
KAMAK 2024
Erlebachova Bouda, Špindlerův

Mlýn

September 22 – 27

Charles University, Prague

Organizers:

David Mikšaník
Robert Šámal
Tung Anh Vu

Brochure of open problems,
Prague, 2024.

Contents

Planar graph orientation (Sudatta Bhattacharya) 1

Non-repetitive coloring of Planar graphs (Sudatta
Bhattacharya) 2

Are Various Regular Restrictions of Resolution over
Parities the Same? (Pavel Koblich Dvořák) 3

Min/Max label process on vertex copy graphs (Tomáš
Hons) 6

Maximizing entropy of vertex copy graphs (Tomáš
Hons) 8

Constructing Verifiable Memory-Hard Functions
(Charlotte Hoffmann) 10

On extractability of pairing-based polynomial commit-
ments (Pavel Hubáček) 12

Condition for independent transversals in
tripartite graphs (Karolína Hylasová) 13

Beyond 1-2-3 Conjecture (Tereza Klimošová) 14

i

Improving the bounds on ex(n, P 1342
5) (Gaurav

Kucheriya) 16

List packing coloring (David Mikšaník) 17

Construction of constant gap sequences (Daniela
Opočenská) 20

Graphs with full-support equilibrium (Lluís Sabater
Rojas) 24

Improper (1,1)-coloring of planar graphs of girth 6
(Felix Schröder 26

Sunflower Recognition of Interval Graphs (Peter
Stumpf) 28

Flow reconfiguration (Robert Šámal) 30

Shortest coordinated paths for two robots (Tung Anh
Vu) 32

Reconstructing your string (Hadi Zamani) 33

ii

OPEN PROBLEMS

Problem 1. Planar graph orientation (suggested by Su-
datta Bhattacharya)

Source: Suggested by Ben Moore.

Definitions.
• The orientation of a graph refers to the process of assigning a
direction to the edges of an undirected graph, transforming it into
a directed graph (also called a digraph).

Question: Is it true that every planar graph has an orientation
with maximum outdegree 4 and no directed odd cycles.

Related results:
• Every planar graph has an orientation with maximum outdegree 5
with no directed cycles.
• Every planar graph has an orientation with maximum outde-
gree 3.
• Every planar graph has an orientation with maximum outdegree 4
such that the number of directed odd cycles is not equal to the
number of directed even cycles.

1

Problem 2. Non-repetitive coloring of Planar graphs (sug-
gested by Sudatta Bhattacharya)
Source: Proposed by Jaroslaw Grytczuk in 2019.

Definitions.
• A coloring of a graph G is any function from the set of vertices
to some alphabet Σ. The language L(G) of a colored graph G is the
set of all words that appear on simple paths of G.
• A square is a word of the form XX, where X is any nonempty
word.
• A coloring of a graph is square-free if L(G) does not contain
squares.
• The non-repetitive chromatic number of a graph G, denoted by
π(G) is the least number of colors needed for a square-free coloring
of G.

Example:
π(C5) = 4.

Question: Conjectured by Jaroslaw Grytczuk: There is a number
k such that every planar graph has a 4-coloring such that L(G)
does not contain squares of length greater than k.

Related results:
• If G is a path, then π(G) ≤ 3. This was shown by Axel Thue in
1906.
• Every path graph P has a 2-coloring such that L(P) does not
contain squares of length greater than 4.
• For any planar graph G, 11 ≤ π(G) ≤ 768.

References:
• Nonrepetitive Graph Colouring, by David R. Wood, 2020.
• Planar graphs have bounded nonrepetitive chromatic number by
Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak,
David R. Wood, 2019.
• Infinite words containing the minimal number of repetitions by
Golnaz Badkobeh, 2013.

2

Problem 3. Are Various Regular Restrictions of Resolu-
tion over Parities the Same? (suggested by Pavel Koblich
Dvořák)

A proof in a propositional proof system starts from a set of
clauses Φ, called axioms, that is purportedly unsatisfiable. It gen-
erates a proof by deriving the empty clause from the axioms, using
inference rules. If we can derive the empty clause from the original
set Φ then it proves the set Φ is unsatisfiable.

Resolution over parities (Res(⊕)) is a generalization of the stan-
dard resolution, using linear clauses (disjunction of linear equations
in F2) to express lines of a proof. It consists of two rules:

Resolution Rule: From linear clauses A∨(ℓ = 0) and B∨(ℓ = 1)
derive a linear clause A ∨B.

Weakening Rule: From a linear clause A derive a linear clause
B that is semantically implied by A (i.e., any assignment
satisfying A also satisfies B).

We can represent a Res(⊕) refutation Π of a contradiction Φ
as a DAG G(Π,Φ), where each node is labeled by a linear clause,
sources are labeled by clauses of Φ, and G has exactly one target
t and t is labeled by the empty clause. Nodes with two parents
represent the application of the resolution rule, and nodes with
exactly one parent represent the application of the weakening rule.

If we change the direction of all edges of G(Π,Φ) and “negate”
all labels of the nodes G(Π,Φ) we get a structure that is called an
affine DAG G:
• Each node v is associated with an affine space Av ⊆ Fm

2 .
• For every node v with two children u and w, it holds that Au = A0

v

and Aw = A1
v, where Ac

v = {x ∈ Av | ⟨fv, x⟩ = c} for a linear query
fv = F2 and c ∈ {0, 1}.
• For every node v with exactly one child u is called a forget node,
it holds that Av ⊆ Au.

