birkhoff’s conjecture in 2000. I would like to present
some ideas from the proof in this talk, if there is time. I was able to solve
the word problem for the algebra of isomorphism types of finite ordered sets
under direct product, disjoint union, and exponent(1), where exponent(1) is
an operation closely related to Birkhoff’s exponent, but differing from it
for some ordered sets that do not possess least or greatest elements. I
will conjecture that Birkhoff cancellation also holds for graphs (with some
suitable restrictions) if we adapt his definition of AB in a natural way to
the case that A,B are graphs.
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On the Existence of Tied Perfect

Matchings in G(2n, p)

Enrique Garćıa Moreno
Cinvestav, Mexico

(Joint work with Tommy R. Jensen and Oleg Pikhurko)

We report on the existence with high probability of perfect matchings
which contract to a complete graph in graphs in G(2n, p), the binomial
model for random graphs with 2n vertices, when the edge probability p is de-
rived from the bound obtained from the Erdős, Suen, and Winkler restricted
random graph process which generates complements of edge-minimal graphs
of stability α(G) = 2. This problem is of interest in connection to the Had-
wiger conjecture for graphs of stability 2. Our findings give overwhelmingly
positive evidence for Hadiwger’s conjecture. In particular we show with
second moment methods that perfect matchings which contract to a com-
plete graph exist asymptotically almost surely in graphs of G(2n, p) when
p = 1 − o(n2/7).
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Circulants and the Chromatic

Index of SteinerTriple

Roman Nedela
Mathei Bel University, Banská Bystrica, Slovakia

(Joint work with Mariusz Meszka and Alex Rosa)

A Steiner triple system STS(v) is a pair (V, B), where V is a set of v
points and B is a collection of sets of cardinality 3, called triples or blocks,
satisfying the following condition: each pair x, y of points is contained in
exactly one triple. It is well known that a Steiner triple system on v points
exists if and only if v ≡ 1 or 3 mod 6.

A block-color class is a system of pairwise disjoint triples. An m-block-
coloring is a partitioning of the set B into m color classes. The chromatic
index χ′(S) of a Steiner triple system S is the least m for which an m-
block-coloring exists. The block intersection graph of a Steiner triple system
S = (V, B) is a graph with the vertex set B; the vertices are adjacent
if and only if the respective triples intersect. Since the degree of a block
intersection graph equals 3(v−3)/2, Brooks’ theorem gives an upper bound
χ′(S) ≤ 3(v − 3)/2 for v > 7. An obvious lower bound is χ′(S) ≥ (v − 1)/2
if v ≡ 3 mod 6, and ≥ (v+1)/2 for v ≡ 1 mod 6. Hence we have (v−1)/2 ≤
χ′(S) ≤ 3(v − 3)/2 if v ≡ 3 mod 6 and (v + 1)/2 ≤ χ′(S) ≤ 3(v − 3)/2 if
v ≡ 1 mod 6. The lower bound χ′(S) = (v − 1)/2 is reached if and only if
the Steiner triple system is resolvable.

The upper bound χ′(S) ≤ 3(v − 3)/2 seems to be weak in general. In
fact, using probabilistic methods Pippenger and Spencer in [5] proved that
χ′(STS(v)) is asymptotic to v/2. Also no examples of STS with v > 7
exceeding the above lower bounds by more than two are known. For more
information on the chromatic index of Steiner triple systems the reader is
referred to Chapter 18 of [2].

For some classes of STS the upper bound was improved. In particu-
lar, Colbourn and Colbourn [1] improved it for cyclic STS(v) by proving
χ′(STS(v)) ≤ v. A Steiner triple system STS(v) is called cyclic if it is iso-
morphic to one whose points are 0, 1, . . . , v − 1 and the mapping i 7→ i + 1
mod v is an automorphism. The result in [1] is based on the following idea.
Let S = STS(v) be a cyclic Steiner triple system. The block intersection
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graph has v(v − 1)/6 vertices and it admits an induced action of the cyclic
group of order v. Then the orbits of the induced action decompose the
intersection graph into (v − 1)/6 six-valent circulants of order v if v ≡ 1
mod 6, and into (v − 3)/6 six-valent circulants of order v and one short
orbit if v ≡ 3 mod 6. By Brooks’ theorem each of the circulants (with one
exception) can be colored by 6 colors. Taking different sets of colors for
different orbits one gets a v-block coloring of any cyclic STS.

