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Program
8:00 breakfast

9:00 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the
neighborhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. Do directed graphs constructed from
−→
P2 by

edgeless cut joins and creating twins have bounded dichro-
matic number? (suggested by Guillaume Aubian)

Source: Proposed by Bonnet, Bourneuf, Geniet, Thomassé and
Trotignon.

Definitions.
• Let D,D′ be two directed graphs.
• A k-dicolouring of D is a colouring of its vertices so that there is
no monochromatic directed cycle.
• The dichromatic number of D is the minimum integer k such that
D admits a k-dicolouring.
•
−→
P2 is the directed path on two vertices.
• Creating a twin v′ of v ∈ V (D) consists in adding a new vertex
v′ with the same inneighbours and outneighbours as v (we do not
add arcs vv′ nor v′v).
• An edgeless cut join of D and D′ is a directed graph obtained by
glueing D and D′ along a stable set of size at most two.

Question: Does the (smallest) class of directed graphs containing
−→
P2 and preserved by edgeless cut joins and creating twins have
bounded dichromatic number?

Related results:
• The directed graphs that are constructed are triangle-free.
• Creating a twin cannot increase the dichromatic number.
• If we don’t use twins, the dichromatic number is bounded (by
degeneracy).
• Finding a construction with dichromatic number > 2 would be
nice. . .
• In the undirected case, the chromatic number is unbounded.
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Reference:
Bonnet, Bourneuf, Geniet, Thomassé and Trotignon: A tamed fam-
ily of triangle-free graphs with unbounded chromatic number. 2023,
arXiv.
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Problem 2. Erdos-Gallai conjecture (suggested by
Sudatta Bhattacharya)

Source: Proposed by Erdos and Gallai in 1960’s.

Question: Prove that any n-vertex graph can be decomposed into
O(n) cycles and edges.

Related results:
• In 2014, Fox, Conlon and Sudakov [2] made the first major break-
through on this problem, showing that such a decomposition with
only O(n log log n) cycles and edges always exists.
• Recently, Bucic and Montegamory [1] in 2023 showed that any n-
vertex graph can be decomposed into O(n log∗ n) cycles and edges.

References:
[1] Matija Bucić and Richard Montgomery: Towards the Erdős-

Gallai cycle decomposition conjecture. In Proceedings of the
55th Annual ACM Symposium on Theory of Computing, pages
839–852, 2023.

[2] David Conlon, Jacob Fox and Benny Sudakov: Cycle packing.
Random Structures & Algorithms, 45(4):608–626, 2014.
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Problem 3. Kernel for Travelling Salesman Problem with
respect to Feedback Vertex Set number (suggested by
Václav Blažej)

Definitions.
• Travelling Salesman Problem (TSP) – Given a graph G with edge
costs and a budget b. Walk pays for every edge traversal its cost.
Does there exist a closed walk that visits every vertex of G but pays
at most b?
• Feedback Vertex Set (FVS) – A set of vertices X that hits all
cycles, i.e., G \ X is a forest. Feedback Vertex Set number k is
size of the minimum cardinality FVS.
• Kernelization – A preprocessing algorithm that runs in polyno-
mial time and reduces the input instance to size f(k) (for some
computable function f).
• Modulator to C – A set of vertices X of G such that G \X is in
C.

Example:
Modulator to isolated vertices is the Vertex Cover. Modulator to
trees is the Feedback Vertex Set.

Question: For TSP of input size n parameterized by FVS k, is
there a polynomial preprocessing algorithm (running in poly(n))
that reduces the input instance to size poly(k) while preserving the
answer?

Related results:
• TSP is NP-complete.
• TSP is FPT with respect to Treewidth; hence some kernel exists.
• TSP has no polynomial kernel with respect to Treewidth.
• TSP has a polynomial kernel with respect to Modulator to Stars.
• TSP has a polynomial kernel with respect to Modulator to Con-
stant Trees.
• TSP has a polynomial kernel with respect to Feedback Edge Set
number.
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References:
B., Choudhary, Knop, Schierreich, Suchý, Valla: On Polynomial
Kernels for Traveling Salesperson Problem and its Generalizations.
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Problem 4. Weak saturation of K2,2,2 (suggested by
Denys Bulavka)

Source: Proposed by Gal Kronenberg, Taísa Martins, Natasha Mor-
rison inWeak saturation numbers of complete bipartite graphs in the
clique. J. Combin. Theory Ser. A, 178:105357, 15, 2021.

