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OPEN PROBLEMS

Problem 1. Untangling geometric graphs (suggested by
Todor Antic)

Source: Proposed by Jan Kyncl in the year of our lord 2023.

Definitions.

e A geometric graph is a graph drawn in the plane with vertices as
points and edges as straight line segments between the points.

e A geometric graph G is k-plane if every edge has at most k
crossings with other edges of G.

e A geometric graph G is h-quasiplane if it contains no h pairwise
crossing edges.

//

Figure 1: Forbidden configurations in 3-plane and 3-quasiplane
geometric graphs.

Question: Can every k-plane geometric graph be redrawn so that
it is (k 4+ 1)-quasiplane?
Related results:

e Every geometric k-plane graph can be redrawn to be geometric
(k + 2)-quasiplane (exercise).



e Every convex-geometric k-plane graph can be redrawn to be
convex-geometric k-quasiplane [1].

e Every simple topological k-plane graph can be redrawn to be
simple (k + 1)-quasiplane [2].

References:

[1] Todor Antic. “Convex-Geometric k-Planar Graphs Are Convex-
Geometric(k+1)-Quasiplanar”. In: Combinatorial Algorithms. Ed.
by Adele Anna Rescigno and Ugo Vaccaro. Cham: Springer Nature
Switzerland, 2024, pp. 138-150.

[2] Patrizio Angelini et al. “Simple k-planar graphs are
simple (k+1)-quasiplanar”. In: Journal of Combinatorial
Theory, Series B 142 (2020), pp. 1-35. ISSN: 0095-8956.
DOL  https://doi.org/10.1016/5.jctb.2019.08.006.  URL:
https://www.sciencedirect.com/science/article/pii/
S50095895619300838.


https://doi.org/10.1016/j.jctb.2019.08.006
https://www.sciencedirect.com/science/article/pii/S0095895619300838
https://www.sciencedirect.com/science/article/pii/S0095895619300838

Problem 2. Fast computation of Bézout polynomials
(suggested by Juraj Belohorec)

Source: Proposed by Alex Ozdemir.

Question: Let F be a field (in practice, a finite field of prime
order). Let ay,...,a,;, be m distinct elements of F. Let Z(X) =
[T~ (X — a;). Then (since the roots a; are distinct) Z and its
derivative Z’ have no common factor, so there exist polynomials
$(X) and t(X) such that sZ 4+ tZ’ = 1. Is there an algorithm to
compute the coefficients of s and ¢, from ay, ..., a,,, using at most
O(mlogm) field operations?

References:
https://notes.Oxparc.org/problems/compute-bezout/


https://notes.0xparc.org/problems/compute-bezout/

Problem 3. Complexity of 3-coloring circle graphs
(suggested by Petr Chmel)

Source: Reopened by Bachmann, Rutter, and Stumpf in 2023.

Definitions.

o A graph is called a circle graph if it can be represented as an
intersection graph of chords in a circle. (That is, each vertex gets
assigned a chord in a circle, and two vertices are adjacent iff their
chords intersect.)

Question: What is the complexity of 3-coloring circle graphs?

Related results:

e For k-coloring of circle graphs with k > 4, we know the problem
is NP-complete.

e For most superclasses of circle graphs, 3-coloring is known to be
NP-complete, usually because the superclasses also contain the class
planar graphs.

e Unger gave an algorithm for 3-coloring circle graphs in time
O(nlogn) using a backtracking algorithm for a 3-SAT instance
with a specific structure based on the circle graph, however Bach-
mann, Rutter, and Stumpf have shown counterexamples to both
the reduction to 3-SAT and the backtracking algorithm.

References:

Bachmann, P.; Rutter, I., & Stumpf, P. (2023, September). On
3-coloring circle graphs. In International Symposium on Graph
Drawing and Network Visualization (pp. 152-160). Cham: Springer
Nature Switzerland.

Unger, W. (1988, February). On the k-colouring of circle-graphs.
In Annual Symposium on Theoretical Aspects of Computer Science
(pp. 61-72). Berlin, Heidelberg: Springer Berlin Heidelberg.

Unger, W. (1992, February). The complexity of colouring circle
graphs. In Annual Symposium on Theoretical Aspects of Computer
Science (pp. 389-400). Berlin, Heidelberg: Springer Berlin Heidel-
berg.



Problem 4. A bicolored pseudoline arrangement has a
bicolored triangle (suggested by Niloufar Fuladi)

Source: Proposed in the book Oriented Matroids [1].