3

• For the root r, it holds Ar = Fn
2 , where n is the number of

variables of Φ.
• Each target t is associated with a cube Ct such that all elements
of Ct falsify one clause of Φ.

Thus, the affine DAG G computes a search problem Search(Φ)
where given an assignment α ∈ {0, 1}n of the variables of Φ, one
needs to find a clause of Φ that is falsified by α (such clause always
exists as we assume that Φ is a contradiction).

There are several notions of regularity for Res(⊕) in the litera-
ture [1, 2].

Definitions.
• Let v be a node of an affine DAG G. Let Pre(v) be the space
spanned by all linear functions queried on any path from the source
of G to v. Let Post(v) be the space spanned by all linear functions
queried on any path from v to any sink of G.
• Let Π be a Res(⊕) refutation of Φ and G be the affine DAG
corresponding to Π.

• The refutation Π is bottom-regular if for each edge (v, u) of
G such that v is a query node holds that fv ̸∈Post(u).

• The refutation Π is top-regular if for each query node v of G,
we have fv ̸∈Pre(v).

• The refutation Π is strongly regular if for each query node v
of G, we have Pre(v)∩Post(v) = {0}.

Questions:

1. Are the various regular fragments of Res(⊕) equivalent, or
strongly regular Res(⊕) is weaker than bottom-regular or top-
regular?

2. Are bottom-regular and top-regular Res(⊕) equivalent?

Related results:
• There are several lower bounds for bottom-regular Res(⊕) [2, 3, 4],

4

• There is a lower bound for strongly regular affine DAG for a
function (not for a search problem) [1].

References:
[1] S. Gryaznov, P. Pudlák, and N. Talebanfard. Linear branching
programs and directional affine extractors, CCC ’22.
[2] K. Efremenko, M. Garlík, and D. Itsykson. Lower bounds for
regular resolution over parities, STOC ’24.
[3] S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák. Expo-
nential Separation Between Powers of Regular and General Reso-
lution Over Parities, CCC ’24.
[4] Y. Alekseev and D. Itsykson. Lifting to regular resolution over
parities via games, ECCC ’24.

5

Problem 4. Min/Max label process on vertex copy graphs
(suggested by Tomáš Hons)

Definitions.
• Fix p ∈ [0, 1]. A vertex copy graph on n vertices with copy-
ing probability p, denoted by Gn(p), is the following random graph.
The graph G1(p) is the single-vertex graph ({v1}, ∅). For n ≥ 1,
the graph Gn(p) is created from Gn−1(p) by the steps: (i) pick a
vertex v of Gn−1(p) uniformly at random, (ii) add a new vertex vn
to Gn−1(p), (iii) for each neighbor u of v add the edge vnu inde-
pendently at random with probability p, (iv) add the edge vnv. The
resulting graph is Gn(p).
• Consider a sequence of graphs G1, G2, . . . that are subsequently
built when iterating the vertex copy mechanism, i.e. V (Gn) =
{v1, . . . , vn}. Give label 0 the first vertex v1. When the vertex vn is
introduced in Gn, it gets a new label determined as the minimum of
its neighbors’ labels (in Gn) increased by 1. This process is called
the MinLabel process.
• If instead of the minimum of neighbors’ labels, we take their max-
imum and increase it by 1, we speak of the MaxLabel process.
• In both processes, we are interested in the maximum label assigned
to a vertex. For a particular vertex copy graph G, we denote by
m(G) the maximum label by the MinLabel process. Similarly,
M(G) stands for the maximal label assigned by the MaxLabel
process.
• For the random vertex copy graph Gn(p), we denote by mn(p) the
expected value of m(G) over all realizations of Gn(p). We analo-
gously define Mn(p) as the expectation of M(G).

Examples:
• The graph Gn(1) is (deterministically) the clique on n vertices,
so mn(1) = 1 and Mn(1) = n− 1.
• Each realization G of Gn(0) is a tree. Thus, m(G) = M(G) =
max{dist(v, v1) : v ∈ V (G)} for each G. Moreover, the random

6

graph Gn(0) is exactly the Random Rrecursive Tree on n vertices,
whose expected depth is known to be e · log n [1]. That is, mn(0) =
Mn(0) = e · log n.

Question: How does the asymptotics of mn(p) and Mn(p) depend
on p?

Motivation and related results:
• The graphs produces by the vertex copy mechanism are known as
dismantlable graphs, which are exactly those graphs where a single
Cop can capture a Robber in a certain pursuit-evasion game. Thus,
they are also known as cop-win graphs [2].
• The greater goal of this project is to examine vertex copy graphs
as a useful model of random cop-win graphs with nontrivial distri-
bution of the parameter called capture time, which is the maximum
time that the Cop needs to capture the Robber on the given graph
[3]. It is not difficult to show that the capture time of G can be
bounded from below by m(G)/2 and from above by M(G).
• By our best knowledge, the only distribution on cop-win graph
that was studied is the restriction of Erdős-Rényi model. It turns
out that such cop-win graphs have a.a.s. a universal vertex [4].
Therefore, they trivially have the capture time equal to 1, which
makes them quite boring from this perspective.

References:
[1] Random recursive tree. (2024, January 9). Wikipedia, the free
encyclopedia.

https://en.wikipedia.org/wiki/Random_recursive_tree
[2] Cop-win graph. (2023, May 23). Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Cop-win_graph
[3] Bonato, A., Golovach, P., Hahn, G., & Kratochvíl, J. (2009).
The capture time of a graph. Discrete Mathematics, 309(18), 5588-
5595.
[4] Bonato, A., Kemkes, G., & Prałat, P. (2012). Almost all cop-win
graphs contain a universal vertex. Discrete Mathematics, 312(10),
1652-1657.