Definitions.
• Given a host graph H and a pattern graph P , a graph G ⊆ H is
P weakly saturated in H if there exists an order of the edge set
H \G = {e1, . . . , ek} such that for each i ∈ [k] there exists a graph
Pi ⊆ G ∪ {e1, . . . , ei} isomorphic to P and ei ∈ Pi.
• The weak saturation number of P in H is the minimum
number of edges in a P wealy saturated subgraph of H can have.
We denote this quantity by wsat(H,P ).

Example: Upper bound for wsat(Kn,K2,2,2).

Question: Determine wsat(Kn,K2,2,2).

Related results:
The following are known with the host graph being the clique:
• wsat(Kn,Kr+2) = rn−

(
r+1

2

)
.

• wsat(Kn,Kr+1,r+1) = rn−
(
r+1

2

)
.

• wsat(Kn,Kr+1,r+2) = rn−
(
r+1

2

)
+ 1.

• If n ≥ 2r − 1, wsat(Kn,K2,r) = n− 2 +
(
r
2

)
.

• wsat(Kn,Ks+1,t+1) = sn− c(s, t).

References:
The weak saturation number of K2,t by Meysam Miralaei, Ali Mo-
hammadian, Behruz Tayfeh-Rezaie. Preprint: arXiv:2211.10939.
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c3

c4

Figure 1: Upper bound example for wsat(Kn,K2,2,2).
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Problem 5. Characterize all graphs with five boundary
vertices (suggested by Guillermo Gamboa)

Source: Proposed by Stefan Steinerberger in 2022.

Definitions.
• Let G = (V,E) be a graph. The boundary ∂G of G is defined as

∂G =

{
u ∈ V

∣∣∣∣∣∃u ∈ V :
1

deg(u)

∑
(u,w)∈E

d(w, v) < d(u, v)

}
.

Related results:
• In [2], Steinerberger extablishes the following isoperimetric in-
equality: if G is a connected graph with maximal degree ∆, then
for all v ∈ V∣∣∣∣∣

{
u ∈ V

∣∣∣∣∣ 1

deg(u)

∑
(u,w)∈E

d(w, v) < d(u, v)

}∣∣∣∣∣ ≥ |V |
2∆ diam(G)

.

This implies that

|∂G| ≥ |V |
2∆ diam(G)

.

• In [1], Chiem, Dudarov, Lee, Lee and Liu characterize graphs
with at most four boundary vertices.

References:
[1] Chiem N., Dudarov W., Lee C., Lee S., Liu K: A characteriza-
tion of graphs with at most four boundary vertices. 2023. arXiv:
2209.04438 [math.CO].

[2] Steinerberger S: The boundary of a graph and its isoperimetric
inequality. Discrete Applied Math., 338 (2023), pp. 125-134.
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Problem 6. Number of independent sets in subgraphs of
a random graph (suggested by Pavel Koblich Dvořák)

Definitions.
• A random graph G(n, p) is a graph on n vertices where each edge
is present with a probability p independently on the other edges.

Let G = G(n, p) be a random graph. Then, the expected num-
ber of independent sets of size k in G is IS(n, p, k) =

(
n
k

)
· (1−p)(

k
2).

Analogous formula holds for any subgraph of G, i.e., a subgraph H
of G with n′ vertices contains IS(n′, p, k) independent sets of size k
in expectation. However, what about all subgraphs of given size at
once?

Question: Is it true that with high probability all subgraphs of
G with n′ vertices contains roughly IS(n′, p, k) independent sets of
size k? Or there is always a subgraph that contains significantly
more k-size independent sets?

These questions arised from streaming algorithm for the inde-
pendent set problem. Sufficiently strong answer should improve
either the algorithm or the lower bound.
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Problem 7. Is Network Coding conjecture true for ex-
panders? (suggested by Pavel Koblich Dvořák)

Definitions.
• A network consists of a graph G = (V,E), positive capacities of
edges c : E → R+ and k pairs of vertices (s0, t0), . . . , (sk−1, tk−1).
• A coding scheme for a network R is a collection of function that
specifies messages sent from each vertex v to its neighbors based on
the messages sent to v. The goal of the scheme is that in each target
ti of R we can reconstruct an input message wi that is received at
the source si. Moreover, the lengths of the messages sent along the
edges have to respect the edge capacities.
• A coding rate rc(R) of a network R is the maximum r such that
there is a coding scheme for R that sends a message of length at
least r from each source to its corresponding target.
• A multicommodity flow for a network R specifies flows for each
commodity i such that they transport as many units of commodity
from si to ti as possible and not exceeding capacity of any edge.
• A flow rate rf (R) of a network R is the maximum r such that
there is a multicommodity flow that transport r units of each com-
modity.

