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OPEN PROBLEMS

Problem 1. Eternal Domination on super-graphs of cacti
(suggested by Václav Blažej)

Source: Proposed by B., Křišťan, Valla 2021.

Definitions.
• Graph is a cacti when every edge lies in at most one cycle.
• Eternal domination game is a 2-player game with one attacker
and one defender. First, defender places k guards on the graph.
Next, in each turn attacker chooses a vertex and defender may move
each guard by at most one edge so that the chosen vertex is occupied
by a guard. We play eternally, if at some point defender fails to
defend a vertex, he looses, otherwise he wins.
• Our goal is for a given graph G find the minimum number of
guards k so that defender wins the eternal domination game. (Ide-
ally, find the strategy.)

Example:
Observe that if we played exactly one turn, then the minimum
number of necessary guards for the defender to win the game is the
domination number.

Question: How hard is it to decide eternal domination on graph
classes bigger than the class of cacti graphs (e.g. series-parallel).

Related results:
• There is an easy way to deduce an optimal defending strategy for
trees.
• There is a linear time algorithm to get an optimal defending
strategy for cacti graphs.

References:
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Figure 1: Sketch of reductions which lead to complete solution of
the eternal domination on trees.

Andrei Braga, Cid C. de Souza, and Orlando Lee. The eternal
dominating set problem for proper interval graphs. Information
Processing Letters, 115(6):582–587, 2015.

Stephen Finbow, Margaret-Ellen Messinger, and Martin F. van
Bommel. Eternal domination on 3 × n grid graphs. Australasian
Journal of Combinatorics, 61:156–174, 2015.

Wayne Goddard, Sandra M. Hedetniemi, and Stephen T. Hedet-
niemi. Eternal security in graphs. Journal of Combinatorial Math-
ematics and Combinatorial Computing, 52:169–180, 2005.

Michael A. Henning, William F. Klostermeyer, and Gary MacGillivray.
Bounds for the m-eternal domination number of a graph. Contri-
butions to Discrete Mathematics, 12(2), 2017.

William F. Klostermeyer and Gary MacGillivray. Eternal dom-
inating sets in graphs. Journal of Combinatorial Mathematics and
Combinatorial Computing, 68:97–111, February 2009.

Christopher M. van Bommel and Martin F. van Bommel. Eter-
nal domination numbers of 5 × n grid graphs. Journal of Com-
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binatorial Mathematics and Combinatorial Computing, 97:83–102,
2016.
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Problem 2. Offline caching with page sizes 1 and 2 (sug-
gested by Lukáš Folwarczný)
Source: A problem left open in the paper by Folwarczný and Sgall
[FS17]

Definitions.
• We have a parameter C, called the cache size.
• We are given a set of pages P. Each page p ∈ P has SIZE(p) ∈
{1, 2}.
• We are also given a sequence of page requests r1, . . . , rm ∈ P.
• A service is a sequence ∅ = S0, S1, . . . , Sm satisfying for every
i = 1, . . . ,m: ri ∈ Si and

∑
p∈Si

SIZE(p) ≤ C.
• The cost of the service is

∑m
i=1|Si \ Si−1|.

• Explanation: We maintain a set of pages of total size at most C
in the cache. We pay one for loading a page into the cache and we
can erase pages for free. It is necessary to have a page in the cache
when it is requested.
• The problem 12Caching is a decision problem. You are given the
pages P, request sequence r1, . . . , rm, cache size C and cost limit L.
It is necessary to decide whether a service of cost at most L exists.

Example:
Consider the following instance: C = 4, L = 3, P = {p1, p2, p3},
SIZE(p1) = 1, SIZE(p2) = SIZE(p3) = 2. The request sequence
is p1, p2, p3, p1, p2, p3. It is a no instance. The total size of all the
pages is 5 which is more than the cache size. There is therefore at
least one page which must be loaded twice and the total cost is at
least 4. There is a service of cost 4, for example this one: ∅, {p1},
{p1, p2}, {p1, p3}, {p1, p3}, {p2, p3}, {p2, p3}.
Question: Is the problem 12Caching NP-complete?

Related results:
• When all pages have size one, the problem is easily in P.
• When the page sizes are in the range {1, 2, 3}, the problem is
NP-complete. [FS17] The proof is relatively involved and it seems
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to me that it would be better to start looking at the problem from
scratch rather than spending time on this proof.
• If the cost of loading a page into the cache is not one for all pages,
but it is the same as the page size, the problem is also open. And
I believe it is of the same value.
• If the page sizes are in the set {1, 2, 4}, the problem is also open.
• The paper [FS17] contains all references to previous and related
results I am aware of.