7

https://en.wikipedia.org/wiki/Random_recursive_tree
https://en.wikipedia.org/wiki/Cop-win_graph

Problem 5. Maximizing entropy of vertex copy graphs
(suggested by Tomáš Hons)

Definitions.
• Fix p ∈ [0, 1]. A vertex copy graph on n vertices with copy-
ing probability p, denoted by Gn(p), is the following random graph.
The graph G1(p) is the single-vertex graph ({v1}, ∅). For n ≥ 1,
the graph Gn(p) is created from Gn−1(p) by the steps: (i) pick a
vertex v of Gn−1(p) uniformly at random, (ii) add a new vertex vn
to Gn−1(p), (iii) for each neighbor u of v add the edge vnu inde-
pendently at random with probability p, (iv) add the edge vnv. The
resulting graph is Gn(p).
• Let α be a probability distribution on a set Ω. The entropy H(α)
of α is defined as −

∑
x∈Ω α(x) · log2 α(x).

Examples:
• The graph Gn(1) is (deterministically) the clique on n vertices,
Gn(0) is the Random Recursive Tree on n vertices [1].
• Note that for all p ∈ (0, 1) is the set of possible realizations of
Gn(p) the same, but the probabilities differ.

Question: Which p ∈ (0, 1) maximizes the entropy of Gn(p) as n
tends to infinity?

Motivation and related results:
• The graphs produces by the vertex copy mechanism are known as
dismantlable graphs, which are exactly those graphs where a single
Cop can capture a Robber in a certain pursuit-evasion game. Thus,
they are also known as cop-win graphs [2].
• The greater goal of this project is to examine vertex copy graphs
as an useful model of random cop-win graphs. We essentially ask
which of the Gn(p) models (for different p) is the most rich.

References:
[1] Random recursive tree. (2024, January 9). Wikipedia, the free
encyclopedia.

https://en.wikipedia.org/wiki/Random_recursive_tree

8

https://en.wikipedia.org/wiki/Random_recursive_tree

[2] Cop-win graph. (2023, May 23). Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Cop-win_graph

9

https://en.wikipedia.org/wiki/Cop-win_graph

Problem 6. Constructing Verifiable Memory-Hard Func-
tions (suggested by Charlotte Hoffmann)

Source: Not explicitly proposed by anyone. Got the idea when
reading [1].

Definitions.
• The cumulative memory complexity (CMC) of an algorithm is
the sum of its memory consumption at every point in time, i.e., the
area under the memory usage curve.
• A memory-hard function (MHF) is a function that requires a lot
of CMC to evaluate.
• A verifiable memory-hard function is an MHF with an output
that, possibly given a proof, can be verified with much less CMC
than needed to evaluate it.

Example:
[2] is an example of a memory-hard function.
[1] is a memory-hard function that can be verified using a trapdoor.

Question: Can we construct a memory-hard function that does
not require a trapdoor to be verified?

Related results:
• One starting point might be the verifiable delay function (VDF)
by Pietrzak [3] since computing the proof of the VDF can be sped
up by storing a lot of group elements. Computing the proof of
the VDF can therefore be seen as a verifiable MHF with very bad
parameters. We could try to improve this.

10

Bibliography

[1] Auerbach, B., Günther, C.U., Pietrzak, K. (2024). Trapdoor
Memory-Hard Functions. In: Joye, M., Leander, G. (eds) Ad-
vances in Cryptology – EUROCRYPT 2024. EUROCRYPT
2024. Lecture Notes in Computer Science, vol 14653. Springer,
Cham.

[2] Percival, Colin. Stronger key derivation via sequential memory-
hard functions. In BSDCan 2009, 2009.

[3] Pietrzak, Krzysztof. Simple Verifiable Delay Functions. IACR
Cryptol. ePrint Arch. 2018 (2018): 627.

11

Problem 7. On extractability of pairing-based polyno-
mial commitments (suggested by Pavel Hubáček)

Source: Recent papers by Helger Lipmaa and his coauthors.

Lipmaa, Parisella, and Siim (EUROCRYPT 2024) gave the first
meaningful proof for extractability of the KZG polynomial com-
mitment scheme by Kate, Zaverucha, and Goldberg (ASIACRYPT
2010). For their proof, they introduced and used a computational
hardness assumption they call the Adaptive Rational Strong Diffie-
Hellmann (ARSDH) assumption. However, the ARSDH assump-
tion seems highly tailored to the specifics of the univariate variant
of the KZG scheme, and, thus, the proof of extractability from
Lipmaa et al. does not apply to other variants of the KZG polyno-
mial commitment that have been proposed in the literature since
its introduction.

Question: Can we prove extractability of all the known variants of
the KZG polynomial commitment under the ARSDH assumption?

