KAMAK 2025

Hotel ČESKÁ FARMA, Dolní dvůr September 14-19

Charles University, Prague

Organizers:

David Mikšaník Robert Šámal

Brochure of open problems, Prague, 2025.

Contents

1.	Untangling geometric graphs (suggested by Todor Antić)	1
2.	Fast computation of Bézout polynomials (suggested by Juraj Belohorec)	3
3.	Complexity of 3-coloring circle graphs (suggested by Petr Chmel)	4
4.	A bicolored pseudoline arrangement has a bicolored triangle (suggested by Niloufar Fuladi)	5
5.	Bounded-stability chromatic threshold (suggested by Tomáš Hons)	7
6.	Oriented trees in oriented graphs of large girth (suggested by Tereza Klimošová)	10
7.	Clique Dynamics of Whitney triangulations (suggested by Anna Margarethe Limbach)	11
8.	Large chromatic number implies long colorful path (suggested by David Mikšaník)	13

9. Signed Network Coordination Games (suggested by Lluís Sabater)	14
10. Reachable Pareto-efficient allocation on a tree (suggested by Lluís Sabater)	16
11. Matching-Pseudoforest Planar Decomposition Prob- lem (suggested by Vibha Sahlot)	18
12. The Forest–Diameter-3 Decomposition Conjecture (suggested by Vibha Sahlot)	19
13. Hunters and rabbit (suggested by Sasha Sami)	20
14. Are the induced chordal graphs edge-Ramsey? (suggested by Maximilian Strohmeier)	22
15. Flow-related conjecture (suggested by Robert Šámal)	24
16. Slice-wise complexity of scramble number (suggested by Josse van Dobben de Bruyn)	26

$\mathbf{Program}^*$

07:30 -	_	09:00	Breakfast
09:00 -	_	10:30	Morning Problem-Solving Session I
10:30 -	_	11:00	Coffee Break
11:00 -	_	12:00	Morning Problem-Solving Session II
12:30 -	_	13:30	Lunch
15:00 -	_	16:30	Afternoon Problem-Solving Session I
16:30 -		17:00	Coffee Break
17:00 -		18:00	Afternoon Problem-Solving Session II
18:00 -	_	18:30	Problem Progress Reports
19:00 -	_	20:00	Dinner

^{*}From Tuesday lunch until Friday lunch.

OPEN PROBLEMS

Problem 1. Untangling geometric graphs (suggested by Todor Antić)

Source: Proposed by Jan Kynčl in the year of our lord 2023.

Definitions.

- A geometric graph is a graph drawn in the plane with vertices as points and edges as straight line segments between the points.
- A geometric graph G is k-plane if every edge has at most k crossings with other edges of G.
- ullet A geometric graph G is h-quasiplane if it contains no h pairwise crossing edges.

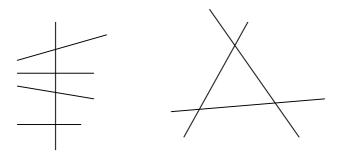


Figure 1: Forbidden configurations in 3-plane and 3-quasiplane geometric graphs.

Question: Can every k-plane geometric graph be redrawn so that it is (k + 1)-quasiplane?

Related results:

• Every geometric k-plane graph can be redrawn to be geometric (k+2)-quasiplane (exercise).

- \bullet Every convex-geometric k-plane graph can be redrawn to be convex-geometric k-quasiplane [1].
- Every simple topological k-plane graph can be redrawn to be simple (k+1)-quasiplane [2].

- [1] Todor Antic. "Convex-Geometric k-Planar Graphs Are Convex-Geometric(k+1)-Quasiplanar". In: Combinatorial Algorithms. Ed. by Adele Anna Rescigno and Ugo Vaccaro. Cham: Springer Nature Switzerland, 2024, pp. 138–150.
- [2] Patrizio Angelini et al. "Simple k-planar graphs are simple (k+1)-quasiplanar". In: Journal of Combinatorial Theory, Series B 142 (2020), pp. 1-35. ISSN: 0095-8956. DOI: https://doi.org/10.1016/j.jctb.2019.08.006. URL: https://www.sciencedirect.com/science/article/pii/S0095895619300838.

Problem 2. Fast computation of Bézout polynomials (suggested by Juraj Belohorec)

Source: Proposed by Alex Ozdemir.

Question: Let \mathbb{F} be a field (in practice, a finite field of prime order). Let a_1, \ldots, a_m be m distinct elements of \mathbb{F} . Let $Z(X) = \prod_{i=1}^m (X - a_i)$. Then (since the roots a_i are distinct) Z and its derivative Z' have no common factor, so there exist polynomials s(X) and t(X) such that sZ + tZ' = 1. Is there an algorithm to compute the coefficients of s and t, from a_1, \ldots, a_m , using at most $O(m \log m)$ field operations?

References:

https://notes.0xparc.org/problems/compute-bezout/

Problem 3. Complexity of 3-coloring circle graphs (suggested by Petr Chmel)

Source: Reopened by Bachmann, Rutter, and Stumpf in 2023.

Definitions.

• A graph is called a circle graph if it can be represented as an intersection graph of chords in a circle. (That is, each vertex gets assigned a chord in a circle, and two vertices are adjacent iff their chords intersect.)

Question: What is the complexity of 3-coloring circle graphs?

Related results:

- \bullet For k-coloring of circle graphs with $k \geq 4$, we know the problem is NP-complete.
- For most superclasses of circle graphs, 3-coloring is known to be NP-complete, usually because the superclasses also contain the class planar graphs.
- Unger gave an algorithm for 3-coloring circle graphs in time $\mathcal{O}(n\log n)$ using a backtracking algorithm for a 3-SAT instance with a specific structure based on the circle graph, however Bachmann, Rutter, and Stumpf have shown counterexamples to both the reduction to 3-SAT and the backtracking algorithm.