References: [FS17] Lukáš Folwarczný, Jiří Sgall: General Caching
Is Hard: Even with Small Pages. Algorithmica 79(2): 319-339
(2017)
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Problem 3. Depth-three circuits for inner product (sug-
gested by Lukáš Folwarczný)

Source: A problem left open in the paper by Golovnev, Kulikov
and Williams [GKW21]

Definitions.
• An OR ◦AND ◦OR circuit is a depth-3 circuit; the single gate in
the top layer is OR, all the gates in the second layer are ANDs, all
the gates in the third layer are ORs. These gates in the third layer
have as inputs literals (variables or their negations).
• An OR ◦AND ◦ORk circuit has the additional condition that the
fan-in of the gates in the third layer is bounded by k.
• The size of a circuit is the total number of wires (edges in its
graph).
• sk3(f) denotes the minimum size of an OR ◦ AND ◦ ORk circuit
computing the function f .
• IP = IPn (for n even) is the function of inner product of n
variables mod 2, that is IP(x1, . . . , xn) = x1x2⊕x3x4⊕· · ·xn−1xn.

Example: s2
3(IP) ≤ 2n/2−o(n). We follow the proof from [GKW21]:

Observe that IP(x1, . . . , xn) = 1 iff there is an odd number of ones
among p1 = x1x2, p2 = x3x4, . . . , pn/2 = xn−1xn. We can then
express

IP(x1, . . . , xn) ≡
∨

S⊆[ n2 ]:|S| mod 2=1

(∧
i∈S

[pi = 1] ∧
∧
i/∈S

[pi = 0]

)
.

Conditions [pi = 1] and [pi = 0] depend only on two variables and
can therefore be expressed as 2-CNFs.

Question: Determine s3
3(IP).

Related results:
• Lower bounds for the parity function imply s3

3(IP) ≥ 2n/6.
• A more involved modification of the example gives s3

3(IP) ≤ 3n/4.
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• If the actual value of s3
3(IP) is close to the above upper bound,

an interesting conjecture of [GKW21] would turn out to be true.
• On the other hand, inventing an interesting upper bound would,
as far as I can tell, not have as strong consequences, but it would
definitely be very interesting and may be not that difficult . . .

References: [GKW21] Alexander Golovnev, Alexander S. Ku-
likov, R. Ryan Williams: Circuit Depth Reductions. ITCS 2021:
24:1-24:20. Full version arXiv:1811.04828
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Problem 4. Powers of Paths/Cycles in Randomly Per-
turbed Graphs (suggested by Eng Keat Hng)

Definitions.
• The kth power of a graph H, denoted by Hk, is the graph obtained
from H by joining every pair of vertices at distance at most k in
H.

Question: For what values of α and p can we guarantee that for
any graph G on n vertices with minimum degree αn, the graph
G ∪ G(n, p) a.a.s. contains the kth power of a path/cycle on `
vertices?

Related results:
• Komlós, Sárközy and Szemerédi: p = 0, ` = n.
• Allen, Böttcher and Hladký: p = 0, k = 2, ` linear in n.
• Antoniuk, Dudek, Reiher, Ruciński and Schacht: α > 1

2 , ` = n

References:
J. Komlós, G. N. Sárközy and E. Szemerédi. Proof of the Sey-

mour conjecture for large graphs. Ann. Comb., 2(1):43–60, 1998.
P. Allen, J. Böttcher and J. Hladký. Filling the gap between

Turán’s theorem and Pósa’s conjecture. J. Lond. Math. Soc. (2),
84(2):269–302, 2011.

S. Antoniuk, A. Dudek, C. Reiher, A. Ruciński and M. Schacht.
High powers of Hamiltonian cycles in randomly augmented graphs.
J. Graph Theory, 98(2):255–284, 2021.
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Problem 5. Clique chromatic number vs. clique-width
(suggested by Lars Jaffke)

Definitions.
• A clique coloring of a graph is a vertex-coloring (not necessarily
proper) without monochromatic maximal cliques.
• The clique chromatic number of a graph is the minimum number
of colors in any of its clique colorings.

Question: Is the clique chromatic number of every graph bounded
by a function of its clique-width?

Related results:
• In the Clique Coloring problem, we are given a graph G and
an integer k and the question is if G has a clique coloring with k
colors. This problem is expressible in MSO1, and therefore FPT
parameterized by clique-width plus number of colors by the meta-
theorem of Courcelle, Makowsky, and Rotics. In case of a positive
answer to our questions, this gives an FPT-algorithm parameter-
ized by clique-width alone. (An explicit XP-algorithm, k22O(w)

nO(1)

time where w is the clique-width, was also given recently.)
• Related question: Can 2-Clique Coloring, the restriction of
Clique Coloring to k = 2, be solved in 222o(w)

nO(1) time where
w is the clique-width, or would that refute the Exponential Time
Hypothesis?
• Graphs of unbounded clique chromatic number are not so well un-
derstood. Since for triangle-free graphs, the clique chromatic num-
ber is equal to the chromatic number, constructions of triangle-free
graphs of unbounded chromatic number seem like a good starting
point to look for counterexamples to the conjecture. However, they
cannot have bounded clique-width: Bonamy and Pilipczuk showed
that graphs of bounded clique-width are χ-bounded, meaning their
chromatic number is bounded by a function of size of the the max-
imum clique.