Definitions.

e A pseudoline is a simple curved line in the plane. We consider
this as a generalization of a straight line in the plane.

o A set of pseudolines in the plane that pairwise cross exactly once
is called a pseudoline arrangement. This is a generalization of a
line arrangement in the plane. A pseudoline arrangement is simple
if no three pseudolines cross in a point.

o A pseudoline arrangement decomposes the plane into polygonal
cells of degree d > 3 which we call d-cells.

Figure 2: Left: a simple pseudoline arrangement with highlighted 3-
cells; Right: A separated bicoloring of the pseudolines and a straight
line [ at infinity.

Question ([1]): A bicoloring of a pseudoline arrangement is to color
the pseudolines with two colors. In a bicolored simple pseudoline
arrangement, there exists a bicolored 3-cell (triangle).



Related results:

e A bicolored line arrangement contains a bicolored 3-cell [2].

e A bicolored arrangement with at most 5 red pseudolines has a
bicolored 3-cell [3].

e Consider a bicoloring of a pseudoline arrangement with red and
blue. Consider a straight pseudoline at infinity [ that crosses all the
pseudolines exactly once and that all the crossings of the arrange-
ment appear on one side of it. If there exists a line [ such that all the
crossings between red (or blue) pseudolines appear consecutively on
the line, we call the coloring a separated coloring. An arrangement
with a separated coloring has a bicolored 3-cell [3]. See the right
picture in Figure 2.

e Every bicolored arrangement contains a bicolored 3-cell or a
bicolored 4-cell [3].

References:

[1] Oriented Matroids. Anders Bjorner, Michel Las Vergnas,
Bernd Sturmfels, Neil White, and Giinter Ziegler. Cambridge Uni-
versity Press, Cambridge, 1993.

[2] Arrangements of Approaching Pseudo-Lines. Stefan Felsner,
Alexander Pilz, and Patrick Schnider

[3] On Triangles in Colored Pseudoline Arrangements. Yan Alves
Radtke, Baldzs Keszegh, and Robert Lauff.



Problem 5. Bounded-stability chromatic threshold
(suggested by Tomas Hons)

Source: Inspired by the Hong Liu’s talk at Eurocomb’25.

Definitions.

o All graphs are finite. The minimum degree of G is denoted by 6(G).
e Graph G is F-free if F' is not an induced subgraph of G.

e The half graph of size n is denoted by H, and defined as

V(H,) = AUB = {a;:i € [n]} U{by +j € [n),
E(H,) ={asb; :i,j € [n],i < j}.

e A bipartite graph H with a fixed bipartition is a semi-induced
subgraph of G if there is an injective mapping f : V(H) = V(G)
which respects the edges and non-edges between the parts.

e A graph G is called k-stable if it does not contain a copy of Hy,
as a semi-induced subgraph. The minimum value of k such that G
is k-stable is denoted by o(G) and referred to as the stability of G.
e We define the bounded-stability chromatic threshold of a graph F,
denoted by 05 (F), as

Oy(F) =inf{a >0:VseN,3C = C(a, F,s) s.t.
V n-vertex F-free graph G,c(G) < 5,6(G) > an = x(G) < C}.

Examples:

e We have 67 (K3) < 1/2 as there are no K3-free graphs with with
§(G) > 1/2is Ky . Similarly, we have 67 (K;) < =2 by the Turdn
theorem.

e Moreover, by work on a related graph parameter (5X(F ), we know
from [1] that 67(K;) < 6, (K;) = £=3. The value of §, (F) is defined
analogously, but VC-dimension of G is used instead of stability, see
below.

Question: Determine 67, (F). Start with F' = K3.



Motivation and related results:
o A well studied notion is the chromatic threshold of F' defined as

0y (F) =inf{a >0:3C =C(e, F) s.t.
V n-vertex F-free graph G,6(G) > an = x(G) < C}.

The values of 0, (F) were classified in [2].

e In subsequent works [1, 3], the effect of bounded V C-dimension
was studied, which was formalized as the notion of bounded-VC
chromatic threshold:

0, (F) =inf{a >0:VdeN,3C = C(a, F,d) s.t.
V n-vertex F-free graph G, (G) <d,6(G) > an = x(G) < C}.

We clearly have 6, (F') < 6, (F).

e The parameter 67 (F) is a natural variant of §, (F') in the view
that both bounded VC-dimension and bounded stability are related
and increasingly important tameness notions coming from model
theory. See e.g. [4, 5].

e Since (G) < o(G), we have §, (F) > 67(F) for every F. Thus,
we obtain upper bounds on 7 (F) from known results, while the
lower bounds would require constructing of F-graphs with bounded
stability, large minimum degree, and unbounded chromatic number.