References:

Bachmann, P., Rutter, I., & Stumpf, P. (2023, September). On 3-coloring circle graphs. In *International Symposium on Graph Drawing and Network Visualization* (pp. 152-160). Cham: Springer Nature Switzerland.

Unger, W. (1988, February). On the k-colouring of circle-graphs. In *Annual Symposium on Theoretical Aspects of Computer Science* (pp. 61-72). Berlin, Heidelberg: Springer Berlin Heidelberg.

Unger, W. (1992, February). The complexity of colouring circle graphs. In *Annual Symposium on Theoretical Aspects of Computer Science* (pp. 389-400). Berlin, Heidelberg: Springer Berlin Heidelberg.

Problem 4. A bicolored pseudoline arrangement has a bicolored triangle (suggested by Niloufar Fuladi)

Source: Proposed in the book Oriented Matroids [1].

Definitions.

- A pseudoline is a simple curved line in the plane. We consider this as a generalization of a straight line in the plane.
- A set of pseudolines in the plane that pairwise cross <u>exactly</u> once is called a pseudoline arrangement. This is a generalization of a line arrangement in the plane. A pseudoline arrangement is simple if no three pseudolines cross in a point.
- A pseudoline arrangement decomposes the plane into polygonal cells of degree $d \geq 3$ which we call d-cells.

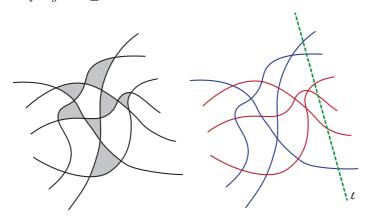


Figure 2: Left: a simple pseudoline arrangement with highlighted 3-cells; Right: A separated bicoloring of the pseudolines and a straight line l at infinity.

Question ([1]): A bicoloring of a pseudoline arrangement is to color the pseudolines with two colors. In a bicolored simple pseudoline arrangement, there exists a bicolored 3-cell (triangle).

Related results:

- A bicolored line arrangement contains a bicolored 3-cell [2].
- A bicolored arrangement with at most 5 red pseudolines has a bicolored 3-cell [3].
- ullet Consider a bicoloring of a pseudoline arrangement with red and blue. Consider a straight pseudoline at infinity l that crosses all the pseudolines exactly once and that all the crossings of the arrangement appear on one side of it. If there exists a line l such that all the crossings between red (or blue) pseudolines appear consecutively on the line, we call the coloring a *separated coloring*. An arrangement with a separated coloring has a bicolored 3-cell [3]. See the right picture in Figure 2.
- Every bicolored arrangement contains a bicolored 3-cell or a bicolored 4-cell [3].

- [1] Oriented Matroids. Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter Ziegler. Cambridge University Press, Cambridge, 1993.
- [2] Arrangements of Approaching Pseudo-Lines. Stefan Felsner, Alexander Pilz, and Patrick Schnider
- [3] On Triangles in Colored Pseudoline Arrangements. Yan Alves Radtke, Balázs Keszegh, and Robert Lauff.

Problem 5. Bounded-stability chromatic threshold (suggested by Tomáš Hons)

Source: Inspired by the Hong Liu's talk at Eurocomb'25.

Definitions.

- All graphs are finite. The minimum degree of G is denoted by $\delta(G)$.
- Graph G is F-free if F is not an induced subgraph of G.
- The half graph of size n is denoted by H_n and defined as

$$V(H_n) = A \sqcup B = \{a_i : i \in [n]\} \sqcup \{b_j : j \in [n]\},$$

$$E(H_n) = \{a_i b_j : i, j \in [n], i \le j\}.$$

- A bipartite graph H with a fixed bipartition is a semi-induced subgraph of G if there is an injective mapping $f: V(H) \to V(G)$ which respects the edges and non-edges between the parts.
- A graph G is called k-stable if it does not contain a copy of H_k as a semi-induced subgraph. The minimum value of k such that G is k-stable is denoted by $\sigma(G)$ and referred to as the stability of G.
- We define the bounded-stability chromatic threshold of a graph F, denoted by $\delta_x^{\sigma}(F)$, as

$$\delta_{\chi}^{\sigma}(F) = \inf\{\alpha \geq 0 : \forall \ s \in \mathbb{N}, \exists C = C(\alpha, F, s) \ s.t. \\ \forall \ n\text{-}vertex \ F\text{-}free \ graph \ G, \sigma(G) \leq s, \delta(G) \geq \alpha n \implies \chi(G) \leq C\}.$$

Examples:

- We have $\delta_{\chi}^{\sigma}(K_3) \leq 1/2$ as there are no K_3 -free graphs with with $\delta(G) > 1/2$ is $K_{n,n}$. Similarly, we have $\delta_{\chi}^{\sigma}(K_t) \leq \frac{t-2}{t-1}$ by the Turán theorem.
- Moreover, by work on a related graph parameter $\delta_{\chi}(F)$, we know from [1] that $\delta_{\chi}^{\sigma}(K_t) \leq \delta_{\chi}(K_t) = \frac{t-3}{t-2}$. The value of $\delta_{\chi}(F)$ is defined analogously, but VC-dimension of G is used instead of stability, see below.

Question: Determine $\delta_{\text{hom}}^{\sigma}(F)$. Start with $F = K_3$.

Motivation and related results:

 \bullet A well studied notion is the *chromatic threshold* of F defined as

$$\begin{split} \delta_{\chi}(F) &= \inf\{\alpha \geq 0: \exists C = C(\alpha, F) \text{ s.t.} \\ \forall \text{ n-vertex F-free graph G, } \delta(G) \geq \alpha n \implies \chi(G) \leq C\}. \end{split}$$

The values of $\delta_{\chi}(F)$ were classified in [2].