References:

9



• Bruno Courcelle, Johan A. Makowsky, and Udi Rotics. Linear
Time Solvable Optimization Problems on Graphs of Bounded
Clique-Width. Theory of Computing Systems 33, pages 125–
150, 2000.

• Lars Jaffke, Paloma T. Lima, and Geevarghese Philip. Struc-
tural parameterizations of clique coloring. In: MFCS 2020,
pages 49:1–49:15.

• Marthe Bonamy and Michał Pilipczuk. Graphs of bounded
cliquewidth are polynomially χ-bounded. Advances in Com-
binatorics 8, 2020.
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Problem 6. Complexity of deciding whether given a set
of vertices in a graph is eternally dominating (suggested
by Matyáš Křišťan)

Source: Proposed by William F. Klostermeyer in 2015.

Definitions.
• m-Eternal domination is a game of two players, an attacker and
a defender, played on a graph. The rules are as follows.

• Given a graph, the defender places guards on some vertices.

• In each turn, the attacker chooses one vertex to attack.

• In response, the defender can move each of the guards into
their respective neighborhoods. After the movements, the at-
tacked vertex must be occupied. Otherwise, the defender loses.

• Each vertex can be occupied by at most one guard.

• If a defender can use a set of vertices S as a starting configuration
and defend indefinitely against any sequence of attacks, we say that
S is an m-eternal dominating set.

Example: For example, we may use the following three configura-
tions to defend the given graph indefinitely using 2 guards. From
each configuration, we can transition to any other.

Question: Consider the following problem: Given a graph G and
a set of vertices S, can we eternally defend G with S as the starting
configuration of guards?

Can this problem be solved in PSPACE? Is it EXPTIME-hard?

Related results:
• The problem is known to be NP-hard and can be solved in EX-
PTIME.
• It can be solved in linear time on trees and on proper interval
graphs.
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• Let γ∞m (G) be the minimum size of an m-eternal dominating set
on G and γ be the minimum size of a dominating set on G. Then
it holds γ(G) ≤ γ∞m (G) ≤ 2γ(G).

References:

• Protecting a Graph with Mobile Guards (https://arxiv.
org/abs/1407.5228)

• Eternal Domination Numbers of 5× n Grid Graphs (https:
//people.stfx.ca/mvanbomm/publicat/eternal5xn.pdf)

• Bounds for the m-Eternal Domination Number of a Graph
(https://cdm.ucalgary.ca/article/view/62550)

• The eternal dominating set problem for interval graphs (https:
//arxiv.org/abs/1808.09591)

• On the m-eternal Domination Number of Cactus Graphs (https:
//arxiv.org/abs/1907.07910)
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Problem 7. Surface Connectivity Variation on Albertson
& Berman Conjecture (suggested by Tomáš Masařík)
Source: Proposed in our paper [4] in 2021.

Famous Albertson & Berman conejcture [1] states that; if G is
a planar graph on n vertices, then G contains an induced forest
of size at least n/2. In [4], we provided a connection of related
concepts of robust connectivity and surface connectivity.

Definitions.
• τG is a set of all spanning trees of G and Λ(T ) is a set of all leafs
of some tree T .
• Robust connectivity: κρ(G) : = minR⊆V (G)

R 6=∅
maxT∈τG

|R∩Λ(T )|
|R| .

• G̃ is some embedding of G, where GS is a set of all graph embed-
dings embedable on a fixed surface S.
• m(G̃) is maximum induced embedded subgraph G̃′ ⊆ G̃ for which
S " G̃′ is a connected surface, where S " H̃ is defined as cutting
along the edges of H̃.
• Surface connectivity: κs(S) = inf

{
m(G̃)

|G̃| : G̃ ∈ GS
}
.

Theorem 5 in [4] proved for a fixed surface S the following equiv-
alence: Every graph G with an edge-maximal embedding on S sat-
isfies κρ(G) ≥ k if and only if κs(S) ≥ k.
Question: If S is torus how large is κs(S)? What about projective
plane or klein bottle.

Related results: For upper bound we know that κs(S) ≤ 1
2 for

any S because of K4 and κs(S) ≤ 3
7 when S is torus as demon-

strated by K7, see Figure 1. I am not aware of any better resutls
than straightforward lower bounds given by acyclic colouring (Any
two color classes does not induce any cycle): In [3] it was shown
that for S projective plane κs(S) ≥ 2

7 . For S torus κs(S) ≥ 2
8 [2].