It is not difficult to see that each of the six-valent circulants of order v is
determined by a triple of positive integers of the form {a, b, a+b}. Note that
{a, b, a + b} need not generate the cyclic group Zv, hence the graph may
be a disjoint union of isomorphic circulants of smaller order. Employing
results of Yeh and Zhu [6], and Collins and Hutchinson [3] we complete the
determination of the chromatic number of 6-valent circulants of the form
C(n; a, b, a + b) as follows.

Theorem 1 Let G = C(n; a, b, c) be a connected 6-valent circulant, where
n ≥ 7, c = a + b or n − c = a + b are pairwise distinct positive integers
different from n/2. Let χ(G) be the chromatic number of G. Then

1. χ(G) = 7 if and only if G ∼= K7
∼= C(7; 1, 2, 3),

2. χ(G) = 6 if and only if G ∼= T11
∼= C(11; 1, 2, 3),

3. χ(G) = 5 if and only if G ∼= C(n; 1, 2, 3) and n 6= 7, 11 is not di-
visible by 4, or G is isomorphic to one of the following circulants:
C(13; 1, 3, 4), C(17; 1, 3, 4), C(18; 1, 3, 4), C(19; 1, 7, 8), C(25; 1, 3, 4),
C(26; 1, 7, 8), C(33; 1, 6, 7), C(37; 1, 10, 11).

4. χ(G) = 3 if and only if 3|n and none of a, b, c is divisible by 3.

5. χ(G) = 4 in all the remaining cases.

Using Theorem 1 we get the following improved upper bounds on the
chromatic index of cyclic Steiner triple systems.

Corollary 1 Let S = STS(v) be a cyclic Steiner triple system. Then

(a) χ′(S) ≤ 5v+13
6 if v ≡ 1 mod 6,

(b) χ′(S) ≤ 5v+9
6 if v ≡ 3 mod 6.

Let us call circulants of type (1), (2) or (3) from Theorem 1 exceptional.
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Corollary 2 Let S = STS(v) be a cyclic Steiner triple system of order v,
and assume that no circulant induced on an orbit of the block intersection
graph contains as a component an exceptional circulant. Then χ′(S) ≤
2
3 (v − 1) if v ≡ 1 (mod 6), and χ′(S) ≤ 2

3v − 1 if v ≡ 3 (mod 6).

Let minv = v−1
2 if v ≡ 3 (mod 6) and minv = v+1

2 if v ≡ 1 (mod 6).
We checked on a computer that for all cyclic Steiner triple systems of order
v ≤ 43 (note that the number of cyclic Steiner triple systems of order 43
is known to be 9508, not a small number [2]) , we have for the chromatic
index the bounds minv ≤ χ′ ≤ minv + 2. This suggests that the following
could be true:

Conjecture 1 The chromatic index of every cyclic STS(v), v > 7, takes
on one of three values: minv, minv + 1, minv + 2.

It would be tempting to conjecture that the same holds for any Steiner
triple system but admittedly the evidence for such a claim is scarce.

Complete version of the paper which includes proofs of the above results
and some more related material can be found in [4].
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Weight choosability of graphs

and Combinatorial

Nullstellensatz

Stanis law Niwczyk
University of Zielona Góra, Zielona Góra, Poland

(Joint work with Tomasz Bartnicki and Jaroslaw Grytczuk)

Let S be a subset of the integers. We say G is S-weight colorable if there
is an edge weighting w : E → S such that for any two adjacent vertices u, v
of G the sum of weights of the edges incident to u is different than the sum
of weights of the edges incident to v.

Conjecture 1 (Karoński,  Luczak, Thomason [2]) Each connected graph
with more than one edge is {1, 2, 3}-weight colorable.

Recently Addario-Berry et al. [1] have proved that each such graph is
{1, 2, . . . , 16}-weight colorable, and that for any fixed p ∈ (0, 1) the random
graph Gn,p is asymptotically almost surely 2-weight colorable. We attempt
to attack the conjecture by applying Alon-Tarsi Combinatorial Nullstellen-
satz. Roughly, we assign to a given graph G a polynomial in m = |E(G)|
variables f(x1, ..., xm) which encodes our problem, and try to prove that
there must be a nonvanishing monomial in f each of whose exponents is at
most 2. If this would be true the conjecture would follow in the following
stronger sense.

Let S1, ..., Sm be a collection of integer subsets assigned to the edges of
G. We say that G is d-weight choosable if for any such assignment with
|S1| = ... = |Sm| = d, there is an edge weighting w : E → Z such that
w(ei) ∈ Si, and for any two adjacent vertices u, v the sum of weights of the
edges incident to u is different than the sum of weights of the edges incident
to v.