References:
• Helger Lipmaa, Roberto Parisella, Janno Siim: Constant-Size zk-
SNARKs in ROM from Falsifiable Assumptions. IACR Cryptol.
ePrint Arch. 2024: 173 (2024) https://eprint.iacr.org/2024/173
• Helger Lipmaa, Roberto Parisella, Janno Siim: On Knowledge-
Soundness of Plonk in ROM from Falsifiable Assumptions. IACR
Cryptol. ePrint Arch. 2024: 994 (2024) https://eprint.iacr.org/
2024/994
• Aniket Kate, Gregory M. Zaverucha, Ian Goldberg: Constant-
Size Commitments to Polynomials and Their Applications. ASI-
ACRYPT 2010: 177-194

12

Problem 8. Condition for independent transversals in
tripartite graphs (suggested by Karolína Hylasová)

Definitions.
• Let G be a graph with maximum degree ∆ whose vertex set is
partitioned into parts V (G) = V1∪· · ·∪Vn. A transversal is a subset
of V (G) containing exactly one vertex from each part Vi. If this set
is also independent, then it is called an independent transversal.

Question:
It was proved [1] that for bipartite graph G = (VA∪VB , E) in which
any vertex in VA (resp. in VB) has degree at most DA (resp. DB)
and for which there is a partition of V that is a refinement of the
bipartition VA∪VB such that each part in VA (resp. VB) has size at
least kA (resp. kB) the condition DA/kA+DB/kB ≤ 1 is sufficient
for the existence of an independent transversal of G.
Is there a similar condition for tripartite graphs?

Related results:
• For DA = DB , kA = kB the condition for the existence of an
independent transversal in the bipartite grpah gives the optimal
condition proved by Penny Haxell [2]:

Theorem 1. If G is a graph with maximum degree at most ∆
whose vertex set is partitioned into parts V (G) = V1 ∪ V2 ∪ · · · ∪ Vr
of size |Vi| ≥ 2∆, then G has an independent transversal.

References:

[1] Cambie, S., Haxell, P., Kang, R., and Wdowinski, R. A pre-
cise condition for independent transversals in bipartite covers.
Proceedings of the 12th European Conference on Combinatorics,
Graph Theory and Applications 9 (2023), pp. 263-269.

[2] Haxell, P. A note on vertex list colouring. Combinatorics, Prob-
ability and Computing 10 (2001), pp. 345–347.

13

Problem 9. Beyond 1-2-3 Conjecture (suggested by Tereza
Klimošová)

Source: Proposed by Przybyło and Woźniak in 2010.

Inspired by a recent proof of the 1-2-3 conjecture I propose to
work on one (or more) of its variants. The 1-2-3 conjecture, now
theorem, states the following.

Theorem 2 (Keusch’24). Let G = (V,E) be a graph without con-
nected components isomorphic to K2. Then there exists an edge-
weighting f such that for each edge {u, v}, f({u, v}) ∈ {1, 2, 3} and∑

w∈N(u)

f({u,w}) ̸=
∑

w∈N(v)

f({v, w}).

That is, one can always assign weights from the set {1, 2, 3} to
the edges of G in such a way, that if you label the vertices of G
by the sum of weights of incident edges, you get a proper vertex
coloring. Such weighting is called neighbor distinguishing.

A k-total-weighting of a graph G is an assignment of an integer
weight, f(e), f(v) ∈ {1, . . . k} to each edge e and each vertex v of
G. Przybyło and Woźniak [4] conjectured the following

Conjecture: Every simple graph permits a neighbour-distinguishing
2-total-weighting.

The conjecture holds when G is a 3-colourable, complete or 4-
regular graph [4].

The following theorem is actually a simple corollary of Keusch’s
theorem, but there is a short stand-alone proof of it in the survey [1].

Theorem 3 (Kalkowski’09). Every graph has a neighbor distin-
guishing weighting with vertices with weights from the set {1, 2}
and edges with weights from the set {1, 2, 3}.

14

References:
[1] Jarosław Grytczuk: From the 1-2-3 conjecture to the Riemann
hypothesis, European Journal of Combinatorics, Volume 91, 2021.
[2] Maciej Kalkowski: A Note on the 1, 2-Conjecture, Ph.D. Thesis
(2009).
[3] Ralph Keusch: A solution to the 1-2-3 conjecture, Journal of
Combinatorial Theory, Series B, Volume 166, 2024, 183–202.
[4] Jakub Przybylo, Mariusz Woźniak: On a 1, 2 Conjecture, Dis-
crete Mathematics & Theoretical Computer Science, 2010.

15

Problem 10. Improving the bounds on ex(n, P 1342
5) (sug-

gested by Gaurav Kucheriya)

Source: See the reference below.

Definitions.
• An edge-ordered graph is a pair (G,<), where G = (V,E) is a
finite simple graph and < is a linear order on E given by some
injective labeling L : E → R. The so obtained edge-ordered graph
is denoted by GL.
• For a positive integer n and an edge-ordered graph H, the Turán
number of H is the maximal number of edges an edge-ordered graph
on n vertices can have such that it avoids H. Let this maximum be
denoted by ex(n,H). For a fixed H this is a function of n, called
the extremal number of H.
• Let Pk be the path on k vertices. The edge-ordered path PL

k is
called a monotone path if the labels increase or decrease monoton-
ically along the path.

Question: The order of magnitude of the extremal numbers for all
4-edge-ordered paths are known except for ex(n, P 1342

5). Gerbner
et al. have proved ex(n, P 1342

5 = Ω(n log n) and ex(n, P 1342
5 =

O(n log2 n). Is ex(n, P 1342
5) = Θ(n log n)?

Related results:
• Let P be an edge-ordered path with a vertex v that cuts it into two
monotone paths P ′ and P ′′, such that all labels of P ′ are smaller
than all labels of P ′′. Then ex(n, P) = O(n log n).