References:

[1] Kim, J., Liu, H., Shangguan, C., Wang, G., Wu, Z., & Xue, Y.
(2025). Stability with minuscule structure for chromatic thresholds.

[2] Allen, P., Bottcher, J., Griffiths, S., Kohayakawa, Y., &
Morris, R. (2013). The chromatic thresholds of graphs. Advances in
Mathematics, 235, 261-295.

[3] Xingi Huang, Hong Liu, Mingyuan Rong, & Zixiang Xu.
(2025). Interpolating chromatic and homomorphism thresholds.

[4] Malliaris, M., & Shelah, S. (2013). Regularity lemmas for
stable graphs. Transactions of the American Mathematical Society,
366(3), 1551-1585.



[5] Nguyen, T., Scott, A., & Seymour, P. (2023). Induced sub-
graph density. VI. Bounded VC-dimension.



Problem 6. Oriented trees in oriented graphs of large
girth (suggested by Tereza Klimosovad)

Source: Proposed by Maya Stein in [1].

Definitions.

e The girth of a graph G is the length of the shortest cycle in G,
o A(T) denotes the maximum degree of T, and

e 5°(D) denotes the minimum semidegree of a digraph D, which is
defined as the minimum over all the indegrees and all the outdegrees
of the vertices of D.

Question: Does every oriented graph D of girth at least 2¢+ 1 with
§°(D) > max(k/¢, A(T)) contain every orientation of each k-edge
tree?

Related results:
e The undirected version of the question is known to be true;

Theorem 1 (Jiang [2]). Every graph G of girth at least 20+ 1 with
0(G) > max(k/¢, A(T)) contains any k-edge tree.

e There is a version forbidding oriented 4-cycles, see [3].

References:

[1] M. Stein. Degree conditions for trees in undirected and di-
rected graphs. In Women in Mathematics in Latin America, Trends
in Mathematics. Springer-Birkhéuser. To appear.

[2] T. Jiang, On a conjecture about trees in graphs with large
girth, Journal of Combinatorial Theory. Series B 83 (2001), no. 2,
221-232

[3] M. Stein and A. Trujillo-Negrete, Oriented trees in digraphs
without oriented 4-cycles, arXiv preprint arXiv:2411.13483 (2024).
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Problem 7. Cligue Dynamics of Whitney triangulations
(suggested by Anna Margarethe Limbach)

Source: Proposed by F. Larrion, V. Neumann-Lara, and M. A.
Pizafia in 2002 [4].

Definitions.
e Given a graph G, its clique graph kG is the intersection graph
of its maxzimal complete subgraphs, called cliques. This means the
set of cliques of G is the vertex set of kG, and two vertices of kG
are adjacent if and only if they intersect non-trivially as cliques.
The operator k that maps each graph to its clique graph is called the
clique graph operator, and one can apply it iteratively to generate
the sequence of iterated clique graphs k°G = G, k'G = kG, k*G =
k(kQ), k3G, .. ..
o If the sequence of iterated clique graphs of a graph G consists of
pairwise non-isomorphic graphs, G is called k-divergent, otherwise,
k-convergent, and if it contains the graph that consists of a singleton
(and then becomes stationary there) G is called k-null.
e A graph is called locally cyclic, if each open neighbourhood of a
vertexr induces a cycle.
o A Whitney-triangulation of a compact surface is a triangulation
such that each triangle of its underlying graph is a face of the
surface. Whitney triangulations of closed surfaces are locally cyclic
with minimum degree > 3 and the only one with minimum degree 3
is the K4 that triangulates the sphere.

From another perspective one can start with such a locally cyclic
graph and obtain a closed surface by “filling in the triangles”.

Questions:

1. Is the underlying graph of a finite Whitney triangulation of
the disk always k-null?

2. Is K4 the only underlying graph of a finite Whitney triangu-
lation of the sphere that is k-convergent?

11



Related results:

e The K, is k-null.

e The octahedron graph is k-divergent.

e The icosahedron graph is k-divergent.

e All locally cyclic graphs with minimum degree > 7 are k-convergent.
e Every closed surface admits a k-divergent Whitney triangulation.
e Every closed surface with negative Euler characteristic admits a
k-convergent Whitney triangulation.

e Every Whitney triangulation of the disk such that every interior
vertex has degree > 6 is k-null.