Conjecture 2 Every connected graph with at least two edges is 3-weight
choosable.

Maybe this conjecture is too optimistic, as we even do not know if there
is any finite bound. But why not to state optimistic conjectures?
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Low Tree-depthPartitions of

Classes WithBounded

Expansion

Patrice Ossona de Mendez
École des Hautes Études en Sciences Sociales, Paris, France

(Joint work with Jaroslav Nešetřil)

1 Tree-width, Tree-depth and Coloring

A k-tree is a graph which is either a single vertex, or is obtained from a
smaller k-tree by adding a vertex joined to the vertices of a clique of size at
most k. The tree-width tw(G) of a graph G is the smallest k such that G
is a subgraph of a k-tree. Tree-width has been proved to be a fundamental
parameter, especially in the study of minor closed classes of graphs.

In a paper motivated by a question of R. Thomas [9], DeVos, Ding,
Oporowski, Sanders, Reed, Seymour and Vertigan [1] proved that for every
graph K and integer j ≥ 1 there is an integer iV = iV (K, j), such that
every graph with no K-minor has a vertex partition into iV graphs, so that
any j′ ≤ j parts form a graph with tree-width at most j ′ − 1. This proof
relies on an important result of Robertson and Seymour on the structure of
graphs without a particular graph as a minor [8].

In a previous work [6], we introduced the tree-depth td(G) of graph G
as the minimum height of a tree which closure contains G as a subgraph.
This minor monotone invariant td(G) is obviously at least tw(G) + 1 but
td(G) fails to be bounded by a function of tw(G) (a path of length n has
tree-width 1 and tree-depth dlog2(n + 1)e).

Using the above mentioned result [1], we proved in [6] that for any
proper minor closed class of graphs C (that is: any minor closed class of
graphs excluding at least one minor) and integer j ≥ 1 there is an integer
Fj(C), such that every graph in C has a vertex partition into Fj(C) graphs,
so that any j′ ≤ j parts form a graph with tree-depth at most j ′, and that
the tree-depth is the maximum graph invariant for which such a statement
holds.
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For graph G and integer j ≥ 1, define χj(G) has the smallest integer N ,
such that G may be N -colored in such a way that, for any H ⊆ G, H gets
at least min(j, td(H)) colors. Then the previous statement may be restated
as:

Theorem 1 For any proper minor closed class of graphs C and any integer
j ≥ 1, χj(G) is bounded on C.

Notice that for any graph G of order n, χ1(G) = 1, χ2(G) is the usual
chromatic number χ(G). We have then

χ1(G) ≤ χ2(G) ≤ · · · ≤ χn(G) = td(G).

2 Homomorphism Duality

The previous result has then been applied to prove that any proper minor
closed class C of graphs has a restricted homomorphism duality for any
connected graph F , that is: For any connected graph F , there exists a
graph DC

F so that:

• F has no homomorphism to DC
F :

F −6−→ DC
F

• any graph G ∈ C has no homomorphism from F if and only it has a
homomorphism to DC

F :

∀G ∈ C, (F −6−→ G) ⇐⇒ (G −→ DC
F )

Such a restricted duality exists for proper minor closed classes of graphs
[6] and for classes of bounded degree graphs [7, 2].

3 Grad of a Graph and Classes with Bounded

Expansion

The greatest reduced average density (grad) of G with rank r: ∇r(G) is
related to the maximum average degree of a minor obtained by contracting
a family of disjoints connected subgraphs, each having radius bounded by
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r. Precisely, a connected partition of G is a partition P = (V1, . . . , Vp) of G
such that each subgraph G[Vi] of G induced by Vi is connected. The radius
ρ(P) of a connected partition P is

ρ(P) = max
X∈P

min
x∈X

max
y∈X

distG[X](x, y)

and the grad of rank r of G is

∇r(G) = max
ρ(P)≤r

|E(G/P)|

|P|

where the maximum is taken over all the connected partitions P of G having
radius at most r and where G/P stands for the simple graph obtained by
contracting each of the G[Vi], Vi ∈ P to a single vertex.

For any graph G of order n, ∇0(G) is half of the maximum average
degree (mad) of G and

mad(G)

2
= ∇0(G) ≤ ∇1(G) ≤ · · · ≤ ∇n(G) ≤ td(G) − 1

The last inequality is straightforward: any minor of order n of a graph with
tree-depth at most k has tree-depth at most k hence size at most (k − 1)n.
Moreover, ∇r(G) is obviously bounded by a constant for any proper minor
closed class of graphs and by O(∆r) for any graph with maximum degree
∆.