• In subsequent works [1, 3], the effect of bounded VC-dimension was studied, which was formalized as the notion of bounded-VC chromatic threshold:

$$\begin{split} &\delta_{\chi}(F) = \inf\{\alpha \geq 0: \forall \ d \in \mathbb{N}, \exists C = C(\alpha, F, d) \text{ s.t.} \\ &\forall \ n\text{-vertex } F\text{-free graph } G, (G) \leq d, \delta(G) \geq \alpha n \implies \chi(G) \leq C\}. \end{split}$$

We clearly have $\delta_{\chi}(F) \leq \delta_{\chi}(F)$.

- The parameter $\delta_{\chi}^{\sigma}(F)$ is a natural variant of $\delta_{\chi}(F)$ in the view that both bounded VC-dimension and bounded stability are related and increasingly important tameness notions coming from model theory. See e.g. [4, 5].
- Since $(G) \leq \sigma(G)$, we have $\delta_{\chi}(F) \geq \delta_{\chi}^{\sigma}(F)$ for every F. Thus, we obtain upper bounds on $\delta_{\chi}^{\sigma}(F)$ from known results, while the lower bounds would require constructing of F-graphs with bounded stability, large minimum degree, and unbounded chromatic number.

- [1] Kim, J., Liu, H., Shangguan, C., Wang, G., Wu, Z., & Xue, Y. (2025). Stability with minuscule structure for chromatic thresholds.
- [2] Allen, P., Böttcher, J., Griffiths, S., Kohayakawa, Y., & Morris, R. (2013). The chromatic thresholds of graphs. *Advances in*
- Morris, R. (2013). The chromatic thresholds of graphs. Advances in Mathematics, 235, 261-295.
- [3] Xinqi Huang, Hong Liu, Mingyuan Rong, & Zixiang Xu. (2025). Interpolating chromatic and homomorphism thresholds.
- [4] Malliaris, M., & Shelah, S. (2013). Regularity lemmas for stable graphs. *Transactions of the American Mathematical Society*, 366(3), 1551–1585.

[5]Nguyen, T., Scott, A., & Seymour, P. (2023). Induced subgraph density. VI. Bounded VC-dimension.

Problem 6. Oriented trees in oriented graphs of large girth (suggested by Tereza Klimošová)

Source: Proposed by Maya Stein in [1].

Definitions.

- The girth of a graph G is the length of the shortest cycle in G,
- $\Delta(T)$ denotes the maximum degree of T, and
- $\delta^0(D)$ denotes the minimum semidegree of a digraph D, which is defined as the minimum over all the indegrees and all the outdegrees of the vertices of D.

Question: Does every oriented graph D of girth at least $2\ell+1$ with $\delta^0(D) \ge \max(k/\ell, \Delta(T))$ contain every orientation of each k-edge tree?

Related results:

• The undirected version of the question is known to be true;

Theorem 1 (Jiang [2]). Every graph G of girth at least $2\ell + 1$ with $\delta(G) \ge \max(k/\ell, \Delta(T))$ contains any k-edge tree.

• There is a version forbidding oriented 4-cycles, see [3].

- [1] M. Stein. Degree conditions for trees in undirected and directed graphs. In Women in Mathematics in Latin America, Trends in Mathematics. Springer-Birkhäuser. To appear.
- [2] T. Jiang, On a conjecture about trees in graphs with large girth, Journal of Combinatorial Theory. Series B 83 (2001), no. 2, 221-232
- [3] M. Stein and A. Trujillo-Negrete, Oriented trees in digraphs without oriented 4-cycles, arXiv preprint arXiv:2411.13483 (2024).

Problem 7. Clique Dynamics of Whitney triangulations (suggested by Anna Margarethe Limbach)

Source: Proposed by F. Larrión, V. Neumann-Lara, and M. A. Pizaña in 2002 [4].

Definitions.

- Given a graph G, its clique graph kG is the intersection graph of its maximal complete subgraphs, called cliques. This means the set of cliques of G is the vertex set of kG, and two vertices of kG are adjacent if and only if they intersect non-trivially as cliques. The operator k that maps each graph to its clique graph is called the clique graph operator, and one can apply it iteratively to generate the sequence of iterated clique graphs $k^0G = G$, $k^1G = kG$, $k^2G = k(kG)$, k^3G ,
- If the sequence of iterated clique graphs of a graph G consists of pairwise non-isomorphic graphs, G is called k-divergent, otherwise, k-convergent, and if it contains the graph that consists of a singleton (and then becomes stationary there) G is called k-null.
- A graph is called locally cyclic, if each open neighbourhood of a vertex induces a cycle.
- A Whitney-triangulation of a compact surface is a triangulation such that each triangle of its underlying graph is a face of the surface. Whitney triangulations of closed surfaces are locally cyclic with minimum degree ≥ 3 and the only one with minimum degree 3 is the K_4 that triangulates the sphere.

From another perspective one can start with such a locally cyclic graph and obtain a closed surface by "filling in the triangles".

Questions:

- 1. Is the underlying graph of a finite Whitney triangulation of the disk always k-null?
- 2. Is K_4 the only underlying graph of a finite Whitney triangulation of the sphere that is k-convergent?

Related results:

- The K_4 is k-null.
- \bullet The octahedron graph is k-divergent.
- \bullet The icosahedron graph is k-divergent.
- \bullet All locally cyclic graphs with minimum degree ≥ 7 are k-convergent.
- \bullet Every closed surface admits a k-divergent Whitney triangulation.
- \bullet Every closed surface with negative Euler characteristic admits a k-convergent Whitney triangulation.
- \bullet Every Whitney triangulation of the disk such that every interior vertex has degree ≥ 6 is k-null.