References:

[1] Larrién, F., Pizana, M.A. and Villarroel-Flores R.: Iterated
clique graphs and bordered compact surfaces. Discrete Mathematics
313 (2013) 508-516 https://doi.org/10.1016/j.disc.2012.11.017

[2] Larrién, F., Neumann-Lara, V. and Pizafia, M.A.: Clique
Convergent Surface Triangulations. Matematica Contemporéanea,
Vol. 25, 135-143 (2003) http://doi.org/10.21711/231766362003/
rmc2511

[3] Larrién, F., Neumann-Lara, V. and Pizana, M.A.: Graph
relations, clique divergence and surface triangulations. J. Graph
Theory, 51: 110-122 (2006) https://doi.org/10.1002/jgt.20126

[4] Larrién, F., Neumann-Lara, V., Pizafia, M.A.: Whitney tri-
angulations, local girth and iterated clique graphs. Discrete Math-
ematics 258(1), 123-135 (2002) https://doi.org/10.1016/50012~
365X(02)00266-2

[5] Limbach, A.M., Winter, M.: Characterising clique conver-
gence for locally cyclic graphs of minimum degree § > 6. Discrete
Mathematics 347(11), 114144 (2024) https://doi.org/10.1016/
j.disc.2024.114144

[6] Limbach, A. M., Winter, M.: When do graph covers pre-
serve the clique dynamics of infinite graphs? arXiv preprint (2025)
https://doi.org/10.48550/arXiv.2503.22893
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https://doi.org/10.1016/S0012-365X(02)00266-2
https://doi.org/10.1016/j.disc.2024.114144
https://doi.org/10.1016/j.disc.2024.114144
https://doi.org/10.48550/arXiv.2503.22893

Problem 8. Large chromatic number implies long colorful
path (suggested by David Miksanik)

Source: Proposed by Raphael Steiner at Eurocomb’25.

Motivation. Since in any proper vertex coloring of G, vertices in
each clique receive distinct colors, a large clique number w(G) implies
a large chromatic number x(G). It is well-known, however, that the
reverse is not true in general—there exist triangle-free graphs (i.e.,
graphs with w(G) = 2) with arbitrarily large chromatic number (see
e.g. [1] for a recent survey on this and related topics). Thus, the
size of the largest clique is not always the main reason for a graph’s
large chromatic number, but perhaps other “large structures” are
inherently present in such graphs. For example, Erdés and Hajnal
asked: does a graph with large chromatic number always contain a
Hamiltonian (induced) subgraph with large chromatic number [2]?
Here, we consider a simplified version of this problem.

Question: Is there a function f: N — N such that every graph G
of chromatic number at least f(k) contains a path P that induces a
subgraph of chromatic number at least k7

Raphael Steiner at Eurocomb’25 explicitly mentioned the case k = 3
(stated contrapositively).

Question: Does there exists ¢ € N such that the following holds?
Every graph G such that every path induces a 3-colorable subgraph
has x(G) < c.

Remark: Proving that x(G) < O(log |G]) should be easy. Any asymp-
totic improvement would be new and interesting.

References:

[1] A. Scott: Graphs of large chromatic number. Proceedings of
the International Congress of Mathematicians, Vol. 6, pp. 4660—
4681, (2022)

[2] P. Erdé&s: Some recent problems and results in graph theory.
Discrete Mathematics, Vol. 164 (1-3), pp. 81-85 (1997)
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Problem 9. Signed Network Coordination Games
(suggested by Lluis Sabater)

Source: Proposed by Vanelli et al. (2025).

Definitions.

e A signed network is a graph G = (V, E) where each edge has a
weight wy, € R (can be negative). Fach vertex i € V is a player
who chooses an action z; € {—1,+1}.

o The utility of i € V is given by a function that depends on the
weights and actions. Typical examples:

o pure anti-coordination (all weights = —1):
ui(zi) = |j € N(i) : xj # i
o signed payoff (binary actions x; € {+1}):

uz(xz) = Z Wij * Tj * Ty
JEN()
o An strategy X is a pure Nash equilibrium (or stable coloring) if

no vertex can change its action and strictly increase its utility.

Example:

Figure 3: Example from Vanelli et al. paper

14



Question: Identify graphs that guarantee the existence of a pure
Nash equilibrium in signed coordination games.

Related results:

e Vanelli et al. (2025) give sufficient conditions for existence: if
there is a cohesive subset or a structurally balanced region that can
be “frozen”, and the remainder admits an equilibrium under those
boundary conditions.

References:

Vanelli, Arditti, Como, Fagnani, “On Signed Network Coordina-
tion Games”, arXiv preprint (May 2025).

