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Program

8:00 breakfast

9:00 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the
neighborhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. A function theoretic problem, with possible
applications to digraphs (suggested by Carl Feghali)
Statement and Motivation:

Consider two functions f and g from a set E into a set F such
that f(x) 6= g(x) for every x ∈ E . Suppose that there exists a
positive integer n such that for any element z in F either

|f−1(z)| ≤ n or |g−1(z)| ≤ n.

It was shown in [2] that E can be partitioned into 2n + 1 subsets
E1, E2, . . . , , E2n+1 such that f(Ei) ∩ g(Ei) = ∅ for each 1 ≤ i ≤
2n + 1. This result has nice applications in digraphs, and a short
proof was later given in [1].

Question: Is it possible to generalise the above to any number of
functions?

More specifically, consider functions f1, . . . , fk from a set E into
a set F such that fi(x) 6= fj(x) for every x ∈ E and 1 ≤ i < j ≤ k.
Suppose that there exists a positive integer n such that for any
element z in F , there exists an integer t ∈ {1, . . . , k} such that
|f−1t (z)| ≤ n. Is it true that E can be partitioned into 2n + 1
subsets of E1, . . . , E2n+1 such that fp(Ei) ∩ fq(Ei) = ∅ for each
1 ≤ i ≤ 2n+ 1 and 1 ≤ p < q ≤ k?

References:
[1] Bessy, Stéphane, Frédéric Havet, and Etienne Birmelé. "Arc-

chromatic number of digraphs in which every vertex has bounded
outdegree or bounded indegree." Journal of Graph Theory 53.4
(2006): 315-332.

[2] El Sahili, Amine. "Functions and line digraphs." Journal of
Graph Theory 44.4 (2003): 296-303.
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Problem 2. Reconfiguring 6-colorings of planar graphs
with girth at least 5 (suggested by Carl Feghali)

Background

The reconfiguration graph Rk(G) for the k-colorings of a graph
G has as vertex set all possible k-colorings of G and two vertices are
adjacent if they differ in the color of exactly one vertex. In [1] and
[2], we showed that for a planar graph G with n vertices, R10(G)
has diameter O(n). The first proof uses discharging and reducible
configurations. The second proof uses a Thomassen-like approach.
We further conjectured the following.

Conjecture: If G is a planar graph with n vertices and girth at
least 5, then R6(G) has diameter O(n)

We believe that the conjecture is amenable for attack using the
first proof method (i.e., discharging and reducible configurations)
but probably not the second.
References:

[1] Dvořák, Zdeněk, and Carl Feghali. "An update on reconfig-
uring 10-colorings of planar graphs." arXiv preprint arXiv:2002.05383
(2020).

[2] Dvořák, Zdeněk, and Carl Feghali. "A Thomassen-type
method for planar graph recoloring." arXiv preprint arXiv:2006.09269
(2020).
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Problem 3. Removal lemma for Latin squares (suggested
by Jan Hladký)

This is asking for a removal lemma for Latin squares. The re-
moval lemma of Ruzsa and Szemeredi says that if the density of
a fixed pattern (such as the triangle) in a graph is small then the
graph can be made free of that pattern using only small changes.
We ask whether the same phenomenon holds for Latin squares.
Here, "patterns" are generated according to the following proce-
dure.

Fix x and y. Sample x rows and y columns, and view them
from left to right and from top to bottom, respectively. Look at
the x ·y many values seen at the intersection and replace them with
their relative rank. So, this way, provided that all the initial values
seen were different (which will be the case most of the time), we get
one of (xy)! many "patterns". To quantify properly, the removal
lemma would state that for every ε > 0 there exists δ > 0 so that if
the number of a x-by-y patterns P in a Latin square of order n is
less than δn(x+y) then by using at most εn2 many changes we can
turn the Latin square into a P -free Latin square.

3



Problem 4. An extremal problem on crossing vectors
(suggested by Tomas Juškevičius)

Source: Proposed by Lason, Micek, Streib, Trotter and Walczak in
2014.

Definitions.
• We say that two vectors u, v ∈ Zd (d ≥ 2) are k−crossing if
there are two coordinates i, j such that ui− vi ≥ k and vj −uj ≥ k.