- [1] Larrión, F., Pizaña, M.A. and Villarroel-Flores R.: Iterated clique graphs and bordered compact surfaces. Discrete Mathematics 313 (2013) 508–516 https://doi.org/10.1016/j.disc.2012.11.017
- [2] Larrión, F., Neumann-Lara, V. and Pizaña, M.A.: Clique Convergent Surface Triangulations. Matemática Contemporânea, Vol. 25, 135–143 (2003) http://doi.org/10.21711/231766362003/rmc2511
- [3] Larrión, F., Neumann-Lara, V. and Pizaña, M.A.: Graph relations, clique divergence and surface triangulations. J. Graph Theory, 51: 110-122 (2006) https://doi.org/10.1002/jgt.20126
- [4] Larrión, F., Neumann-Lara, V., Pizaña, M.A.: Whitney triangulations, local girth and iterated clique graphs. Discrete Mathematics 258(1), 123–135 (2002) https://doi.org/10.1016/S0012-365X(02)00266-2
- [5] Limbach, A.M., Winter, M.: Characterising clique convergence for locally cyclic graphs of minimum degree $\delta \geq 6$. Discrete Mathematics 347(11), 114144 (2024) https://doi.org/10.1016/j.disc.2024.114144
- [6] Limbach, A. M., Winter, M.: When do graph covers preserve the clique dynamics of infinite graphs? arXiv preprint (2025) https://doi.org/10.48550/arXiv.2503.22893

Problem 8. Large chromatic number implies long colorful path (suggested by David Mikšaník)

Source: Proposed by Raphael Steiner at Eurocomb'25.

Motivation. Since in any proper vertex coloring of G, vertices in each clique receive distinct colors, a large clique number $\omega(G)$ implies a large chromatic number $\chi(G)$. It is well-known, however, that the reverse is not true in general—there exist triangle-free graphs (i.e., graphs with $\omega(G)=2$) with arbitrarily large chromatic number (see e.g. [1] for a recent survey on this and related topics). Thus, the size of the largest clique is not always the main reason for a graph's large chromatic number, but perhaps other "large structures" are inherently present in such graphs. For example, Erdős and Hajnal asked: does a graph with large chromatic number always contain a Hamiltonian (induced) subgraph with large chromatic number [2]? Here, we consider a simplified version of this problem.

Question: Is there a function $f: \mathbb{N} \to \mathbb{N}$ such that every graph G of chromatic number at least f(k) contains a path P that induces a subgraph of chromatic number at least k?

Raphael Steiner at Eurocomb'25 explicitly mentioned the case k=3 (stated contrapositively).

Question: Does there exists $c \in \mathbb{N}$ such that the following holds? Every graph G such that every path induces a 3-colorable subgraph has $\chi(G) \leq c$.

Remark: Proving that $\chi(G) \leq O(\log |G|)$ should be easy. Any asymptotic improvement would be new and interesting.

- [1] A. Scott: *Graphs of large chromatic number*. Proceedings of the International Congress of Mathematicians, Vol. 6, pp. 4660—4681, (2022)
- [2] P. Erdős: Some recent problems and results in graph theory. Discrete Mathematics, Vol. 164 (1–3), pp. 81–85 (1997)

Problem 9. Signed Network Coordination Games (suggested by Lluís Sabater)

Source: Proposed by Vanelli et al. (2025).

Definitions.

- A signed network is a graph G = (V, E) where each edge has a weight $w_{uv} \in \mathbb{R}$ (can be negative). Each vertex $i \in V$ is a player who chooses an action $x_i \in \{-1, +1\}$.
- The utility of $i \in V$ is given by a function that depends on the weights and actions. Typical examples:
 - pure anti-coordination (all weights = -1):

$$u_i(x_i) = |j \in N(i) : x_j \neq x_i|$$

• signed payoff (binary actions $x_i \in \{\pm 1\}$):

$$u_i(x_i) = \sum_{j \in N(i)} w_{ij} \cdot x_i \cdot x_j$$

 \bullet An strategy X is a pure Nash equilibrium (or stable coloring) if no vertex can change its action and strictly increase its utility.

Example:

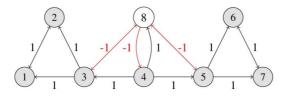


Figure 3: Example from Vanelli et al. paper

Question: Identify graphs that guarantee the existence of a pure Nash equilibrium in signed coordination games.

Related results:

• Vanelli et al. (2025) give sufficient conditions for existence: if there is a cohesive subset or a structurally balanced region that can be "frozen", and the remainder admits an equilibrium under those boundary conditions.

References:

Vanelli, Arditti, Como, Fagnani, "On Signed Network Coordination Games", arXiv preprint (May 2025).

Jeremy Kun, Brian Powers, Lev Reyzin, "Anti-Coordination Games and Stable Graph Colorings", SAGT 2013.

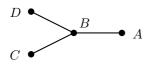
Problem 10. Reachable Pareto-efficient allocation on a tree (suggested by Lluís Sabater)

Source: Model introduced 1 by Gourvès, Lesca & Wilczynski (IJCAI 2017).

Definitions.

- Model. Tree T = (V, E). Each agent $v \in V$ initially holds object h_v and has a strict preference \succ_v over all objects.
- Allowed move. A pairwise swap on edge $\{u, w\}$ is allowed only if both agents strictly prefer the object they would receive.
- Reachable / Pareto-efficient. Allocation π is reachable if obtained by a finite sequence of allowed swaps from the initial allocation. π is Pareto-efficient (PE) if no allocation (global) Pareto-dominates it.

Example:



Agent	Object	Preference
A	a	$d \succ c \succ b \succ a$
В	b	$a \succ d \succ c \succ b$
С	c	$b \succ a \succ d \succ c$
D	d	$c \succ b \succ a \succ d$

Figure 4: Social graph and Initial Setting.

Example solution: sequence of swaps (B, C), (B, D), (B, A).