References: D. Gerbner, A. Methuku, D. Nagy, D. Pálvölgyi,
G. Tardos, M. Vizer. Turán problems for Edge-ordered graphs.
arXiv:2001.00849 (Preliminary version appeared in Acta Math. Univ.
Comenianae, Vol. 88, 3, 717-722 (2019))

16

https://arxiv.org/pdf/2001.00849.pdf

Problem 11. List packing coloring (suggested by David
Mikšaník)

Definitions. Let G be a graph.
• k-list assignment for G is a function L : V (G) → 2N such that
|L(v)| = k for every vertex v ∈ V (G).
• L-coloring of G is a function φ : V (G) → N such that

(i) φ(v) ∈ L(v) for every vertex v ∈ V (G) and

(ii) φ(u) ̸= φ(v) for every edge {u, v} ∈ E(G).

• L-packing of G is a set {φ1, . . . , φk} of mutually disjoint L-
colorings of G, that is φi(v) ̸= φj(v) for every i ̸= j and every
vertex v ∈ V (G).
• List chromatic number of G, denoted by χℓ(G), is the smallest k
such that G admits an L-coloring for every k-list assignment L.
• List packing number of G, denoted by χ⋆

ℓ (G), is the smallest k
such that G admits an L-packing for every k-list assignment L.

Examples:
• χℓ(G) ≤ χ⋆

ℓ (G)
• χ⋆

ℓ (G) ≤ |V (G)|, and the inequality become an equality if and
only if G is a complete graph (no short proof of this fact is known)
• χ⋆

ℓ (Cn) = 3 for every n ≥ 3

Question 1: Is it possible to find a graph G satisfying χ⋆
ℓ (G) >

χℓ(G) + 1? (Source: [1])

Related results:
• A negative answer would imply a major conjecture in this area,
which says that the list packing number is linearly bounded by
the list chromatic number [2]. The best known upper bound is
exponential [2]. Not only for this reason do we expect a positive
answer.

Question 2: Let G be a planar bipartite 3-regular graph. Is it
possible to find an L-packing of G for any 3-list assignment L?

17

(Source: Stijn Cambie at Workshop on Cycles and Colourings 2024,
in more generality also in [3])

Related results:
• It should be possible to find at least two disjoint L-colorings of
G [personal communication with Stijn Cambie].
• Alon and Tarsi proved that every planar bipartite graph G sat-
isfies χℓ(G) ≤ 3 [4]. An affirmative answer to Question 2 would
generalize the theorem for planar bipartite 3-regular graphs.
• Question 2 remains open if the 3-regularity assumption is omitted
[3].

Question 3: Let G be a planar graph and k ∈ {5, 6, 7}. Is it
possible to find at least k−3 disjoint L-colorings of G for any k-list
assignment L? (Source: David Mikšaník)

Related results:
• Since χ⋆

ℓ (G) ≤ 8 [4], it is possible to find 8 disjoint L-colorings
for any 8-list assignment L.
• Although there are exponentially many L-colorings of G for any
5-list assignment L [5], we do not know how to find two disjoint L-
colorings. For a 6-list assignment L, it is trivial to find two disjoint
L-colorings, but we do not know how to find three of them.
• It is an open question whether the upper bound on the list packing
number of planar graphs can be improved to 5.

References:
[1] S. Cambie, W. Cames van Batenburg, E. Davies, and R. J.
Kang: List packing number of bounded degree graphs. https://
arxiv.org/abs/2303.01246 (2023)
[2] S. Cambie, W. Cames van Batenburg, E. Davies, and R. J.
Kang: Packing list-colorings. Random Structures & Algorithms,
Vol. 64 (1), pp. 62–93 (2024)
[3] S. Cambie, W. Cames van Batenburg, and X. Zhu: Disjoint list-
colorings for planar graphs. https://arxiv.org/abs/2312.17233
(2023)

18

https://arxiv.org/abs/2303.01246
https://arxiv.org/abs/2303.01246
https://arxiv.org/abs/2312.17233

[4] N. Alon and M. Tarsi: Colorings and orientations of graphs.
Combinatorica, Vol. 12 (2), pp. 125–134 (1992)
[5] C. Thomassen: Exponentially many 5-list-colorings of planar
graphs. Journal of Combinatorial Theory, Series B, Vol. 97 (4), pp.
571–583 (2007)

19

Problem 12. Construction of constant gap sequences
(suggested by Daniela Opočenská)
Source: An equivalent problem was introduced by Paul Erdős in
the early 1930s under the name exact covering systems, more info
can be found in [3]. We met constant gap sequences when solving
problems in combinatorics on words [1]. An efficient way of con-
struction of constant gap sequences plays an important role there
and seems to be an unsolved problem.

Definitions.
• An alphabet A is a finite set of symbols that are called letters.
• A sequence over an alphabet A is an infinite sequence of letters
from the alphabet, we write y = y0y1y2 · · · , where yn ∈ A for all
n ∈ N0.
• A sequence y = y0y1y2 · · · is periodic, if there exists P ∈ N such
that for all n ∈ N0, yn = yn+P . The smallest possible P fulfilling
this condition is called the period. In this case, we often write
y = (y0y1y2 · · · yP−1)

ω to symbolize infinite repetition of the first P
letters.
• A sequence y over an alphabet A is a constant gap sequence if
for each letter i ∈ A there is a positive integer denoted by pi such
that the distance between any two consecutive occurrences of i in y
is pi.
• We denote ni the first occurrence of the letter i in y.
• Let us consider k sequences over disjoint alphabets. Their shuf-
fling is a sequence obtained when reading step by step their first
letters, second letters, etc.