Jeremy Kun, Brian Powers, Lev Reyzin, “Anti-Coordination
Games and Stable Graph Colorings”, SAGT 2013.
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Problem 10. Reachable Pareto-efficient allocation on a
tree (suggested by Lluis Sabater)

Source: Model introducecﬂ by Gourves, Lesca & Wilczynski (IJCAI
2017).

Definitions.

e Model. Tree T = (V, E). FEach agent v € V initially holds object
h, and has a strict preference =, over all objects.

e Allowed move. A pairwise swap on edge {u,w} is allowed only
if both agents strictly prefer the object they would receive.

e Reachable / Pareto-efficient. Allocation m is reachable if 0b-
tained by a finite sequence of allowed swaps from the initial allocation.
m is Pareto-efficient (PE) if no allocation (global) Pareto-dominates
it.

Example:
Agent | Object | Preference
D A a d-c>b>a
B A B b a~-d>=c>b
C c b>a>d>c
c D d c-b>a>d

Figure 4: Social graph and Initial Setting.

Ezample solution: sequence of swaps (B,C), (B, D), (B, A).

Question: Given T, initial allocation and preferences. Either pro-
duce a reachable Pareto-efficient allocation or report that none
exists (TREE-REACHABLE-PE). Is this decidable in polynomial
time on trees?

IThe tree case is explicitly listed as open in Plaxton et al., 2021; MFCS 2021.
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Related results:

e For general graphs, the reachable/PE problems are NP-hard.

e Paths and stars accept polynomial algorithms.

e Object variant (moving people instead of objects) has similar
results.

References:

Gourves, Lesca & Wilczynski, “Object Allocation via Swaps
along a Social Network”, IJCAT 2017.

Plaxton, Li & Sinha, “Object Allocation Over a Network of
Objects”, AAMAS 2021.

17



Problem 11. Matching—Pseudoforest Planar Decomposi-
tion Problem (suggested by Vibha Sahlot)

Question: Does every finite planar graph G with girth g(G) > 7
admit an edge-2-colouring E(G) = M U P such that

e M is a matching (every vertex incident with at most one edge
of M), and

e P is a pseudoforest (every connected component of P contains
at most one cycle)?

Related results:
e Already proven true for girth greater than seven and girth six is
impossible.

18



Problem 12. The Forest-Diameter-3 Decomposition Con-
jecture (suggested by Vibha Sahlot)

Question: Does every finite planar graph G with girth ¢(G) > 5
admit an edge-2-colouring F(G) = F U D such that

e F'is a forest, and
e P has every connected component of diameter at most 37

Related results:
e True for diameter 4.
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Problem 13. Hunters and rabbit (suggested by Sasha
Sami)

Source: Taken verbatim from https://a3nm.net/work/research/
questions/#HuntersRabbit. But is originally credited to https://
cstheory.stackexchange.com/q/30592.

Definitions.

e The hunters and rabbit problem is a pursuit-evasion game played
on an undirected graph. A strategy for k hunters is a sequence
$1,82,°*+ ,Sn of subsets of k vertices. A strategy is winning if, for
every walk vi,ve, - , vy, in the graph (not necessarily simple), there
is i such that v; € s;. Intuitively, the evader is walking on the graph
(it has to move at each turn by following exactly one edge) and must
avoid the k wvertices that the pursuers examine at each time step.

e The evasion number of a graph G is the smallest k for which there
s a winning strategy with k hunters.

Question: Is it the case that, for any constant k , we can recognize
the graphs of the evasion number £ in polynomial time? It is, in
fact, not even known whether the problem is in NP.

Related results:

e Paper [1] characterizes the graphs with evasion number k& = 1
(they are the unions of lobster graphs, and can be recognized in
linear time), and determines explicit strategies for them. In this
paper, the pursuer is called a prince and the evader is called a
princess. See also this Reddit discussion [2], where the pursuer is a
vampire hunter and the evader is a vampire.

e Paper [3] (2025), which shows that it is NP-hard to determine
the evasion number of a graph given as input. However, the paper
does not determine the complexity of identifying graphs of evasion
number k for a fixed k.

e More papers:

— How to Hunt an Invisible Rabbit on a Graph [4].
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— Catching a Mouse on a Tree [5], where the pursuers are called
cats and the evader mouse.

— Hunting Rabbits on the Hypercube [6], which follows the
hunter/rabbit terminology.

— Recontamination Helps a Lot to Hunt a Rabbit [7].