Question: Given T, initial allocation and preferences. Either produce a reachable Pareto-efficient allocation or report that none exists (TREE-REACHABLE-PE). Is this decidable in *polynomial time on trees*?

¹The tree case is explicitly listed as open in Plaxton et al., 2021; MFCS 2021.

Related results:

- For general graphs, the reachable/PE problems are NP-hard.
- Paths and stars accept polynomial algorithms.
- \bullet Object variant (moving people instead of objects) has similar results.

References:

Gourvès, Lesca & Wilczynski, "Object Allocation via Swaps along a Social Network", IJCAI 2017.

Plaxton, Li & Sinha, "Object Allocation Over a Network of Objects", AAMAS 2021.

Problem 11. Matching-Pseudoforest Planar Decomposition Problem (suggested by Vibha Sahlot)

Question: Does every finite planar graph G with girth $g(G) \geq 7$ admit an edge-2-colouring $E(G) = M \cup P$ such that

- M is a matching (every vertex incident with at most one edge of M), and
- P is a pseudoforest (every connected component of P contains at most one cycle)?

Related results:

• Already proven true for girth greater than seven and girth six is impossible.

Problem 12. The Forest-Diameter-3 Decomposition Conjecture (suggested by Vibha Sahlot)

Question: Does every finite planar graph G with girth $g(G) \geq 5$ admit an edge-2-colouring $E(G) = F \cup D$ such that

- F is a forest, and
- ullet P has every connected component of diameter at most 3?

Related results:

• True for diameter 4.

Problem 13. Hunters and rabbit (suggested by Sasha Sami)

Source: Taken verbatim from https://a3nm.net/work/research/questions/#HuntersRabbit. But is originally credited to https://cstheory.stackexchange.com/q/30592.

Definitions.

- The hunters and rabbit problem is a pursuit-evasion game played on an undirected graph. A strategy for k hunters is a sequence s_1, s_2, \cdots, s_n of subsets of k vertices. A strategy is winning if, for every walk v_1, v_2, \cdots, v_n in the graph (not necessarily simple), there is i such that $v_i \in s_i$. Intuitively, the evader is walking on the graph (it has to move at each turn by following exactly one edge) and must avoid the k vertices that the pursuers examine at each time step.
- The evasion number of a graph G is the smallest k for which there is a winning strategy with k hunters.

Question: Is it the case that, for any constant k, we can recognize the graphs of the evasion number k in polynomial time? It is, in fact, not even known whether the problem is in NP.

Related results:

- Paper [1] characterizes the graphs with evasion number k=1 (they are the unions of lobster graphs, and can be recognized in linear time), and determines explicit strategies for them. In this paper, the pursuer is called a prince and the evader is called a princess. See also this Reddit discussion [2], where the pursuer is a vampire hunter and the evader is a vampire.
- Paper [3] (2025), which shows that it is NP-hard to determine the evasion number of a graph given as input. However, the paper does not determine the complexity of identifying graphs of evasion number k for a fixed k.
- More papers:
 - How to Hunt an Invisible Rabbit on a Graph [4].

- Catching a Mouse on a Tree [5], where the pursuers are called cats and the evader mouse.
- Hunting Rabbits on the Hypercube [6], which follows the hunter/rabbit terminology.
- Recontamination Helps a Lot to Hunt a Rabbit [7].

- [1] https://arxiv.org/abs/1204.5490
- [2] https://www.reddit.com/r/mathriddles/comments/30tmoh/vampire hunter/
 - [3] https://arxiv.org/abs/2502.15982
 - [4] https://arxiv.org/abs/1502.05614
 - [5] https://arxiv.org/abs/1502.06591
 - [6] https://arxiv.org/abs/1701.08726
- [7] https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.42

Problem 14. Are the induced chordal graphs edge-Ramsey? (suggested by Maximilian Strohmeier)

Source: Proposed by Nešetřil in 2025.

Let K be any category. (Imagine a class of finite graphs with some notion of homomorphisms.)

Definitions (Ramsey degree).

• K is Ramsey (or has the Ramsey property) if

$$\begin{split} \forall A, B \in K, r \in \omega : \\ \exists C \in K : \\ \forall \chi \in r^{K(A,C)} : \\ \exists b \in K(B,C), k \in r : \\ \forall a \in K(A,B) : \\ \chi(b \circ a) = k. \end{split} \right\} \exists b \in K(B,C) : \\ \left| \chi \left(b \circ - \right) \left[K(A,B) \right] \right| = 1 \right\} C \rightarrow (B)_{r,1}^{A}$$

• $A \in K$ has small Ramsey degree d if d is minimal such that

$$\forall B \in K, r \in \omega : \exists C \in K : C \to (B)_{r,d}^A.$$

Definitions (Induced chordal graphs).

- For a class of graphs K, the category of induced K has as morphisms the inclusions of subgraphs in K induced by a vertex set.
- A chord of a cycle in a graph is a edge in the graph between vertices which are not adjacent in the cycle.
- A graph is chordal (sometimes called triangulated) if every cycle of size ≥ 4 has a chord. So a graph is chordal if it has no induced C_n for $n \geq 4$.

Question: What is the small Ramsey degree of the edge in the class of induced linearly-ordered chordal graphs?

Related results:

- (The chordal graphs are vertex-Ramsey; [1, Prop. 4.13]) The vertex has small Ramsey degree 1 in the class of induced chordal graphs.
- (Classification of chordal graphs; Folklore / [2, Thm. 5.3.17]) A finite graph is chordal if and only if there exists a linear ordering of its vertices such that, for every vertex, its neighborhood restricted to smaller vertices induces a complete graph.