Example:
• All constant gap sequences are periodic.
• y = (0102)ω = 01020102 · · · is a constant gap sequence, where
the letter periods are p0 = 2, p1 = 4 = p2, the first occurrences are
n0 = 0, n1 = 1, n2 = 3 and the period is 4.
• v = (0122)ω = 012201220122 · · · is periodic but not constant gap
because of the occurences of 2.

20

• The constant gap sequence can be described by a list of pairs
(ni, pi) for all i ∈ A. For example, y = (010203)ω can be rewritten
as (0, 2), (1, 6), (3, 6), (5, 6).
• We can shuffle the constant gap sequences u = (0)ω, v = (12)ω,
w = (3435)ω to obtain a sequence over the alphabet A = {0, 1, 2, 3,
4, 5} in the form

y = (013024013025)ω.

Question: Find an algorithm to generate all constant-gap se-
quences over a given alphabet such that it works well for alphabets
with at least 13 letters.

Related results:
• Let y be a constant gap sequence over an alphabet A = {0, 1, 2, 3,
. . . , d− 1}. Then

d−1∑
i=0

1

pi
= 1.

• Let n, n′ ∈ N0, and p, p′ ∈ N. We say that (n, p) and (n′, p′) are in
collision if gcd(p, p′) divides n− n′, Let the pairs (n0, p0), (n1, p1),
. . . , (nd−1, pd−1) satisfy ni < pi for all i ∈ A, Then the pairs
(n0, p0), (n1, p1), . . . , (nd−1, pd−1) give rise to a constant gap se-
quence iff no two of them are in collision and

d−1∑
i=0

1

pi
= 1.

• The period of the letter i in the shuffling of k sequences equals k ·
p̂i, where p̂i is the period of the same letter in its original sequence.

Moreover, if there exists k ∈ N, k > 1, such that k divides pi
for all i ∈ A, then the constant gap sequence y = y0y1y2 · · · is the

21

shuffling of k constant gap sequences in the form

y0yky2ky3k · · ·
y1yk+1y2k+1y3k+1 · · ·
y2yk+2y2k+2y3k+2 · · ·
...
yk−1y2k−1y3k−1y4k−1 · · ·

Therefore a constant gap sequence over a d-letter alphabet that
cannot be generated by shuffling has gcd(p0, p1, . . . , pd−1) = 1. The
smallest d such that there exists a d-letter constant gap sequence,
which is not obtained by shuffling, is 13. The sequence is

(0213640517820314950612A30415BC)ω

which can be rewritten to offsets and periods as

letter 0 1 2 3 4 5 6 7 8 9 A B C
ni 0 2 1 3 5 7 4 9 10 16 22 28 29
pi 6 6 10 10 10 10 15 30 30 30 30 30 30

• A brute force search algorithm to find all constant gap sequences
over a d-letter alphabet, where d is user input, is described in [4].
The algorithm runs well on standard user computer up to d = 12,
but the computational complexity becomes too much for bigger
alphabets.
• This problem is equivalent to a problem of finding an exact cov-
ering system with a given number of equivalence classes. The exact
covering system is a system of congruence classes in the form

n ≡ ni mod pi, i = 1, 2, 3, . . . , k

such that any n ∈ N0 belongs to exactly one congruence class.
The duality is as follows: There exists a constant gap sequence

defined by pairs (n0, p0), (n1, p1), . . . , (nd−1, pd−1), if and only if

n ≡ ni mod pi, i = 0, 1, . . . , d− 1

22

is an exact covering system. There are several theoretical results
concerning covering systems, some of them can be found in [2, 5, 6]

References:

[1] L. Dvořáková, D. Opočenská, E. Pelantová, Asymptotic repet-
itive threshold of balanced sequences, Mathematics of Compu-
tation, Vol. 92, (2023), pp . 1403–1429.

[2] J. Fabrykowski, T. Smotzer, Covering Systems of Congru-
ences, Mathematics Magazine, (2005), 78:3, pp. 228-231

[3] R. K. Guy, Unsolved Problems in Number Theory, Springer
Science & Business Media, (2004), pp. 386–390

[4] A. Kasalová, Konstrukce slov s konstantními mezerami
(Czech). Rozhledy matematicko-fyzikální, vol. 97 (2022), issue
3, pp. 1-12

[5] Š. Porubský, Generalization of Some Results for Exactly Cov-
ering Systems, Matematický časopis, Vol. 22 (1972), No. 3,
208–214

[6] Š. Porubský, J. Schönheim, Old and new necessary and suffi-
cient conditions on (ai,mi) in order that n ≡ ai(mod mi) be
a covering system, Mathematica Slovaca, Vol. 53 (2003), No.
4, 341–349

23

Problem 13. Graphs with full-support equilibrium (sug-
gested by Lluís Sabater Rojas)

Source: Proposed1 by David Kempe et al. in 2013 in the context
of equilibria of opinion diffusion processes.

Definitions.
• Given a vector w ∈ Rn, the mass at vertex i is the sum of weights
in the closed neighborhood of i, that is, w(N [i]) =

∑
j∈N [i] w(j).

• A graph G is infeasible if the system (A+ I)w = 1, w > 0 has no
solution. Where A is the adjacency matrix of G and w > 0 means
that every entry of w is positive. We call a solution to this system
a full-support equilibrium.

Example:
Some graphs can not have a full-support equilibrium.

Figure 1: Example of an infeasible graph.

Question: Is there any characterization for infeasible graphs?