[1] Michael O. Albertson and David M. Berman. A conjecture on
planar graphs. Graph theory and related topics 357:1, 1979.
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Figure 2: Embedding of K7 on torus.

[2] Michael O. Albertson and David M. Berman. The acyclic chro-
matic number. Congressus Numerantium 17, 51–69, 1976.

[3] Noga Alon, Bojan Mohar, Daniel P. Sanders. On acyclic color-
ings of graphs on surfaces. Israel Journal of Mathematics 94:1,
273–283 1996.

[4] Peter Bradshaw, Tomáš Masařík, Jana Novotná, and Ladislav
Stacho. Robust Connectivity of Graphs on Surfaces. Trends in
Mathematics, 848–854, 2021. arXiv:2104.12030.
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Problem 8. Filling the gaps: Complexity of (4-)coloring
in classes defined by small forbidden induced subgraphs
(suggested by Jana Novotná)

Source: Question 2 proposed by Chinh T. Hoàng at Dagstuhl Sem-
inar 19271 —Graph Colouring: from Structure to Algorithms in
2019.

Definitions.
• Let H be a graph, G is H-free if it does not contain a copy of H
as an induced subgraph. Let H = {H1, . . . ,Hs} be a set of graphs,
G is H-free (or alternatively (H1, . . . ,Hs)-free) if it is H1-, H2-,
. . . , and Hs-free.
• Let Pt be the path on t-vertices, Cs be the cycle on s vertices, and
claw denote the graph K1,3. Let H + G denote the disjoint union
of graphs H and G.

Question:
Filling the gaps:

1 Is 4-coloring of (P7, C7)−, (P8, C7)−, or (Pt, C3)-free graphs,
for 7 ≤ t ≤ 21, NP-hard or polynomial?

2 Is coloring of (claw, 4P1)−, (claw, 4P1, P2+2P1)−, or (C4, 4P1)-
free graphs polynomial or NP-hard?

Related results:
• The problem of 4-coloring is polynomial in P6-free graphs and NP-
complete in P7-free graphs. It stays NP-complete even when some
(Pt, Cs)-free graphs are considered when t ≥ 7. Hell and Huang
[1] and Huang et al. [2] settled many NP-complete cases of this
type. These results, in combination with the polynomiality of P6-
free case, leave open only the following cases: (P7, C7)−, (P8, C7)−,
and (Pt, C3)-free graphs, for 7 ≤ t ≤ 21.
• Let F4 denote a set of graphs with at most four vertices. The
complexity of coloring is determined for F4-free graphs, up to three

15



cases: F4 = {claw, 4P1}, F4 = {claw, 4P1, P2 + 2P1} (coloring of
this class is polynomialy equivalent to F4 = {claw, P2 + 2P1}), and
F4 = {C4, 4P1}. Lozin and Malyshev conjectured in [4] the polyno-
miality for the last case. All these classes have unbounded clique-
width. Moreover, atoms (graphs without clique-cutsets) of these
classes have unbounded clique-width. There is a polynomial result
for subclass of (claw, 4P1)-free graphs, namely (claw, 4P1, hole −
twin)-free graphs [5] where hole-twin are holes with twin of one
vertex.

References:

1 Pavol Hell and Shenwei Huang. Complexity of coloring graphs
without paths and cycles. Discrete Applied Mathematics,
216:211–232, January 2017

2 Shenwei Huang, Matthew Johnson, and Daniël Paulusma.
Narrowing the complexity gap for colouring (Cs, Pt)-free graphs.
The Computer Journal, 58(11):3074–3088, June 2015

3 Dallas J.Fraser, Angèle M. Hamel, Chính T. Hoàng, Frédéric
Maffray. A coloring algorithm for 4K1-free line graphs. Dis-
crete Applied Mathematics, 234:76-85, January 2018.

4 V. V. Lozin, D. S. Malyshev. Vertex coloring of graphs with
few obstructions. Discrete Applied Mathematics, 216:273-
280, January 2017.

5 Yingjun Dai Angele, M. Foley Chính, T. Hoàng. On Coloring
a Class of Claw-free Graphs. Electronic Notes in Theoretical
Computer Science, 346:369-377, August 2019.
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Problem 9. Vertex deletion problem for poset-related
graph classes (suggested by Karolina Okrasa)
Source: Proposed by Bożyk et al. in 2020.