General facts from structural Ramsey theory:

- \bullet (Partite construction) Let L be a language of finite structures (without any other restrictions or axioms). Then the class of linearly ordered L-structures has the Ramsey property.
- (Ramsey degree arithmetic) The Ramsey degree of an object is a multiple of its number of automorphisms.
- (Ramsey's Theorem) $\forall a, b, r \in \omega : \exists c \in \omega : c \to (b)_r^a$ in $(\omega, <)$. Equivalently we can consider order-preserving embeddings between linearly-ordered finite sets.
- (Generalized Hales-Jewett) For every finite set $S, \forall a, b, r \in \omega$: $\exists c \in \omega : c \to (b)_r^a$ in $\mathrm{HJ}(S)$.

References:

- [1] Vince Guingona, Felix Nusbaum, Zain Padamsee, Miriam Parnes, Christian Pippin and Ava Zinman (2025), Indivisibility for Classes of Graphs, https://arxiv.org/abs/2312.01466
- [2] Douglas B. West (2000) Introduction to Graph Theory, 2nd ed., Prentice Hall

Serving as reference aside from that is almost any paper in structural Ramsey theory. A recent survey is:

[3] Jan Hubička and Matěj Konečný (2025), Twenty years of Nešetřil's classification programme of Ramsey classes, doi: 10.48550/arXiv.2501.17293

Problem 15. Flow-related conjecture (suggested by Robert Šámal)

Source: DeVos (with Ghanbari, Šámal).

A bisection of a graph is a decomposition of the vertex set in two sets of the same size. We will call subsets of one of these sets *monochromatic*.

Conjecture: Every 4-edge-connected 5-regular graph G has a bisection so that every monochromatic component has at most one cycle.

• For integer $k \geq 3$, a nowhere-zero k-flow (k-nzf) in a digraph is a mapping $\varphi : E(G) \to \mathbb{Z}$ that is a flow – so that at every vertex, flow in equals flow out, formally, for every v

$$\sum_{u \in N^+(v)} \varphi(vu) = \sum_{u \in N^-(v)} \varphi(uv).$$

Moreover, for every edge $e \in E(G)$ we have $1 \le |\varphi(e)| \le k - 1$.

- For a real $r \geq 2$, a circular nowhere-zero r-flow (r-cnzf for short) in a digraph is an assignment $f: E \to [-(r-1), -1] \cup [1, r-1]$ such that f is a flow in G.
- A k-weak bisection of a cubic graph G is a partition of the vertexset of G into two parts V_1 and V_2 of equal size, such that each connected component of the subgraph of G induced by V_i (i=1,2)is a tree of at most k-2 vertices.
- A bisection (V_1, V_2) of a graph G is an r-strong bisection if for every set of vertices $X \subseteq V$ the number of edges leaving X is $\geq \frac{r}{r-2}||V_1 \cap X| |V_2 \cap X||$
- Note that an r-strong bisection is also a $\lfloor r \rfloor$ -weak bisection.
- [EMT, J] Let $r \geq 3$ be a real number. A cubic graph G = (V, E) admits an circular r-nowhere-zero flow if and only if there exists a r-strong bisection.
- \bullet So if a cubic bridgeless graph G has a 5-nowhere-zero flow (as Tutte conjectures is true for all such graphs), it also has a 5-strong bisection, and thus also a 5-weak partition.

- [EMT] prove this conclusion directly.
- \bullet The above mentioned conjecture is related in similar way to Tutte's 3-flow conjecture (every 4-edge-connected graph G has a 3-nzf).

References:

[EMT] Louis Esperet, Giuseppe Mazzuoccolo, Michael Tarsi: Flows and bisections in cubic graphs, Journal of Graph Theory 86(2) (2017), 149-158 https://arxiv.org/abs/1504.03500

[J] F. Jaeger: Balanced valuations and flows in multigraphs, Proceedings of the American mathematical society Volume 55, Number 1, February 1976 https://www.ams.org/journals/proc/1976-055-01/S0002-9939-1976-0427156-5/S0002-9939-1976-0427156-5.pdf

Problem 16. Slice-wise complexity of scramble number (suggested by Josse van Dobben de Bruyn)

Source: Posed by Echavarria et. al. [2, Question 3.6]; see also [3, Question 5.5], [4, Question 6.4].

Throughout this problem, we assume that all graphs are finite, undirected, simple, and connected, with n vertices and m edges.

We say that a vertex set $E \subseteq V(G)$ is connected if the induced subgraph G[E] is connected. We follow the common convention that the empty set is not connected.

Recall that a cut (T, T^c) in G is a partition of V(G) into two disjoint non-empty vertex sets $T, T^c \subseteq V(G)$. The size of a cut (T, T^c) , denoted $|E(T, T^c)|$, is the number of edges between T and T^c .

Definitions ([1]).

- A scramble in a graph G is a non-empty collection $S = \{E_1, \ldots, E_s\}$ of connected vertex sets $E_1, \ldots, E_s \subseteq V(G)$. The sets E_1, \ldots, E_s are called the eggs of the scramble.²
- Let $S = \{E_1, \ldots, E_s\}$ be a scramble. A hitting set for S is a vertex set $C \subseteq V(G)$ that contains at least one vertex from each egg E_i of S. The hitting set number h(S) of S is the minimum size of a hitting set for S.
- Let $S = \{E_1, \ldots, E_s\}$ be a scramble. An egg cut for S is a cut (T, T^c) such that there exists eggs $E_i \subseteq T$ and $E_j \subseteq T^c$. The egg cut number e(S) of S is the minimum size of an egg cut (∞) if no egg cut exists).
- The order of a scramble is defined as $\|S\| := \min(h(S), e(S))$. Note that $\|S\| \le h(S) \le n$.
- The scramble number $\operatorname{sn}(G)$ of a graph G is the maximum order of a scramble in G.

 $^{^2{\}rm The~terminology,~introduced}$ in [1], is a bad pun on the notion of brambles and bags.