A class C has a bounded expansion if there exists a function f : N → N

such that
∀r ∈ N, ∀G ∈ C, ∇r(G) ≤ f(r).

4 Transitive Fraternal Orientation and Aug-

mentation

It is well known that a graph G is a k-tree (for some k) if and only if it
admits an acyclic fraternal orientation, that is an orientation of its edges
such that when (x, z) and (y, z) are both arcs of G then either (x, y) or
(y, x) is an arc of G.

We will relax the properties of acyclic fraternal orientations to build
some locally fraternal orientations. In the following, directed graphs may
have, for distinct vertices x and y, one arc (at most) from x to y and one
arc (at most) from y to x.
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Let ~G be a directed graph. A 1-transitive fraternal augmentation of ~G
is a directed graph ~H with the same vertex set, including all the arcs of ~G
and such that, for any vertices x, y, z,

• if (x, z) and (z, y) are arcs of ~G then (x, y) is an arc of ~H (transitivity),

• if (x, z) and (y, z) are arcs of ~G then (x, y) or (y, x) or both are arcs

of ~H (fraternity).

A transitive fraternal augmentation of a directed graph ~G is a sequence
~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · , such that ~Gi+1 is a 1-transitive

fraternal augmentation of ~Gi for any i ≥ 1.

Theorem 2 Let C be a class with bounded expansion. There exists a func-
tion F : N2 → N such that for any integer ∆–, there exists a sequence
C = C1 ⊆ C2 ⊆ · · · ⊆ Ci ⊆ · · · of classes with bounded expansion, so that
any orientation ~G of a graph G ∈ C with ∆–(~G) ≤ ∆– has a transitive

fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where ~Gi is an
orientation with maximum indegree ∆–(~Gi) ≤ F (∆–, i) of some Gi ∈ Ci.

5 Main Results

Our first main result stands in a characterization of classes with bounded ex-
pansion, while the second one expresses the existence of restricted dualities
for such classes [3].

Theorem 3 Let C be a class of graphs. The following conditions are equiv-
alent:

• C has bounded expansion,

• for any integer c, the class C[Kc] = {G[Kc] : G ∈ C} has bounded
expansion, where G[Kc] denotes the lexicographic product of G and
Kc;

• there exists a function F : N2 → N such that any orientation ~G of a
graph G ∈ C has a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆
· · · ⊆ ~Gi ⊆ · · · where ∆–(~Gi) ≤ F (∆–(~G), i);

• for any integer i, χi(G) is bounded on C.
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¿From a computational point of view, it has to be noticed that, for any
fixed class C with bounded expansion and any fixed integer j, the proof of
the theorems yields a linear time algorithm to compute, for any graph G ∈ C,
a coloring using at most N(C, j) colors so that any j ′ ≤ j parts not only
induce a subgraph of tree-depth at most j ′, but actually induce a subgraph
which connected components have the property that some color appears
exactly once in them, which is a stronger statement. Further algorithmic
consequences are discussed in [5]

¿From the previous theorem, we further prove that classes with bounded
expansion also admits restricted dualities [4]:

Theorem 4 Any class of graphs with bounded expansion has a restricted
duality for any connected graph: for every connected graph F , there exists
a graph DC

F so that F −6−→ DC
F and

∀G ∈ C, (F −6−→ G) ⇐⇒ (G −→ DC
F )
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[4] Nešetřil, J. and P. Ossona de Mendez, Grad and classes with bounded
expansion II. algorithmic aspects, European Journal of Combinatorics
(2005), (submitted).
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A graph G is k-ramsey with respect to H if any k-colouring of its edges
yields a monochromatic copy of H . It is k-ramsey-minimal with respect to
H if it is k-ramsey, but none of its proper subgraphs are.

In 1976, Burr, Erd̋[o]s, and Lovász showed that for any integer d ≥ 3
there are infinitely many non-isomorphic graphs that are 2-ramsey-minimal
with respect to the complete graph Kd on d vertices. In 1985, Burr, Nešetřil,
and Rödl extended this result to show that for any integer d ≥ 3 there exists
a constant c > 1 such that for all n large enough, there exist at least cnlogn

non-isomorphic graphs on at most n vertices that are 2-ramsey-minimal
with respect to Kd.