Network Coding Conjecture:
Let R be a directed network, and R̄ be an undirected network aris-
ing from R by removing the direction of all edges. Then, rc(R) =
rf (R̄).

The conjecture is proved for only small graphs or somehow easy
simple classes. A natural candidate of a graph class for disproving
the conjecture is any class of graph expanders. Either of disproving
the conjecture or proving the conjecture for a class of expanders
would make an interesting result.
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Problem 8. Sorting by block reversals (suggested by Vít
Jelínek)

Source: This turned up in my joint research with Michal Opler and
Jakub Pekárek

Question: Suppose that we are given a sequence of n distinct
numbers, which we want to sort into ascending order by using the
following iterative procedure: in each round, we partition the cur-
rent sequence arbitrarily into disjoint blocks of entries in consec-
utive positions, not necessarily of the same length, and then in a
single step we reverse the order of entries within each block. For
example the next figure shows how the sequence 2,1,8,6,7,3,9,5,4
can be sorted in 3 rounds.

2 1 8 6 7 3 9 5 4

218 673 9 54

2 1 8 673 95 42 1 8 673 95 4

1 2 86 73 954

original sequence:

after 1 round:

after 2 rounds:

after 3 rounds:

Figure 2: Sorting the sequence 2,1,8,6,7,3,9,5,4 by parallel block
reversals. The horizontal lines indicate which blocks of consecutive
elements are reversed in a given round.

The problem is to determine the smallest number K(n) such
that any input sequence of length n can be sorted in at most K(n)
rounds. We may assume without loss of generality that the input
is a permutation, i.e., a sequence containing each number from the
set {1, 2, . . . , n} exactly once.

Related results:
• Since there are 2n−1 possibilities to choose the blocks to reverse
in a single round, it follows that for any given r, there are at most
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2r(n−1) permutations of length n that can be sorted in r rounds.
Since there are in total n! = 2Ω(n log n) permutations of length n, it
follows that K(n) = Ω(logn). This is the best known lower bound
on K(n).
• There is a (not too difficult) strategy which can sort any input
sequence in O(log2 n) rounds. This is the best known upper bound
on K(n).
• Apart from sorting by parallel block reversals, described above,
we may also consider a modification, called sorting by parallel block
transpositions, defined as follows: in every round, we partition the
given sequence into an even number of blocks (which may now
be empty) numbered left to right as B1, B2, . . . , B2k, and then for
each i ≤ k, we swap the blocks B2i−1 and B2i, without changing the
order of elements within the blocks. Again, the goal is to determine
the smallest number of rounds needed to sort any input of length n.
The best known upper and lower bounds are the same as in the
original problem.

References:
This problem occurred within research of a more general concept
of sorting-time of hereditary permutation classes (joint work of Vít
Jelínek, Michal Opler and Jakub Pekárek), which has been submit-
ted for publication but has not appeared yet.

12



Problem 9. Reversed graph coloring game (suggested by
David Mikšaník)

Given a (simple) graph G and positive integer k, a graph col-
oring game on G with k colors consists of two players, Alice (the
maker) and Bob (the breaker). Alice and Bob alternately color
uncolored vertices in G (in the beginning, all vertices in G are un-
colored) from the set {1, 2, . . . , k} so that at any time no adjacent
vertices have the same color. The game ends when all vertices in G
are colored (in this case Alice wins) or there exists an uncolored
vertex in G such that its neighborhood contains all colors from
{1, 2, . . . , k} (in this case Alice loses).

In the literature, Alice usually starts the game and we are inter-
ested in the least number k such that Alice has a winning strategy.
In this problem, we are interested under which conditions it is bet-
ter for Bob to start the game.

Definitions.
• Alice game-chromatic number of G, denoted χA

g (G), is the least
number k for which Alice has a winning strategy provided that
Alice starts the game.
• Bob game-chromatic number of G, denoted χB

g (G), is the least
number k for which Alice has a winning strategy provided that
Bob starts the game.

Example:
• χA

g (Kn,n) = 3 and χB
g (Kn,n) = 2.

• Let Kn,n − nK2 be the graph obtained from Kn,n by removing
a perfect matching. Then

χA
g (Kn,n − nK2) = n and χB

g (Kn,n − nK2) = 2.