Definitions.
• comparability graphs: graphs whose edges correspond to the pairs
of vertices comparable in some fixed partial order < on the vertex
set (such an order is called a transitive orientation of the graph),
• co-comparability graphs: the complements of comparability graphs.
• permutation graphs: intersection graphs of segments whose end-
points lie on two parallel lines `1 and `2, one on each.
• Vertex deletion to the class G of graphs:

Input: A graph G on n vertices and a number k
Question: Can G be transformed into a graph of the class G by deleting

at most k vertices?

Question: Is the vertex deletion problem to the class of comparability/co-
comparability/permutation graphs fixed-parameter tractable (FPT)?
In other words, does there exist an algorithm solving the problem
in time f(k) · nO(1)?

Related results:
• The three mentioned graph classes are hereditary, i.e., they admit
a characterization by forbidden induced subgraphs. In all three
cases the family of forbidden induced subgraphs is known.
• Vertex deletion to bipartite permutation graphs (a subclass of all
three mentioned graph classes) is FPT.
• Vertex deletion to perfect graphs (a superclass of all three men-
tioned graph classes) is W[1]-hard.

References:
• Bożyk, Ł., Derbisz, J., Krawczyk, T., Novotná, J., Okrasa, K.
(2020, December). Vertex Deletion into Bipartite Permutation
Graphs. In 15th International Symposium on Parameterized and
Exact Computation IPEC 2020, December 14-18, 2020, Hong Kong,
China (Virtual Conference).
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• Heggernes, P., Van’t Hof, P., Jansen, B. M., Kratsch, S., Vil-
langer, Y. (2013). Parameterized complexity of vertex deletion into
perfect graph classes. Theoretical Computer Science, 511, 172-180.
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Problem 10. Narrow Dots & Boxes (suggested by Michal
Opler)

Source: Proposed by Buchin et al. [1].

Definitions.
• Dots & Boxes is a game played by two players on an m× n grid
of dots. The players take turns connecting two adjacent dots. If a
player completes the fourth side of a unit box, the player is awarded
a point and an additional turn. When no more moves can be made,
the player with the highest score wins the game
• The problem Dots & Boxes is to decide which player wins given
an initial game state.

Question:
• Does restricting Dots & Boxes to a k×n grid for a small k make
the game easier? In particular, the question is not understood even
for 1× n grids.

Related results:
• Recently, Buchin et al. [1] resolved a long-standing open question
by showing that Dots & Boxes is PSPACE-complete.
• Collette et al. [2] analyzed the behaviour of the so-called Misère
Dots & Boxes where the player with fewer points wins on 1×n and
2× n grids.

References:
[1] Buchin, K., Hagedoorn, M., Kostitsyna, I., and van Mulken, M.

Dots & Boxes Is PSPACE-Complete MFCS 2021, Vol. 202,
25:1–25:18 (2021).

[2] Collette, S., Demaine, E. D., Demaine, M. L., and Langerman,
S. Narrow Misère Dots-and-Boxes Games of No Chance 4,
57–64 (2015).
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Problem 11. Superpatterns of permutation classes (sug-
gested by Michal Opler)
Source: Proposed by Engen and Vatter [4], Bannister et al. [3].

Definitions.
• A permutation π is a sequence π = π1, π2, . . . , πn in which each
number from the set [n] = {1, 2, . . . , n} appears exactly once. A
permutation diagram of π is the point set {(i, π) | i ∈ [n]}.
• A permutation π contains a permutation σ, if π has a subsequence
of length k whose elements have the same relative order as the ele-
ments of σ, otherwise we say that π avoids σ, or π is σ-avoiding.

Figure 3: Pattern 213 contained in permutation 421365.

• Av(σ) denotes the class of all σ-avoiding permutations.
• A permutation π is said to be n-universal (or a superpattern)
for a class C if π contains all permutations of length n from C.
A permutation is said to be simply n-universal if it contains all
permutations of length n. An n-universal permutation π for a class
C is called proper if additionally π ∈ C.
• The skew-merged permutations are all permutations that can be
obtained as a union of one increasing and one decreasing sequence.

Question:
•What is the size of the smallest (proper) n-universal permutations
for the skew-merged permutations?

20



• Is there σ such that any n-universal permutation for Av(σ) has
to be of size Ω(n2)? Optimistic aim is the class Av(4321).

Related results:
• The best bounds on the size of the smallest n-universal permu-
tation are that it lies between n2/e2 (a consequence of Stirling’s
Formula) and dn

2+1
2 e [5].

• Banninster et al. [3] constructed n-universal permutation for
Av(213) of size n2/4 + Θ(n) and n-universal permutation of size
O(n logO(1) n) for any proper subclass of Av(213).
• There is a proper n-universal permutation for Av(321) while Ban-
ninster et al. [4] constructed a non-proper n-universal permutation
for Av(321) of size O(n3/2).
•On the other hand, any proper n-universal permutation for Av(321)
must be of size Ω(nα) for any α < 2 [2].