In this talk, we present a construction that proves, for any integers
d ≥ 3 and k ≥ 2, that there exists a constant c > 1 such that for all n large
enough,there exist at least cn2

non-isomorphic graphs on at most n vertices
that are k-ramsey-minimal with respect to Kd.
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Problems related to Pfaffian

orientations of graphs

Robin Thomas
Georgia Institute of Technology, Atlanta, USA

An orientation of a graph G is Pfaffian if every even cycle C such that
G \ V (C) has a perfect matching has an odd number of edges directed in
either direction of the cycle. The significance of Pfaffian orientations is that
if a graph has one, then the number of perfect matchings (a.k.a. the dimer
problem) can be computed in polynomial time.

The question of what bipartite graphs have Pfaffian orientations is equiv-
alent to many other problems of interest, such as a permanent problem
of Polya, the even directed cycle problem, or the sign-nonsingular matrix
problem for square matrices. These problems are now reasonably well-
understood.

In order to find a linear-time algorithm to solve the above problems it
would be nice to have a linear-time algorithm to find all 4-shredders in a
graph. (A 4-shredder is a set X of vertices of G of size four such that G\X
has at least three components.)

There are other interesting open problems related to Pfaffian orienta-
tions. Many of them can be found in the Ph.D. thesis of my student Serguei
Norine or in his/our papers. For instance, is it true that every 2-connected
cubic Pfaffian graph is 3-edge-colorable? If true, this would generalize the
Four-Color Theorem.

Finally, here is an unrelated conjecture. For every integer t there exists
an integer N such that every t-connected graph on at least N vertices with
no Kt minor has a set X of at most t−5 vertices such that G\X is planar.
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Chain IntersectingSet Families

Dániel Gerbner
Rényi Institute, Budapest, Hungary

(Joint work with Attila Bernáth)

Let F be a family of subsets of an n-element set. F is (p,q)-chain
intersecting if it does not contain A1 ⊂ · · · ⊂ Ap, B1 ⊂ · · · ⊂ Bq such that
Ap ∩ Bq = ∅. We determined the maximum size of these families. The
optimum families are also characterized.
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A Polynomial Proof of the

Erdős-Ko-Rado Theorem

Zoltán Füredi
Rényi Institute, Budapest, Hungary

(Joint work with Kyung-Won Hwang and Paul M. Weichsel)

In 1961, Erdős, Ko, and Rado proved that if F is a k-uniform family
of subsets of a set of n elements with k ≤ 1

2n, and every pair of members

of F intersect, then | F |≤
(

n−1
k−1

)

. They also showed that for n > 2k here
equality holds if F consists of all k sets containing a given element of the
underlying set.

Beside their remarkable proof (induction on k, and for a given k left-
shifting and induction on n), there are many interesting new proofs. In 1972,
Katona used a simple and an elegant argument, the permutation method.
Daykin obtained Erdős-Ko-Rado from the Kruskal-Katona theorem. Hajnal
and Rothschild proved it for n > n0(k) by an early version of the kernel
(or delta-system) method, developed and used very successfully by Frankl
(the first full description of the method was published in Deza, Erdős, and
Frankl). Most remarkable, Lovász in his ground-breaking paper used its
geometric representation method to prove that the Shannon capacity of the
Kneser graph K(n, k) is at most

(

n−1k−1

)

, (n ≥ 2k), thus yielding another
proof (and generalization). Wilson gave an ingenious proof, using Delsarte’s
linear programming bound. (Actually, he proved much more concerning t-
intersecting families.)

The aim of this paper is to exhibit a true, short, polynomial proof for
the Erdős-Ko-Rado Theorem.
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How Bipartite Is a Graph with

No Cycle of Length 2k+1?

Ervin Győri
Rényi Institute, Budapest, Hungary

In this talk, different parameters “measuring” bipartiteness are studied
for graphs without (2k+1)-cycles, sometimes with extra degree conditions:
how difficult is to make them bipartite, how many triangles are in them,
etc.
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Excluded subposets in the

Boolean lattice

Gyula O.H. Katona
Rényi Institute, Budapest, Hungary

Let [n] = {1, 2, . . . , n} be a finite set, families F of its subsets will be

investigated.
(

[n]
k

)

denotes the family of all k-element subsets of [n]. Let
P be a poset. The goal of the present investigations is to determine the
maximum size of a family F ⊂ 2[n] which does not contain P as a (non-
necessarily induced) subposet. This maximum is denoted by La(n, P ).