On the other hand, let G be Kn,n − nK2 plus an isolated vertex.
Then

χA
g (G) = 2 and χB

g (G) = n.
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• The class of planar graphs has bounded χA
g .

Question 1: Determine sufficient conditions for a graph G to sat-
isfy

χB
g (G) > χA

g (G).

Question 2: Suppose that Alice has a winning strategy for the
graph coloring game on G with k colors. Does Alice have a winning
strategy with k + 1 colors? Or at least, with f(k) colors for some
function f(k) > k? [2]

Related results:
• Given a graph G, it is PSPACE-hard to determine χA

g (G). [1]

References:
[1] Eurinardo Costa, Victor Pessoa, Rudini Sampaio, Ronan, Soares:
PSPACE-completeness of two graph coloring games. Theoretical
Computer Science, Vol. 824-825, pp. 36-45 (2020)
doi: 10.1016/j.tcs.2020.03.022.

[2] Xuding Zhu: The Game Coloring Number of Planar Graphs.
Journal of Combinatorial Theory, Series B, Vol. 75, Issue 2, pp.
245-258 (1999) doi: https://doi.org/10.1006/jctb.1998.1878.
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Problem 10. Max-Min Odd and Even Cycle Transver-
sals (suggested by Nikolaos Melissinos)
Source: Proposed by Michael Lampis in 2020.

Definitions.
• Given a graph G = (V,E), a sub S ⊆ V is a minimal odd cycle
transversal if G[V \ S] has no odd cycles (i.e. it is bipartite) and
there is no subset of S with the same property.
• Given a graph G = (V,E), a sub S ⊆ V is a minimal even cycle
transversal if G[V \ S] has no even cycles and there is no subset of
S with the same property.
• In Max-Min Odd (Even) Cycle Transversal we are searching for a
minimal odd (even) cycle transversal, of a given graph, of maximum
order.

Example:

v

v1

v2v3

v4

v5

v6 v7

v8

Figure 3: Example graph.

We consider the graph given in Figure 3. The sets S1 = {v},
S2 = {v, v1} and S3 = {v1, v3, v5, v7} are odd cycle transversals.
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Notice that S1 and S3 are minimal while S2 is not. Furthermore,
S1 is a minimum odd cycle transversal and S3 is a minimal odd cycle
transversal of maximum order. In Max-Min Odd Cycle Transversal
we are searching for S3 (or any other minimal odd cycle transversal
of maximum order).

Question: Can we found an n2/3-approximation algorithm for
Max-Min Odd (Even) Cycle Transversal?

Related results and relations with the proposed problems:
• The Max-Min Feedback vertex set problem (Max-Min FVS) is
inapproximable within a factor of n2/3−ε unless P = NP [1]. This
result should be easily extendable to the Max-Min Odd (Even)
Cycle Transversal. The same holds for the NP-hardness of the
problem on planar graphs of maximum degree 6.
• In [1] were also presented two approximation algorithms for Max-
Min FVS. These algorithms seem to be more challenging to adapt
for Max-Min Odd (Even) Cycle Transversal.
• In [2,3] someone can find several results related to the parame-
terized version of Max-Min FVS. Once again, the negative results
seem to be easily easily extendable. It would be nice to see whether
the same holds for the positive results.

References:
[1] Louis Dublois, Tesshu Hanaka, Mehdi K. Ghadikolaei, Michael
Lampis, and Nikolaos Melissinosi: (In)approximability of maximum
minimal FVS. Journal of Computer and System Sciences, 124:26–
40, 2022.

[2] Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh,
and Shuvam Kant Tripathi: Maximum minimal feedback vertex set:
A parameterized perspective. CoRR, abs/2208.01953, 2022.

[3] Michael Lampis, Nikolaos Melissinos and Manolis Vasilakis: Pa-
rameterized Max Min Feedback Vertex Set. 48th International Sym-
posium on Mathematical Foundations of Computer Science. In
MFCS 2023, volume 272 of LIPIcs, pages 62:1–62:15.
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Problem 11. Construction of constant gap sequences
(suggested by Daniela Opočenská)
Source: An equivalent problem was introduced by Paul Erdős in
the early 1930s under the name exact covering systems, more info
can be found in [3]. We met constant gap sequences when solving
problems in combinatorics on words [1]. An efficient way of con-
struction of constant gap sequences plays an important role there
and seems to be an unsolved problem.