References:

[1] https://arxiv.org/abs/1204.5490

[2] https://www.reddit.com/r/mathriddles/comments/30tmoh/
vampire_hunter/

[3] https://arxiv.org/abs/2502.15982

[4] https://arxiv.org/abs/1502.05614

[5] https://arxiv.org/abs/1502.06591

[6] https://arxiv.org/abs/1701.08726

[7)https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.MFCS.2023.42
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Problem 14. Are the induced chordal graphs edge-Ramsey?
(suggested by Mazximilian Strohmeier)

Source: Proposed by Nesetril in 2025.

Let K be any category. (Imagine a class of finite graphs with
some notion of homomorphisms.)

Definitions (Ramsey degree).
e K is Ramsey (or has the Ramsey property) if

VA Be K,;r cw:

1C e K :

VxerK(A’c):

HbéK(B,C),kGT: ﬂbEK(B,C)Z C’—)(B)Al
Va € K(A,B): ) KA B ) 7
x(boa) = k. x(bo =) (KA, B)I| =

e A € K has small Ramsey degree d if d is minimal such that
VBeK,rew:3C € K:C — (B),

Definitions (Induced chordal graphs).

e For a class of graphs K, the category of induced K has as mor-
phisms the inclusions of subgraphs in K induced by a vertex set.

e A chord of a cycle in a graph is a edge in the graph between
vertices which are not adjacent in the cycle.

e A graph is chordal (sometimes called triangulated) if every cycle
of size > 4 has a chord. So a graph is chordal if it has no induced
C, forn > 4.

Question: What is the small Ramsey degree of the edge in the
class of induced linearly-ordered chordal graphs?
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Related results:

e (The chordal graphs are vertex-Ramsey; [1, Prop. 4.13]) The
vertex has small Ramsey degree 1 in the class of induced chordal
graphs.

e (Classification of chordal graphs; Folklore / [2, Thm. 5.3.17]) A
finite graph is chordal if and only if there exists a linear ordering of
its vertices such that, for every vertex, its neighborhood restricted
to smaller vertices induces a complete graph.

General facts from structural Ramsey theory:

e (Partite construction) Let L be a language of finite structures
(without any other restrictions or axioms). Then the class of linearly
ordered L-structures has the Ramsey property.

e (Ramsey degree arithmetic) The Ramsey degree of an object is a
multiple of its number of automorphisms.

e (Ramsey’s Theorem) Va,b,r € w : Jc € w : ¢ — ()¢ in (w, <).
Equivalently we can consider order-preserving embeddings between
linearly-ordered finite sets.

o (Generalized Hales-Jewett) For every finite set S, Va,b,r € w :
de€ew:c— ()2 in HI(S).
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Problem 15. Flow-related conjecture (suggested by Robert
Sdmal)
Source: DeVos (with Ghanbari, Sdmal).

A bisection of a graph is a decomposition of the vertex set in
two sets of the same size. We will call subsets of one of these sets
momnochromatic.

Conjecture: Every 4-edge-connected 5-regular graph G has a bi-
section so that every monochromatic component has at most one
cycle.

e For integer k > 3, a nowhere-zero k-flow (k-nzf) in a digraph is
a mapping ¢ : E(G) — Z that is a flow — so that at every vertex,
flow in equals flow out, formally, for every v

S oewn)= Y ew).

ueENT(v) u€N~ (v)

Moreover, for every edge e € E(G) we have 1 < |p(e)] < k — 1.

e For a real r > 2, a circular nowhere-zero r-flow (r-cuzf for short)
in a digraph is an assignment f : E — [—(r — 1),—-1] U [1,r — 1]
such that f is a flow in G.

o A k-weak bisection of a cubic graph G is a partition of the vertex-
set of GG into two parts Vi and V5 of equal size, such that each
connected component of the subgraph of G induced by V; (i = 1, 2)
is a tree of at most k — 2 vertices.

e A bisection (V1,V3) of a graph G is an r-strong bisection if for
every set of vertices X C V the number of edges leaving X is
> ZolvinX| - Ve X]|

e Note that an r-strong bisection is also a |r]-weak bisection.

e [EMT, J] Let r > 3 be a real number. A cubic graph G = (V, E)
admits an circular r-nowhere-zero flow if and only if there exists a
r-strong bisection.

e So if a cubic bridgeless graph G has a 5-nowhere-zero flow (as
Tutte conjectures is true for all such graphs), it also has a 5-strong
bisection, and thus also a 5-weak partition.
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e [EMT] prove this conclusion directly.
e The above mentioned conjecture is related in similar way to Tutte’s
3-flow conjecture (every 4-edge-connected graph G has a 3-nzf).