There are some P s for which La(n, P ) has been exactly determined. The
easiest example is the case when P consist of two comparable elements.
Then we are actually looking for the largest family without inclusion that is
without two distinct members F, G ∈ F such that F ⊂ G. The well-known
Sperner theorem gives the answer, the maximum is

(

n
bn

2
c

)

.

In most cases, however La(n, P ) is only asymptotically determined in
the sence that the main term is the size of the largest level (sets of size b n

2 c)
while the second term is c

n times the second largest level where the lower
and upper estimates contain diffrent constants c.

Let the poset N consist of 4 elements illustrated here with 4 distinct sets
satisfying A ⊂ B, C ⊂ B, C ⊂ D. We were not able to determine La(n, N)
for a long time. Recently, a new method jointly developed by J.R. Griggs,
helped us to prove the following theorem.

Theorem
(

n

bn
2 c

) (

1 +
2

n
+ o(

1

n
)

)

≤ La(n, N) ≤

(

n

bn
2 c

)(

1 +
4

n
+ o(

1

n
)

)

.
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DistanceConstrainedLabelings

of Graphs of Bounded

Treewidth

Jan Kratochv́ıl
Charles University, Prague, Czech Republic

(Joint work with Jǐŕı Fiala and Petr A. Golovach)

We prove that the L(2,1)-labeling problem is NP-complete for graphs
of treewidth two, thus adding a natural and well studied problem to the
short list of problems whose computational complexity separates treewidth
one from treewidth two. We prove similar results for other variants of the
distance constrained graph labeling problem.

88



Towards a Theory of Frustration

and Degeneracy

Martin Loebl
Charles University, Prague, Czech Republic

(Joint work with Jan Vondrák)

Several open problems related to multiplicity of groundstates in finite
and infinite square grids are presented.

89



On Vertex-sets of the

Hypercube Whose Span Avoids

GivenHyperplanes

Dezső Miklós
Rényi Institute, Budapest, Hungary

Let Cn denote the vertices of the n dimensional hypercube and let M ⊆
Cn be a subset of it (or a subset of it consisting of vertices of weight k,
where 1 ≤ k ≤ n). We will investigate and a present a few results about the
maximum size of M assuming that the span of the vertices in M completely
avoids (or does not contain) the hyperplane consisting of the vertices of the
hypercube of weight m. (where the weight of a vertex is the number of 1
coordinates of it).
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The distance ofF-free families

Balázs Patkós
Rényi Institute, Budapest, Hungary

If F is a fixed hypergraph, then for two F-free hypergraphs H1 = (V, E1)
and H2 = (V, E2) we define their F-free distance by the number of copies
of F in H1 ∪ H2 = (V, E1 ∪ E2) (and denote it by DF(H1;H2)). For a
collection C of hypergraphs the C-free distance of two C-free hypergraphs
(that is F-free for all F ∈ C) is DC(H1;H2) =

∑

F∈C DF (H1;H2). In the
talk we will consider several collections of forbidden hypergraphs. For some
of them we will obtain exact results on the maximum distance of pairs of
C-free hypergraphs while for others we will give upper and lower bounds on
the maximum distance.
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On theEmpty Hexagon

Theorem

Pavel Valtr
Charles University, Prague, Czech Republic

Tobias Gerken has very recently proved that any sufficiently large set
P of points in general position in the plane contains the six vertices of a
convex hexagon with no point of P in the interior. We explain the main
parts of an alternative proof of this result.
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Extremal Functions for Rooted

Minors

Paul Wollan
Georgia Institute of Technology, Atlanta, USA

The graph G contains a graph H as a minor if there exist pair-wise
disjoint sets {Si ⊆ V (G)|i = 1, . . . , |V (H)|} such that for every i, G[Si] is
a connected subgraph and for every edge uv in H , there exists an edge of
G with one end in Su and the other end in Sv. A rooted H minor in G
is a minor where each Si of minor contains a predetermined xi ∈ V (G).
We prove that if the constant c is such that every graph on n vertices
with cn edges contains a H minor, then every |V (H)|-connected graph G
with (18c + 1236|V (H)|)|V (G)| edges contains a rooted H minor for every
choice of vertices {x1, . . . , x|V (H)|} ⊆ V (G). The proof methodology is
sufficiently robust to find the exact extremal function for an infinite family
of rooted bipartite minors previously studied by Jorgensen, Kawarabayashi,
and Böhme and Mohar.
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Ondřej Pangrác pangrac@kam.mff.cuni.cz

Charles University, Prague, Czech Republic

Balázs Patkós patkos@renyi.hu
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