Question: What is the maximum size of a family of vectors in Zd

that is 1-crossing, but not k-crossing?
Conjecture: the maximum size of such a family is kd−1.

Related results:
• True for d ≤ 3.
• For all d the following quantity is an upper bound:

kd − k2(k − 1)d−2

References:
M. Lason, P. Micek, N. Streib, W.Trotter and B. Walczak "An

extremal problem on crossing vectors", Journal of Combinatorial
Theory, Series A (2014).

4



Problem 5. Edge modification criticality for H-free graphs
(suggested by Adam Kabela)

We recall that a graph is H-free if it contains no copy of H as
an induced subgraph. We consider the class of all edge minimal
H-free graphs (that is, graphs which are H-free but removing an
arbitrary edge always creates an induced copy of H) and similarly
consider the class of all edge maximal H-free graphs. What can we
say about the intersection of the two classes for different choices of
H?

We briefly thought about the question with Tomáš Kaiser, Théo
Pierron and Kristýna Pekárková and observed that for various choices
of H the intersection of the classes contains infinitely many graphs.
(Clearly, understanding the intersection for H yields a similar un-
derstanding for the complement of H.) Furthermore, it is easy to
see that the intersection is empty for H chosen as the path on four
vertices (and trivially for H chosen as a complete graph or as a
graph with no edges). Are there other graphs H for which the in-
tersection is empty? In particular, it is non-empty for most graphs
H on up to 5 vertices (for details, see picture below).

Figure 1: For these graphs on 5 vertices, we do not know the
answer yet.
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Problem 6. Large touching matching (suggested by Tereza
Klimošová)

Source: Proposed by Paul Seymour in November 2019 at MATRIX
Program: Structural Graph Theory Downunder.

Definitions.
• A touching matching in a graph G is a matching M in G such
that for all distinct e, f ∈M , there is an edge of G joining an end
of e and an end of f .
• The Hadwiger number h(G) of a graph G is the size t of the largest
complete graph Kt that is a minor of G.
• χ(G) denotes the chromatic number of G

Conjecture 1 (Hadwiger’s Conjecture). χ(G) ≤ h(G).

Let G be a graph with n vertices and no three-vertex stable set.
Hadwiger’s conjecture implies that there is a touching matching in
G of size at least n

8 − 1.

Question: Prove that a graph with n vertices and no three-vertex
stable set has a touching matching of size at least n

1000 .

Related results:
•Duchet, Meyniel [1]: For every n-vertex graphG, h(G) ≥ n/(2α(G)−
1. In particular, h(G) ≥ n/3 when α(G) = 2.
• See [2] for other results related to Hadwiger’s conjecture.

References:
[1] P. Duchet and H. Meyniel, "On Hadwiger’s number and the
stability number", in Graph Theory (Proc. conf. on graph theory,
Cambridge, 1981; B. Bollobás, ed.), Annals of Discrete Math. 13,
North-Holland Mathematical Studies 62 (1982), 71–73.
[2] P. D. Seymour, "Hadwiger’s conjecture", in Open problems in
mathematics (Nash, J.F. and Rassias, M.T. eds.), 2016 New York:
Springer, 417–448.
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Problem 7. Overpopulation rules in Simplified Game of
Life (suggested by Michal Opler)

Source: Proposed by Krishnendu Chatterjee, Rasmus Ibsen-Jensen,
Ismaël Jecker and Jakub Svoboda in 2020.

Definitions.
• A configuration of a graph G is a mapping of the vertices of G
into the set of states {0, 1}. We say that a vertex is dead if it is in
state 0, and alive if it is in state 1.
• A successor of a given configuration is determined by local update
rules. We are interested in two simplified rule types.

− Underpopulation rule R+(i0, i1) – a dead vertex becomes alive
if it has at least i0 live neighbors, and remains dead otherwise; a live
vertex remains alive if it has at least i1 live neighbors, and becomes
dead otherwise.

− Overpopulation rule R−(i0, i1) – a dead vertex becomes alive
if it has at least i0 live neighbors, and remains dead otherwise; a
live vertex remains alive if it has at most i1 live neighbors, and
becomes dead otherwise.
• Given an update rule R and a graph G, the configuration graph
C(G,R) is the (directed) graph whose vertices are the configurations
of G, and whose edges are the pairs (c, c′) such that the configura-
tion c′ is successor of c according to the update rule R. Note that
C(G,R) is finite since G is finite. Moreover, since the update rule
R is deterministic, every vertex of the configuration graph is the
source of a single infinite walk composed of a finite path followed by
a cycle.