References:
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Problem 16. Slice-wise complexity of scramble number
(suggested by Josse van Dobben de Bruyn)

Source: Posed by Echavarria et. al. [2, Question 3.6]; see also [3, Ques-
tion 5.5], [4, Question 6.4].

Throughout this problem, we assume that all graphs are finite,
undirected, simple, and connected, with n vertices and m edges.

We say that a vertex set E C V(G) is connected if the induced
subgraph G[E] is connected. We follow the common convention that
the empty set is not connected.

Recall that a cut (T,7°) in G is a partition of V(G) into two
disjoint non-empty vertex sets T,7¢ C V(G). The size of a cut
(T, T¢), denoted |E(T,T°)|, is the number of edges between T and
Te.

Definitions ([1]).

e A scramble in a graph G is a non-empty collection S = {E1, ..., Es}
of connected vertex sets E,...,Es C V(G). The sets Fy, ..., Ej
are called the eggs of the scmmbleﬂ

o Let S ={En,...,Es} be a scramble. A hitting set for S is a vertex
set C C V(Q) that contains at least one vertex from each egg E;
of 8. The hitting set number h(S) of S is the minimum size of a
hitting set for S.

o Let S ={E1,...,Es} be a scramble. An egg cut for S is a cut
(T, T°) such that there exists eggs E; C T and E; C T°. The egg
cut number e(S) of S is the minimum size of an egg cut (oo if no
egg cut erists).

e The order of a scramble is defined as ||S| := min(h(S),e(S)).
Note that ||S]| < h(S) < n.

e The scramble number sn(G) of a graph G is the mazimum order
of a scramble in G.

2The terminology, introduced in [1], is a bad pun on the notion of brambles
and bags.
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Examples:

e For every (connected) graph G, the set S = {V(G)} is a scramble
with h(S) =1 and e(S) = oo. Thus, sn(G) > 1 for all G.

e For every graph G, the set £(G) = {{u,v} | wv € E(G)} is a
scramble in G, called the edge scramble of G [2, §3]. The hitting sets
for this scramble are precisely the vertex covers of G, so we have
hE(GR)) =n — a(G). The egg cut number of £(G) is the minimum
size of a cut (T, T°) such that both T and T° contain at least one
edge, which is typically smaller than n—a/(G). If §(G) > [ 5 |+1, then
this scramble has order n — a(G) and is optimal [2, Corollary 3.2].
o If G is a tree, then we claim that every scramble has order 1. If
h(S) = 1, then we are done, so assume h(S) > 1. Let D be the
directed graph obtained from G by replacing every edge uwv € E(QG)
by two arcs (u,v), (v,u) € A(D). Consider the directed subgraph
D’ C D consisting of all arcs (u,v) such that the connected com-
ponent of G — uv containing v contains an egg E;. Since h(S) > 1,
every vertex u € V(G) misses at least one egg, so the outdegree of
every vertex of D’ is at least 1. Therefore, D’ has at least n arcs.
Since G has n — 1 edges, it follows that there is an edge uwv € E(G)
such that both (u,v) and (v,u) belong to D’. Now the edge uv
forms an egg cut of size 1, so we have e(S) = 1. Hence, ||S| = 1.

e If G contains a cycle C, then sn(G) > 2. Indeed, choose three
distinct vertices u, v, w on the cycle C, and edge-partition the cycle
as C = Py o) U Py ) U P, where P, denotes the path along
the cycle from z to y. Then the scramble

S= {V(P[u,v])v V(P[v,w])v V(P[w,u])}

satisfies A(S) = 2 and e(S) = oo, so ||S|| = 2. This is illustrated in
Figure 5 below.

e Combining the preceding two examples, we see that sn(G) =1
if and only if G is a tree. Using more advanced properties of the
scramble number, a one-line proof of this fact can be given; see
[1, Corollary 4.2].

e For a more advanced example, let G, ,, denote the m x n grid
graph with rows Ry, ..., Ry, € V(Gp,n) and columns Cy,...,C, C
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Figure 5: Every cycle gives rise to a scramble of order 2.
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Figure 6: Three eggs of the scramble S in the grid graph G46. (The
scramble contains all possible unions of a row and a column.)