References:
[1] Albert, M. H., Engen, M. T., Pantone, J. T., and Vatter, V.

Universal layered permutations. Electron. J. Combin., Vol.
25, 3 (2018).

[2] Alecu, B., Lozin, V., and Malyshev, D. Critical properties of
bipartite permutation graphs. arXiv:2010.14467 [math.CO]..

[3] Bannister, M. J., Cheng, Z., Devanny, W. E., and Eppstein, D.
A. Superpatterns and universal point sets. J. Graph Algorithms
Appl., Vol. 18, 2 (2014).

[4] Bannister, M., Devanny, W., and Eppstein, D. Small superpat-
terns for dominance drawing. In ANALCO14 — Meeting on
Analytic Algorithmics and Combinatorics, (2014).

[5] Engen, M., and Vatter, V. Containing all permutations. The
American Mathematical Monthly, Vol. 128, 4 – 24 (2021)
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Problem 12. Implicit graph conjecture (suggested by Robert
Šámal)

Source: Proposed by Kannan, Naor, and Rudich (1988)
An adjacency labelling scheme for a graph class F is a function

A : {0, 1}∗ × {0, 1}∗ → {0, 1} such that for any graph G ∈ F there
is a mapping ` : V (G) → {0, 1}∗ such that A(`(u), `(v)) = 1 iff
uv ∈ E(G).

We say that the scheme A has labels of size k if for any G ∈ F
and any v ∈ V (G) we have |`(v)| ≤ k.

A class F is hereditary, if for any G ∈ F any induced subgraph
of G is also in F .

For a graph class F we let Fn be the set of n-vertex graphs
in F .
Conjecture: Let F be a hereditary class such that |Fn| ≤ 2O(n logn).
Then Fn has an adjacency labelling scheme with labels of size
O(log n).

Related results:
• [KNR] Easily, n-vertex trees have an adjacency labelling scheme
of size 2dlog ne.
• [KNR] Also easy: if F has an adjacency labelling scheme of size
k then it has a induced-subgraph universal graph with 2k vertices.
• [BEGC] Let F be a hereditary class. Then Fn has an adjacency
labelling scheme with labels of size 1

n log |Fn|+ o(n).
• [DEGJMM] Planar graphs of size n have an adjacency labelling
scheme with labels of size log n+ o(log n) bits per vertex.

References:
• V. Dujmović, L. Esperet, G. Joret, C. Gavoille, P. Micek, P.
Morin: Adjacency Labelling for Planar Graphs (and Beyond), arXiv:2003.04280,
FOCS 2020
• S. Kannan, M. Naor, S. Rudich: Implicit representation of graphs.
SIAM J. Discrete Math., 5(4):596–603, 1992. doi:10.1137/0405049.
• M. Bonamy, L. Esperet, C. Groenland, A. Scott: Optimal la-
belling schemes for adjacency, comparability, and reachability, arXiv:2012.01764,
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STOC 2021
• L. Esperet: Universal graphs and applications (talk at Eurocomb
2021)
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Problem 13. Perfect Code in c-closed graphs (suggested
by Roohani Sharma)
Source: Proposed by Koana, Komusiewicz, Sommer at ESA 2020.

Definitions.
The Perfect Code problem is defined as follows.

Perfect Code
Input: An undirected graph G and a positive integer k
Question: Does there exists a set of at most k vertices of G,
say S, such that for each v ∈ V (G), |N [v] ∩ S|=1?

In other words, the solution of the Perfect Code problem is
an independent set and each vertex that is not in the solution is
dominated exactly once by the solution. The problem is NP-hard,
and in fact, it is W[1]-complete [1]. This means the problem cannot
exhibit an algorithm running in f(k) · nO(1) time, where f(·) is a
function that depends only on k, and n is the number of vertices in
the input graph.

For any positive integer c, a graph G is called a c-closed graph
if any pair of vertices in G, with at least c common neighbours, are
adjacent. That is, for any u, v ∈ V (G), u 6= v, if |N(u)∩N(v)| ≥ c,
then (u, v) ∈ E(G).

Question: Is Perfect Code FPT parameterized by k + c on c-
closed graphs? That is, does there exists an algorithm that solves
Perfect Code in c-closed graphs in f(k, c)·nO(1) time, where f(·)
is a function that depends only on k and c, and n is the number of
vertices in the input graph?

Also does Perfect Code admit a polynomial kernel parame-
terized by k, for every fixed c? That is, does there exists a poly-
nomial time algorithm that takes as input an instance of Perfect
Code on c-closed graphs, and outputs an equivalent instance of
Perfect Code on c-closed graphs, such that the number of ver-
tices in the output instance is O(kf(c)) for some function f(·) that
depends only on c.
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Related results:
• The notion of c-closed graphs was introduced by Fox et al. in [2].
• Koana et al. in [3] gave kernelization results for various hard
problems, including the Dominating Set problem, on c-closed
graphs.