Definitions.
• An alphabet A is a finite set of symbols that are called letters.
• A sequence over an alphabet A is an infinite sequence of letters
from the alphabet, we write y = y0y1y2 · · · , where yn ∈ A for all
n ∈ N0.
• A sequence y = y0y1y2 · · · is periodic, if there exists P ∈ N such
that for all n ∈ N0, yn = yn+P . The smallest possible P fulfilling
this condition is called the period. In this case, we often write
y = (y0y1y2 · · · yP−1)ω to symbolize infinite repetition of the first P
letters.
• A sequence y over an alphabet A is a constant gap sequence if
for each letter i ∈ A there is a positive integer denoted by pi such
that the distance between any two consecutive occurrences of i in y
is pi.
• We denote ni the first occurrence of the letter i in y.
• Let us consider k sequences over disjoint alphabets. Their shuf-
fling is a sequence obtained when reading step by step their first
letters, second letters, etc.

Example:
• All constant gap sequences are periodic.
• y = (0102)ω = 01020102 · · · is a constant gap sequence, where
the letter periods are p0 = 2, p1 = 4 = p2, the first occurrences are
n0 = 0, n1 = 1, n2 = 3 and the period is 4.
• v = (0122)ω = 012201220122 · · · is periodic but not constant gap
because of the occurences of 2.
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• The constant gap sequence can be described by a list of pairs
(ni, pi) for all i ∈ A. For example, y = (010203)ω can be rewritten
as (0, 2), (1, 6), (3, 6), (5, 6).
• We can shuffle the constant gap sequences u = (0)ω, v = (12)ω,
w = (3435)ω to obtain a sequence over the alphabetA = {0, 1, 2, 3, 4, 5}
in the form

y = (013024013025)ω.

Question: Find an algorithm to generate all constant-gap se-
quences over a given alphabet such that it works well for alphabets
with at least 13 letters.

Related results:
• Let y be a constant gap sequence over an alphabet A = {0, 1, 2, 3,
. . . , d− 1}. Then

d−1∑
i=0

1

pi
= 1.

• Let n, n′ ∈ N0, and p, p′ ∈ N. We say that (n, p) and (n′, p′) are in
collision if gcd(p, p′) divides n− n′. Let the pairs (n0, p0), (n1, p1),
. . . , (nd−1, pd−1) satisfy ni < pi for all i ∈ A, Then the pairs
(n0, p0), (n1, p1), . . . , (nd−1, pd−1) give rise to a constant gap se-
quence iff no two of them are in collision and

d−1∑
i=0

1

pi
= 1.

• The period of the letter i in the shuffling of k sequences equals k ·
p̂i, where p̂i is the period of the same letter in its original sequence.

Moreover, if there exists k ∈ N, k > 1, such that k divides pi
for all i ∈ A, then the constant gap sequence y = y0y1y2 · · · is the

18



shuffling of k constant gap sequences in the form

y0yky2ky3k · · ·
y1yk+1y2k+1y3k+1 · · ·
y2yk+2y2k+2y3k+2 · · ·
...
yk−1y2k−1y3k−1y4k−1 · · ·

Therefore a constant gap sequence over a d-letter alphabet that
cannot be generated by shuffling has gcd(p0, p1, . . . , pd−1) = 1. The
smallest d such that there exists a d-letter constant gap sequence,
which is not obtained by shuffling, is 13.
• A brute force search algorithm to find all constant gap sequences
over a d-letter alphabet, where d is user input, is described in [4].
The algorithm runs well on standard user computer up to d = 12,
but the computational complexity becomes too much for bigger
alphabets.
• This problem is equivalent to a problem of finding an exact cov-
ering system with a given number of equivalence classes. The exact
covering system is a system of congruence classes in the form

n ≡ ni mod pi, i = 1, 2, 3, . . . , k

such that any n ∈ N0 belongs to exactly one congruence class.
The duality is as follows: There exists a constant gap sequence

defined by pairs (n0, p0), (n1, p1), . . . , (nd−1, pd−1), if and only if

n ≡ ni mod pi, i = 0, 1, . . . , d− 1

is an exact covering system. There are several theoretical results
concerning covering systems, some of them can be found in [2, 5, 6].

References:
[1] L. Dvořáková, D. Opočenská, E. Pelantová: Asymptotic repet-

itive threshold of balanced sequences. Mathematics of Compu-
tation, Vol. 92, (2023), pp . 1403–1429.
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[2] J. Fabrykowski, T. Smotzer: Covering Systems of Congru-
ences. Mathematics Magazine, (2005), 78:3, pp. 228-231.

[3] R. K. Guy: Unsolved Problems in Number Theory. Springer
Science & Business Media, (2004), pp. 386–390.