Examples:

- For every (connected) graph G, the set $S = \{V(G)\}$ is a scramble with h(S) = 1 and $e(S) = \infty$. Thus, $\operatorname{sn}(G) \geq 1$ for all G.
- For every graph G, the set $\mathcal{E}(G) = \{\{u,v\} \mid uv \in E(G)\}$ is a scramble in G, called the *edge scramble* of G [2, §3]. The hitting sets for this scramble are precisely the vertex covers of G, so we have $h(\mathcal{E}(G)) = n \alpha(G)$. The egg cut number of $\mathcal{E}(G)$ is the minimum size of a cut (T, T^c) such that both T and T^c contain at least one edge, which is typically smaller than $n \alpha(G)$. If $\delta(G) \geq \lfloor \frac{n}{2} \rfloor + 1$, then this scramble has order $n \alpha(G)$ and is optimal [2, Corollary 3.2].
- If G is a tree, then we claim that every scramble has order 1. If h(S) = 1, then we are done, so assume h(S) > 1. Let D be the directed graph obtained from G by replacing every edge $uv \in E(G)$ by two arcs $(u, v), (v, u) \in A(D)$. Consider the directed subgraph $D' \subseteq D$ consisting of all arcs (u, v) such that the connected component of G uv containing v contains an egg E_i . Since h(S) > 1, every vertex $u \in V(G)$ misses at least one egg, so the outdegree of every vertex of D' is at least 1. Therefore, D' has at least n arcs. Since G has n-1 edges, it follows that there is an edge $uv \in E(G)$ such that both (u, v) and (v, u) belong to D'. Now the edge uv forms an egg cut of size 1, so we have e(S) = 1. Hence, ||S|| = 1.
- If G contains a cycle C, then $\operatorname{sn}(G) \geq 2$. Indeed, choose three distinct vertices u, v, w on the cycle C, and edge-partition the cycle as $C = P_{[u,v]} \cup P_{[v,w]} \cup P_{[w,u]}$, where $P_{[x,y]}$ denotes the path along the cycle from x to y. Then the scramble

$$S = \{V(P_{[u,v]}), V(P_{[v,w]}), V(P_{[w,u]})\}$$

satisfies h(S) = 2 and $e(S) = \infty$, so ||S|| = 2. This is illustrated in Figure 5 below.

- Combining the preceding two examples, we see that $\operatorname{sn}(G) = 1$ if and only if G is a tree. Using more advanced properties of the scramble number, a one-line proof of this fact can be given; see [1, Corollary 4.2].
- For a more advanced example, let $G_{m,n}$ denote the $m \times n$ grid graph with rows $R_1, \ldots, R_m \subseteq V(G_{m,n})$ and columns $C_1, \ldots, C_n \subseteq$

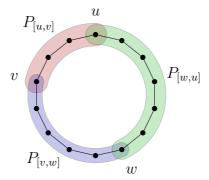


Figure 5: Every cycle gives rise to a scramble of order 2.

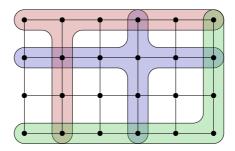


Figure 6: Three eggs of the scramble S in the grid graph $G_{4,6}$. (The scramble contains all possible unions of a row and a column.)

 $V(G_{m,n})$. Consider the scramble $\mathcal{S} = \{R_i \cup C_j \mid (i,j) \in [m] \times [n]\}$, illustrated in Figure 6 below. Then $h(\mathcal{S}) = \min(m,n)$ and $e(\mathcal{S}) = \infty$, so $||\mathcal{S}|| = \min(m,n)$. This can be shown to be optimal [1, Proposition 5.2].

• A bramble is a scramble \mathcal{B} with the additional property that $E_i \cup E_j$ is connected for all $E_i, E_j \in \mathcal{B}$. The (bramble) order of a bramble \mathcal{B} is defined to be the hitting set number $h(\mathcal{B})$. If \mathcal{B} is a

bramble of order k, then the scramble order of \mathcal{B} is either k-1 or k [1, Lemma 3.6]. If \mathcal{B} is a bramble such that $E_i \cap E_j \neq \emptyset$ for all $E_i, E_j \in \mathcal{B}$, then the bramble order of \mathcal{B} equals the scramble order of \mathcal{B} [1, Lemma 3.5]. (Brambles play an important role in the theory of treewidth.)

For this problem, we focus on the (slice-wise) computational complexity of the scramble number.

Definitions.

- The decision problem SCRAMBLE NUMBER takes as input a graph G and an integer k and asks whether or not G admits a scramble of order at least k; that is, whether or not $\operatorname{sn}(G) \geq k$.
- For a fixed integer $k \ge 1$, the decision problem k-SCRAMBLE takes as input a graph G and asks whether or not G admits a scramble of order at least k; that is, whether or not $\operatorname{sn}(G) \ge k$.

Note the subtle but important difference between SCRAMBLE NUMBER and k-SCRAMBLE: the first considers k to be part of the input, whereas the second considers k to be a constant. By comparison, the problems VERTEX COVER, INDEPENDENT SET, DOMINATING SET, and CHROMATIC NUMBER are all NP-hard when k is part of the input, but the first three become polynomial time solvable when k is fixed, whereas k-Colouring is still NP-hard when $k \geq 3$ is fixed.

In [2], the authors prove that SCRAMBLE NUMBER is coNP-hard, using a polynomial-time reduction from INDEPENDENT SET. The more interesting problem of determining the complexity of k-SCRAMBLE is left open.

Main Question ([2, Question 3.6]; see also [3, Question 5.5], [4, Question 6.4]): For fixed k, can the problem k-SCRAMBLE be solved in polynomial time, or is it still NP-hard (or in between)?