References:
[1] Perfect Code is W[1]-complete: Marco Cesati: IPL 2002.
[2] Finding Cliques in Social Networks: A New Distribution-Free
Model: Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei,
Nicole Wein: SICOMP 2020.
[3] Exploiting c-Closure in Kernelization Algorithms for Graph Prob-
lems: Tomohiro Koana, Christian Komusiewicz, Frank Sommer:
ESA 2020.
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Problem 14. Long cycles in the random graphs (sug-
gested by Matas Šileikis)
Source: Proposed by P. Condon, A. Espuny Díaz, A. Girão, D.
Kühn and D. Osthus.

Definitions.
• For n = 1, 2, . . . , let Qn be the discrete hypercube of dimension
n, that is, a graph with vertex set {0, 1}n and two vertices adjacent
if and only if the corresponding vectors differ in exactly one entry.
• Let Qnp denote the random subgraph of Qn obtained by indepen-
dently removing each edge with probability 1− p.

Conjecture Suppose that p = p(n) satisfies pn → ∞, as n → ∞.
Then for some sequence δn = o(1),

P
(
Qnp contains a cycle of length at least (1− δn)2n

)
→ 1, n→∞.

Related results:
• In 2020, Condon, Espuny Díaz, Girão, Kühn and Osthus showed
that

• for every fixed δ, p ∈ (0, 1] the graph Qnp contains a cycle of
length at least (1 − δ)2n with probability tending to 1, as
n→∞.

• for every fixed ε > 0, as n→∞,

P
(
Qnp contains a Hamilton cycle

)
→

{
0, p ≤ 1/2− ε
1, p ≥ 1/2 + ε

References:
Condon, Padraig, Alberto Espuny Díaz, António Girão, Daniela

Kühn, and Deryk Osthus. "Hamiltonicity of random subgraphs of
the hypercube." In Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 889-898. Society for
Industrial and Applied Mathematics, 2021.
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Problem 15. Uniqueness of House Assignment Mecha-
nism (suggested by David Sychrovský)
Source: Proposed by Abdulkadiroglu and Sönmez in 1998.

Definitions.
• House assignment mechanism is a (stochastic) assignment of
houses to agents based on their ordered preferences.
• It needs to satisfy

• Equal treatment of equals: if two agents have same prefer-
ences, then they must have the same odds of obtaining a given
house.

• Ex-post efficiency: agents cannot exchange assigned houses in
a way that would make everyone happier.

• Strategy proofness: no agent may gain by lying about his pref-
erences.

• Random serial dictatorship is a mechanism which uniformly sam-
ples the ordering of agents and then assigns each their to house
among those which are left.

Example:
If agents have different first preferences, the assignment is deter-
ministic

Question: Is Random serial dictatorship the only mechanism which
satisfies all axioms of the house assignment problem?

References:
[1] Abdulkadiroglu, A. and Sonmez, T., Random serial dicta-

torship and the core from random endowments in house allocation
problems, Econometrica 66 (1998) 689-701.

[2] Bogomolnaia, A. and Moulin, H., A new solution to the ran-
dom assignment problem, Journal of Economic Theory 100 (2001)
295-328.
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Figure 4: Example of all agents having different first preferences.

[3] Nesterov, A., Fairness and efficiency in strategy-proof ob-
ject allocation mechanisms, Journal of Economic Theory 170 (2017)
145-168.
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Problem 16. b-Coloring Parameterized by Treewidth
(suggested by Paloma Thome de Lima)

Definitions.
• A b-coloring of a graph G is a proper vertex coloring (V1, . . . , Vk)
such that for every color class i ∈ {1, . . . , k}, there is a vertex
vi ∈ Vi that has a neighbor in all other color classes; i.e. for all
j 6= i, N(vi) ∩ Vj 6= ∅.
• The b-Coloring problem asks, given a graph G and an integer
k, if G has a b-coloring with k colors.

Example:

1 2 4

4 3 2

Figure 5: A graph with a b-coloring with four colors.

Question: Is b-Coloring parameterized by the treewidth of the
input graph W[1]-hard?

Related results:
• b-Coloring parameterized by clique-width is in XP and W[1]-
hard.
• b-Coloring parameterized by vertex cover is in FPT.

References:

• Lars Jaffke, Paloma T. Lima, and Daniel Lokshtanov. b-
Coloring parameterized by clique-width. In: STACS 2021,
pages 43:1–43:15.
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Problem 17. Colouring edges between grid points. (sug-
gested by Misha Tyomkyn)

Let G be the complete graph on the vertex set [n] × [n]. Define
the colouring c on E(G) as follows. For an edge e = v1v2, where
v1 = (a1, b1) and v2 = (a2, b2) to define c(e) we first determine the
type of e. Different types receive different colours.