V(Gm,n). Consider the scramble & = {R; UC; | (i,7) € [m] x
[n]}, illustrated in Figure 6 below. Then hA(S) = min(m,n) and
e(8S) = 00, so ||S|| = min(m,n). This can be shown to be optimal
[1, Proposition 5.2].

e A bramble is a scramble B with the additional property that
E; U E; is connected for all E;, E; € B. The (bramble) order of a
bramble B is defined to be the hitting set number h(B). If B is a
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bramble of order k, then the scramble order of B is either K — 1 or k
[1, Lemma 3.6]. If B is a bramble such that E; N E; # @ for all
E;, E; € B, then the bramble order of B equals the scramble order
of B [1, Lemma 3.5]. (Brambles play an important role in the theory
of treewidth.)

For this problem, we focus on the (slice-wise) computational
complexity of the scramble number.

Definitions.

e The decision problem SCRAMBLE NUMBER takes as input a graph
G and an integer k and asks whether or not G admits a scramble
of order at least k; that is, whether or not sn(G) > k.

e For a fized integer k > 1, the decision problem k-SCRAMBLE takes
as input a graph G and asks whether or not G admits a scramble of
order at least k; that is, whether or not sn(G) > k.

Note the subtle but important difference between SCRAMBLE
NUMBER and k-SCRAMBLE: the first considers k to be part of
the input, whereas the second considers k to be a constant. By
comparison, the problems VERTEX COVER, INDEPENDENT SET,
DOMINATING SET, and CHROMATIC NUMBER are all NP-hard
when k is part of the input, but the first three become polynomial
time solvable when k is fixed, whereas k-COLOURING is still NP-hard
when k > 3 is fixed.

In [2], the authors prove that SCRAMBLE NUMBER is coNP-
hard, using a polynomial-time reduction from INDEPENDENT SET.
The more interesting problem of determining the complexity of
k-SCRAMBLE is left open.

Main Question ([2, Question 3.6]; see also [3, Question 5.5],
[4, Question 6.4]): For fixed k, can the problem k-SCRAMBLE be
solved in polynomial time, or is it still NP-hard (or in between)?

The problems 1-SCRAMBLE and 2-SCRAMBLE are trivially in P,
since we have sn(G) > 1 for all graphs G, and sn(G) > 2 if and
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only if G has a cycle. It was proved in [3] that a graph G satisfies
sn(G@) > 3 if and only if G contains one (or several) of the four
graphs depicted in Figure 7 as a topological minor. Therefore, 3-
SCRAMBLE is also in P. For k > 3, it was proved that no such finite
list of forbidden topological minors exists [3, Theorem 1.2]. The
Main Question is currently still open for all k& > 3.

NESYAYGT:

C3:22.1

Figure 7: The four forbidden topological minors for sn(G) < 3.

If k-SCRAMBLE is in P for all &, then a natural follow-up question
would be whether or not SCRAMBLE NUMBER is fixed parameter
tractable when parameterized by k [4, Question 6.4].

Related results:

o If H is a subgraph of G, then sn(H) < sn(G) [1, Proposition 4.5].
o If G’ is a subdivision of G, then sn(G’) = sn(G) [1, Proposition 4.6].
e The scramble number is not minor-monotone [1, Example 4.4].

e If sn(G) < 3, then an optimal scramble exists whose eggs are
pairwise disjoint [3, Proposition 5.2], but this is not true for larger
scramble number.

e The scramble number is lower bounded by the treewidth and
upper bounded by the divisorial gonality of the graph: tw(G) <
sn(G) < dgon(G) [1]. This is the main motivation for studying the
scramble number: it is currently the best known lower bound on
the divisorial gonality, a graph parameter that has its origins in
algebraic geometry [5,6] and has connections with structural graph
theory [7] and parameterized complexity [8].
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e For all k > 2, there exist graphs Gy such that tw(Gy) = 2
and sn(Gy) = k [1, Example 4.8], as well as graphs Hj, such that
sn(Hy) = 2 and dgon(Hy) = k [1, Example 4.9]. In other words,
treewidth, scramble number, and divisorial gonality can be arbitrar-
ily far apart.

e For fixed k, it can be decided in linear time whether or not
tw(G) < k [9], and in polynomial time whether or not dgon(G) <
k [10]. But scramble number seems to be somehow harder.

e | have a proof that k-SCRAMBLE is in NP for all k, using a
polynomial time reduction to an instance of SAT (unpublished).
Note: I am reducing to SAT, not from SAT, so this does not prove
hardness.

e Treewidth is both the largest order of a bramble (minus one) and
the smallest width of a tree decomposition. A similar width parame-
ter has been defined for the scramble number, called screewidth [11].
However, one only has sn(G) < sw(G); equality does not always
hold. Tt is an open problem whether or not sw(G) < dgon(G) for
all graphs G [11, Question 5.1].
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