The problems 1-SCRAMBLE and 2-SCRAMBLE are trivially in P, since we have $\operatorname{sn}(G) \geq 1$ for all graphs G, and $\operatorname{sn}(G) \geq 2$ if and

only if G has a cycle. It was proved in [3] that a graph G satisfies $\operatorname{sn}(G) \geq 3$ if and only if G contains one (or several) of the four graphs depicted in Figure 7 as a topological minor. Therefore, 3-SCRAMBLE is also in P. For k>3, it was proved that no such finite list of forbidden topological minors exists [3, Theorem 1.2]. The Main Question is currently still open for all k>3.

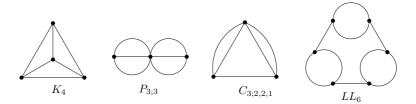


Figure 7: The four forbidden topological minors for $\operatorname{sn}(G) < 3$.

If k-SCRAMBLE is in P for all k, then a natural follow-up question would be whether or not SCRAMBLE NUMBER is fixed parameter tractable when parameterized by k [4, Question 6.4].

Related results:

- If H is a subgraph of G, then $\operatorname{sn}(H) \leq \operatorname{sn}(G)$ [1, Proposition 4.5].
- If G' is a subdivision of G, then $\operatorname{sn}(G') = \operatorname{sn}(G)$ [1, Proposition 4.6].
- The scramble number is not minor-monotone [1, Example 4.4].
- If $\operatorname{sn}(G) \leq 3$, then an optimal scramble exists whose eggs are pairwise disjoint [3, Proposition 5.2], but this is not true for larger scramble number.
- The scramble number is lower bounded by the treewidth and upper bounded by the $divisorial\ gonality$ of the graph: $\operatorname{tw}(G) \leq \operatorname{sn}(G) \leq \operatorname{dgon}(G)$ [1]. This is the main motivation for studying the scramble number: it is currently the best known lower bound on the divisorial gonality, a graph parameter that has its origins in algebraic geometry [5,6] and has connections with structural graph theory [7] and parameterized complexity [8].

- For all $k \geq 2$, there exist graphs G_k such that $\operatorname{tw}(G_k) = 2$ and $\operatorname{sn}(G_k) = k$ [1, Example 4.8], as well as graphs H_k such that $\operatorname{sn}(H_k) = 2$ and $\operatorname{dgon}(H_k) = k$ [1, Example 4.9]. In other words, treewidth, scramble number, and divisorial gonality can be arbitrarily far apart.
- For fixed k, it can be decided in linear time whether or not $\operatorname{tw}(G) \leq k$ [9], and in polynomial time whether or not $\operatorname{dgon}(G) \leq k$ [10]. But scramble number seems to be somehow harder.
- I have a proof that k-SCRAMBLE is in NP for all k, using a polynomial time reduction to an instance of SAT (unpublished). Note: I am reducing to SAT, not from SAT, so this does not prove hardness.
- Treewidth is both the largest order of a bramble (minus one) and the smallest width of a tree decomposition. A similar width parameter has been defined for the scramble number, called *screewidth* [11]. However, one only has $\operatorname{sn}(G) \leq \operatorname{sw}(G)$; equality does not always hold. It is an open problem whether or not $\operatorname{sw}(G) \leq \operatorname{dgon}(G)$ for all graphs G [11, Question 5.1].

- [1] Michael Harp, Elijah Jackson, David Jensen, and Noah Speeter. "A new lower bound on graph gonality". *Discrete Appl. Math.* **309**:172–179, 2022. doi: 10.1016/j.dam.2021.11.003.
- [2] Marino Echavarria, Max Everett, Robin Huang, Liza Jacoby, Ralph Morrison, and Ben Weber. "On the scramble number of graphs". *Discrete Appl. Math.* **310**:43–59, 2022. doi: 10.1016/j.dam.2021.12.009.
- [3] Robin Eagleton and Ralph Morrison. "Graphs of scramble number two". *Discrete Math.* 346(10):#113539, 2023. doi: 10.1016/j.disc.2023.113539.
- [4] Seamus Connor, Steven DiSilvio, Sasha Kononova, Ralph Morrison, and Krish Singal. "On the size and complexity of scrambles". Preprint, 2023. ARXIV: 2311.17342

- [5] Matthew Baker. "Specialization of linear systems from curves to graphs". Algebra Number Theory 2(6):613–653, 2008. doi: 10.2140/ant.2008.2.613
- [6] Matthew Baker and Serguei Norine. "Riemann-Roch and Abel–Jacobi theory on a finite graph". *Adv. Math.* **215**(2):766–788, 2007. doi: 10.1016/j.aim.2007.04.012.
- [7] Josse van Dobben de Bruyn and Dion Gijswijt. "Treewidth is a lower bound on graph gonality". *Algebr. Comb.* **3**(4):941–953, 2020. doi: 10.5802/alco.124.
- [8] Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. "Problems hard for treewidth but easy for stable gonality". Graph-Theoretic Concepts in Computer Science (WG 2022), Springer Lecture Notes in Computer Science 13453, pp. 84-97. Springer, Cham, 2022. doi: 10.1007/978-3-031-15914-5_7.
- [9] Hans L. Bodlaender. "A linear-time algorithm for finding tree-decompositions of small treewidth". SIAM J. Comput. **25**(6):1305–1317, 1996. doi: 10.1137/S0097539793251219.
- [10] Josse van Dobben de Bruyn. Reduced divisors and gonality in finite graphs. Bachelor thesis, Leiden University, 2012. HDL: 1887/3596668.
- [11] Lisa Cenek, Lizzie Ferguson, Eyobel Gebre, Cassandra Marcussen, Jason Meintjes, Ralph Morrison, Liz Ostermeyer, Shefali Ramakrishna, and Ben Weber. "Scramble number and tree-cut decompositions". Preprint, 2022. ARXIV: 2209.01459.