• e is of type 1 if (a1 − a2)(b1 − b2) > 0,

• e is of type 2 if (a1 − a2)(b1 − b2) < 0,

• e is of type 3 if a1 = a2, and

• e is of type 4 if b1 = b2.

Now, for edges of type t ∈ {1, 2} put

c(e) := (t,min{a1, a2},min{b1, b2}).

For edges of type 3 and 4 put

c(e) := (3,min{b1, b2})

and
c(e) := (4,min{a1, a2}),

respectively.
Question: Prove that for any vertex set U ⊆ V (G) with |U | ≥ 2
there exist u1, u2 ∈ U such that c(u1u2) does not appear on any
other edge of the induced subgraph G[U ].

Question: Solve the analogous problem in [n]d for d ≥ 3.

The problem has interesting consequences in Ramsey theory.
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Problem 18. Two-Class (r, k)-Coloring (suggested by
Tung Anh Vu)

Definitions.
• A k-coloring c of a graph G is a mapping c : V (G)→ {1, . . . , k}.
• The assignment of the same color to a pair of adjacent vertices
is called a conflict, and the edge connecting these two vertices is a
conflict edge. Edges that are not conflicting are covered edges.
• A color of a coloring is proper if the vertices mapped to this
color are required to form an independent set. Remaining colors
are called relaxed colors.
• In the Two-Class (r, k)-Coloring problem (with r ≤ k), a
feasible solution is a k-coloring of the input graph such that we can
divide the k colors into a group of r relaxed colors and a group
of k − r proper colors. The cost of such a coloring is the amount
of conflicts, and the goal is to minimize the number of conflicts.
Equivalently, the cost of a coloring is the number of covered edges,
and the goal is to maximize the number of covered edges.

Known facts:
• (0, k)-Coloring is classical k-Coloring.
• The family of (r, k)-Coloring problems is NP-complete except
for the special case when (r, k) = (0, 2).
• (1, k)-Coloring cannot be approximated to any constant factor
within polynomial time for k ≥ 2.
• (r, k)-Coloring for 2 ≤ r ≤ k is APX-complete, i.e., it can
be approximated to some constant in polynomial time but not an
arbitrary constant.

Question: Let us explore this problem from the perspective of
parameterized complexity. Additionally, since polynomial approx-
imation schemes are not possible, can we develop a parameterized
approximation scheme? At least for some special graph classes?

References:

31



• Papp, P., Schmid, R., Stoppiello, V., & Wattenhofer, R. (2021).
Two-Class (r, k)-Coloring: Coloring with Service Guarantees. ArXiv,
abs/2108.03882.
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Problem 19. Generalized Conflict Coloring (suggested
by Tung Anh Vu)

Source: Proposed by Papp et al. in 2021.

Definitions.
• A k-coloring c of a graph G is a mapping c : V (G)→ {1, . . . , k}.
• The assignment of the same color to a pair of adjacent vertices
is called a conflict, and the edge connecting these two vertices is a
conflict edge.
• Given a graph G = (V,E) and a k-coloring of G, let us denote
the number of conflict edges adjacent to a vertex u ∈ V by κ(v).
• Given a real parameter p > 0, we define the Generalized Con-
flict Coloring problem, where the cost of a coloring c is defined
as

cost(c) =
∑
u∈V

κ(u)p.

The goal of the problem is to find a k-coloring that minimizes
the cost.

Examples:
• For p = 1, the cost is twice the number of conflict edges. Thus the
problem is equivalent to Two-Class (k, k)-Coloring or Max-k-
Cut.
• As p → ∞, the cost is dominated by the highest value κ(u).
This is known as the Defective Coloring problem, where the
goal is to find a coloring which minimizes the maximum number of
conflicts adjacent to a vertex.
• As p→ 0, the difference between the distinct κ(u) values dimin-
ishes for all κ(u) > 0, that is

lim
p→0

cost(c) =
∑
u∈V
κ(u)>0

1.

.
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Thus the goal is to minimize the number of conflict vertices.

Question: What is the precise complexity of this problem? If it
is NP-hard, can we develop (parameterized) approximation algo-
rithms?

Related results:
• Defective Coloring is NP-hard.
• Two-Class (r, k)-Coloring is NP-hard except when (r, k) =
(0, 2).

References:
• Papp, P., Schmid, R., Stoppiello, V., & Wattenhofer, R. (2021).
Two-Class (r, k)-Coloring: Coloring with Service Guarantees. ArXiv,
abs/2108.03882.
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