[4] A. Kasalová: Konstrukce slov s konstantními mezerami
(Czech). Rozhledy matematicko-fyzikální, Vol. 97 (2022), is-
sue 3, pp. 1-12.

[5] Š. Porubský: Generalization of Some Results for Exactly Cov-
ering Systems. Matematický časopis, Vol. 22 (1972), No. 3,
208–214.

[6] Š. Porubský, J. Schönheim: Old and new necessary and suffi-
cient conditions on (ai,mi) in order that n ≡ ai(mod mi) be
a covering system. Mathematica Slovaca, Vol. 53 (2003), No.
4, 341–349.
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Problem 12. Distinguishing pairs of words using finite
automata (suggested by Robert Šámal)

Source: Goralčík and Koubek [GK86].

Question: Given two words, each with at most n letters, how
large finite automaton is needed to distigush them? (We measure
automata by the number of states.)

Related results:
• It is known that the size needs to be Ω(log n). [Dem11]
• It is also known that the answer does not depend on the input
alphabet. Some cases where O(log n) is known to suffice:

- words of different length,
- words of same length, but different number of 1s,
- words where the number of 1s at odd positions differs,
- words where the first/last difference is close to the start/end.

• Upper bounds known for a general pair of words:
- words of different length,
- o(n) [GK86],
- Õ(n2/5) [Robson89],
- Õ(n1/3) [Chase21].

• Most of the results are also presented in the diploma thesis by
Bilan [B23].

References:
[B23] Daria Bilan: Distinguishing Pairs of Words Using Finite Au-
tomata. Diploma thesis, Charles University, 2023.

[Chase21] Zachary Chase: Separating words and trace reconstruc-
tion. STOC, 2021, doi: 10.1145/3406325.3451118.

[Dem11] Erik D. Demaine, Sarah Eisenstat, Jeffrey Shallit, and
David A. Wilson: Remarks on separating words. In Descriptional
Complexity of Formal Systems, pages 147–157. Springer Berlin
Heidelberg, 2011. doi: 10.1007/978-3-642-22600-7_12.
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[GK86] Goralčík, P., Koubek, V.: On discerning words by au-
tomata. ICALP 1986. LNCS, vol. 226, pp. 116–122. Springer,
Heidelberg (1986) doi: 10.1007/3-540-16761-7_61.

[Robson89] Robson, J.M.: Separating strings with small automata.
Inform. Process. Lett. 30, 209–214 (1989) doi: 10.1016/0020-
0190(89)90215-9.
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Problem 13. Minors and quasiminors (suggested by
Robert Šámal)

Source: Mathe Bonamy et al.

Question 1: What is the infimum c such that for any large enough
t there is a graph G that admits a quasi-Kt-minor, but no Kct-
minor?

To remind, a graph G has Kp-minor if it has nonempty pairwise
disjoint and connected bags B1, . . . , Bp of vertices such that for any
i 6= j there is an edge between some vertex in Bi and some in Bj .
A quasiminor is a weaker notion – we do not insist the bags are
connected but only that Bi ∪ Bj (for i 6= j) induce a connected
subgraph.

The notion of quasiminors is related to changing a coloring by
means of Kempe-chain changes. This leads to a related question, a
version of Hadwiger’s conjecture.

Question 2: Is there a constant c′ such that for every t all the
c′ ·t-colorings of a graph with no Kt-minor form a single equivalence
class?

Related results:
• It is known that 1/2 ≤ c ≤ 23 and c′ ≥ 3/2.

References:
[B] Marthe Bonamy, Marc Heinrich, Clément Legrand-Duchesne,
Jonathan Narboni: On a recolouring version of Hadwiger’s conjec-
ture. https://arxiv.org/abs/2103.10684.
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Problem 14. Non-nested matching (suggested by Robert
Šámal)

Source: János Barát et al.

Question: For what m does a 2-edge-colored Km contain a mono-
chromatic non-nested matching of n edges?

If a < b < c < d then we call edges ad and bc nested. We are
looking for a matching where no two edges are nested.

Related results:
• It is known, that optimal m satisfies 3n− 1 ≤ m ≤ 4n− 2.
• Without the non-nested condition, the optimal m is 3n− 1. The
same is true if “non-nested” is replaced by “non-crossing”.

References:
János Barát, András Gyárfás, Géza Tóth: Monochromatic spanning
trees and matchings in ordered complete graphs. https://arxiv.
org/abs/2210.10135.
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