1It was not proposed but there was no answer to the case with α = 1 in the
local model, which is equivalent to our problem.

24

Related results:
• Restatement: a full-support equilibria must satisfy w(N [u])
= 1 ∀u ∈ V
• Necessary (not sufficient) condition: N [u] ̸⊂ N [v] ∀ (u, v) ∈ E

− There is no full-support equilibrium for graphs that have
leaves.
• There always are full-support equilibria for k-regular graphs (cy-
cles, complete graphs...) and complete bipartite graphs (except star
graphs).
• There are graphs with multiple full-support equilibria (e.g. Kn,
C3n).

References:
David Kempe, Jon Kleinberg, Sigal Oren, and Aleksandrs Slivkins.

Selection and influence in cultural dynamics. https://doi.org/
10.1145/2482540.2482566

25

Problem 14. Improper (1,1)-coloring of planar graphs
of girth 6 (suggested by Felix Schröder)

Definitions.
• The girth of a graph is the minimum length of any cycle in the
graph.
• An improper (a, b)-coloring is a partition of the vertices of the
graph into two subgraphs A and B, such that the maximum degree
is of A is a and the maximum degree of B is b.

Example: The result cannot be generalized to girth 5, as those
graphs are not even (3,1)-colorable. For a counterexample, con-
sider a P3, each of whose vertices connects to all vertices of a P3

via 7 copies of the gadget below.

Figure 2: If the left- and rightmost vertex are in A (red) and have
3 neighbors in A outside the gadget, then this gadget cannot be
(3,1)-colored.

Question: Is every planar graph of girth 6 improperly
(1,1)-colorable?

Related results:
• Planar graphs of girth 7 have maximum average degree 14

5 and
are therefore (1, 1)-colorable by a result of Borodin, Kostochka and
Yancey [1]. The bound on the maximum average degree is tight.

26

• A recent result shows that (1,1)-colorable graphs of girth 4 have
a linear size universal point set. This is a set of 2n − 2 points
in the plane, such that every n-vertex graph of that class can be
embedded using points from the set and straight-line edges.

References:
• On 1-improper 2-coloring of sparse graphs, Borodin, Kostochka
and Yancey, Discrete Mathematics 313 (2013)
• Near-colorings: non-colorable graphs and NP-completeness, Mon-
tassier and Ochem, Electronic Journal of Combinatorics 22 (2015)
• Linear Size Universal Point Sets for Classes of Planar Graphs, Fel-
sner, Schrezenmaier, S, Steiner , SOCG 2023 Proceedings, Dagstuhl

27

Problem 15. Sunflower Recognition of Interval Graphs
(suggested by Peter Stumpf)

Source: Proposed by me in my PhD thesis this year.

Definitions.
• A sunflower (simultaneous) graph is a graph where each vertex
has a label in {0, 1, . . . , k} for some k ∈ N. We say that a sunflower
graph G encodes the graphs G1, . . . Gk where for i ∈ {1, . . . , k} graph
Gi is the subgraph of G induced by the vertices labeled with 0 or
i. We call the subgraph induced by the vertices labeled with 0 the
shared graph S.
• An intersection graph for a family F of geometric objects is a
graph where each vertex can be assigned a geometric object of F
such that the assigned objects have a non-empty intersection.
• Interval graphs are intersection graphs of intervals. That is, an
interval graph is a graph G = (V,E) where each vertex v can be
assigned an interval Iv such that two vertices u, v are adjacent if
and only if Iv ∩ Iu ̸= ∅. We call such an assignment an interval
representation of G.

Question: Given a sunflower simultaneous graph G, is it possible
to decide in linear time whether the graphs G1, . . . , Gk encoded by
G are all interval graphs?

Related results:
• In the simultaneous representation problem for interval graphs the
question is whether for multiple input graphs G1, . . . , Gk (that may
share subgraphs) there are interval representations such that each
vertex is assigned the same interval in each interval representation
(Jampani, Lubiw; JGAA, 2012). The most studied case is the sun-
flower case where the shared subgraph is the same for any pair of the
given graphs. While for many intersection graph classes (including
interval graphs (Rutter, Stumpf; ESA 2023)) linear-time algorithms
for the sunflower case are known, these algorithms assume that the
input graphs are given separately. However, by encoding the input

28

graphs with a sunflower simultaneous graph, faster times might be
possible if the shared graph S is relatively large. This motivates
the given question as a stepping stone.
• Interval graphs can be characterized by having valid clique or-
derings – orderings of their maximal cliques where for each vertex
v the cliques containing v are consecutive. Interval graphs can be
recognized by using PQ-trees to check for the existence of such a
clique ordering (for this one uses that interval graphs are chordal
and thus a list of the maximal cliques can be efficently computed)
(Booth, Lueker; JCSS, 1976).

Korte and Möhring introduced modified PQ-trees which can be
constructed incrementally, by adding the vertices of the graph one
by one (Korte, Möhring; SICOMP 1989). If modified PQ-trees can
be made to some extend persistent, such that the PQ-tree for the
shared graph can be reused for each input graph, this would support
a positive answer.

References.
• Kellogg S. Booth and George S. Lueker: Testing for the Consec-
utive Ones Property, Interval Graphs, and Graph Planarity Using
PQ-Tree Algorithms, JCSS; 1976
• Krishnam Raju Jampani and Anna Lubiw: The Simultaneous
Representation Problem for Chordal, Comparability, JGAA; 2012
• Ignaz Rutter and Peter Stumpf: Simultaneous Representation of
Interval Graphs in the Sunflower Case, ESA; 2023
• Norbert Korte and Rolf H. Möhring: An Incremental Linear-Time
Algorithm for Recognizing Interval Graphs, SICOMP; 1989

29

Problem 16. Flow reconfiguration (suggested by Robert
Šámal)

Source: Dvořák and Feghali

Question: Given two nowhere-zero 6-flows on a graph, is one al-
ways a reconfiguration of the other?

• A flow in a digraph G is a mapping φ : E(G) → A (for an abelian
group A) such that at every vertex, flow in equals flow out, that is
for every v ∑

u∈N+(v)

φ(vu) =
∑

u∈N−(v)

φ(uv).

All flows we care about are nowhere-zero (nz): φ(e) ̸= 0 for all
e ∈ E(G).
• A single-step reconfiguration is a change from φ to φ′ = φ+φK ,
where K is any cycle in the undirected graph G and φK a flow
having values ±1 along the cycle K and 0 elsewhere. (Both φ and
φ′ are nz flows.)
• A flow φ can be reconfigured to ψ if there is a sequence of singe-
step reconfigurations that transform φ to ψ (using only nz flows in
the process).
• A dual version to this is coloring reconfiguration: changing a color
of one vertex at a time.

One question is listed above. Others:
• Given a graph and an abelian group A, find an efficient algorithm
to decide, if one given nz flow can be reconfigured to another given
nz flow.
• Given a graph and an abelian group A, can any nz flow be recon-
figured to any other?
• Estimate how many steps are needed for the reconfiguration.

Generalize to flows with a given (nonzero) boundary.

30

References: [DF] Z. Dvořák, C. Feghali: Flow reconfiguration,
unpublished manuscript

31

Problem 17. Shortest coordinated paths for two robots
(suggested by Tung Anh Vu)

Let A and B be two unit-disc robots (“roombas”) moving among
polygonal obstacles O in the plane. We specify the configuration
of each robot by the coordinates of its center: When robot R is
placed with its center at the point p ∈ R2, we let R(p) denote
{x ∈ R2 | ∥x− p∥ < 1}. Our goal is to plan a collision-free motion
for the two robots from given free start configurations marked A0

and B0, to given free target configurations A1 and B1. Throughout
the motion the robots should not collide with the obstacles, nor with
one another. In a valid plan, robots may touch but they should not
overlap each other or touch obstacles.

Question 1: Give an algorithm which produces a pair of roomba
paths that minimizes the sum of paths or prove hardness of doing
so. (Source: [Abrahamsen, Halperin: Ten problems in geobotics;
arXiV 2024])

Related results:
• [Sharir, Sifrony; AMAI 1991] give an algorithm for producing
feasible paths (not necessarily optimal) in time O(n2).
• The case of no obstacles was not settled until recently by [Kirk-
patrick, Liu; CCCG 2016].
• A related problem exists where instead of round roombas we have
square roombas. Again, it is not known whether the problem is in P
or whether it is NP-hard. But [Agarwal, Halperin, Sharir, Steiger;
SODA 2024] give a PTAS for the problem.
• Additional measures of optimality exist aside from sum of paths,
e.g. makespan.

32

Problem 18. Reconstructing your string (suggested by
Hadi Zamani)

Source: Problem 92 from Ben Green’s book "100 Open Problems".

I have a string x ∈ {0, 1}n. Let x̃ be the random string obtained
by deleting bits from x independently at random with probability 1

2
(thus, for example, if n = 8 and x = 00110110, it might be the case
that x̃ = 0111, generated by deleting bits 2, 3, 5, 8.) An instance of
x̃ is called a ’trace’. How many independent traces x̃1, . . . , x̃m are
needed before one can reconstruct x with probability 0.9 ?

References:

• Best known Upper bound:
Z. Chase, New upper bounds for trace reconstruction.

• Best known Lower bound:
N. Holden and R. Lyons, Lower bounds for trace reconstruc-
tion, Ann. Appl. Probab. 30 (2020), no. 2, 503–525. (see
also Erratum to ‘Lower bounds for trace reconstruction’, Ann.
Appl. Probab. 32 (2022), no. 4, 3201–3203.

33

	Planar graph orientation (Sudatta Bhattacharya)
	Non-repetitive coloring of Planar graphs (Sudatta Bhattacharya)
	Are Various Regular Restrictions of Resolution over Parities the Same? (Pavel Koblich Dvořák)
	Min/Max label process on vertex copy graphs (Tomáš Hons)
	Maximizing entropy of vertex copy graphs (Tomáš Hons)
	Constructing Verifiable Memory-Hard Functions (Charlotte Hoffmann)
	On extractability of pairing-based polynomial commitments (Pavel Hubáček)
	Condition for independent transversals in tripartite graphs (Karolína Hylasová)
	Beyond 1-2-3 Conjecture (Tereza Klimošová)
	Improving the bounds on ex(n, P51342) (Gaurav Kucheriya)
	List packing coloring (David Mikšaník)
	Construction of constant gap sequences (Daniela Opočenská)
	Graphs with full-support equilibrium (Lluís Sabater Rojas)
	Improper (1,1)-coloring of planar graphs of girth 6 (Felix Schröder
	Sunflower Recognition of Interval Graphs (Peter Stumpf)
	Flow reconfiguration (Robert Šámal)
	Shortest coordinated paths for two robots (Tung Anh Vu)
	Reconstructing your string (Hadi Zamani)