− The configuration reachability problem, denoted Reach, asks,
given a graph G, an initial configuration cI , and a final configura-
tion cF , whether the walk in C(G,R) starting from cI eventually
visits cF .

− The long-run average problem, denoted Avg, asks, given a
threshold δ ∈ [0, 1], a graph G, and an initial configuration cI ,
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whether δ is strictly smaller than the average ratio of live vertices
in the configurations that are part of the cycle in C(G,R) reached
from cI .
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Figure 2: Evolution of a graph under the overpopulation rule
R−(3, 1). Live vertices are gray.

Question: How hard are Reach and Avg when the underly-
ing graphs belong to a restricted graph family - for instance two-
dimensional grids, or planar graphs?

Related results:
• Chatterjee et al. [1] showed that for any underpopulation rule
both Reach and Avg can be decided in polynomial time.
• On the other hand, they proved that for the overpopulation rule
R−(2, 1) both Reach and Avg are PSPACE-complete. This re-
mains true even when the underlying graphs are restricted to reg-
ular graphs of degree 10.

References:
[1] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Ismaël Jecker and
Jakub Svoboda. Simplified Game of Life: Algorithms and Com-
plexity. 45th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2020), 2020.
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Problem 8. Finding formulas for betweenness centrality
in specific graph classes (suggested by Aneta Pokorná)

Definitions.
• A path on k vertices p1, . . . , pk is denoted by Pk. Let Ck be a
cycle on k vertices c1, . . . , ck.
• Cartesian product G�H of two graphs G,H is a graph with ver-
tex set V (G) × V (H). Vertices (x, u), (y, v) are adjacent in G�H
whenever x = y and uv ∈ E(H) or u = v and xy ∈ E(G).
• Wheel Wk is a graph created from a cycle Ck by adding a central
vertex c adjacent to all vertices of the cycle.
• Subdivided wheel SWk is created from a wheel graph by subdividing
edges incident to the central vertex.

Figure 3: Wheel W8 and subdivided wheel SW8

• Spider net SNk,` is a graph created from Pk�C` by adding a new
vertex c and connecting it to vertices (p1, ci) for all i ∈ {1, . . . , `}.
• Sunflower graph SFk is a graph created from wheel Wk by adding
new vertices n1, . . . , nk where ni is adjacent to ci and ci+1 mod k,
where ci for all i ∈ {1, . . . , k} are the vertices of the outer cycle of
the wheel.
• Gear graph Gk is created by subdividing each edge of the outer
cycle of the wheel graph Wk.
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Figure 4: Spider net SP2,8 and sunflower SF8

• Betweenness centrality B(u) of a vertex u measures the impor-
tance of vertex u based on the number of shortest paths passing
through u. It is defined as

B(u) =
∑

x,y∈V (G),x 6=u6=y

σx,y(u)

σx,y
(1)

where σx,y is the total number of shortest x, y-paths and σx,y(u) is
the total number of shortest x, y-paths going through u (not includ-
ing paths with an endpoint in u).

Question: Determine betweenness centrality of all types of vertices
in

• subdivided wheels

• suflowers with subdivided edges incident to the central vertex

• sunflowers with subdivided edges of the main cycle
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Figure 5: Gear graph G8

• spider nets

• grids Pm�Pn

using reasonable parameters such as

• degree of the central vertex

• order of the graph

• dimensions of the grid

Related results:

Theorem 2 (Raghvan Unnithan, Kannan, Jathavedan, 2014, Ay-
tac, 2017). For any v ∈ V (Wk) of order n = k + 1 with k ≥ 6 it
holds

B(v) =

{
k(k−4)

2 = (n−1)(n−5)
2 , if v is the central vertex

1
2 , otherwise

Theorem 3 (Aytac, 2017). For k ≥ 5, let Gk of order n = 2k + 1
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Figure 6: Illustration of the contribution of pair of vertices x, y
to betweenness centrality of vertex u. Curves symbolize shortest
paths. The number of shortest paths from x to y thorough u is
four, as there are two ways how to get from x to u and two ways
how to get from u to y. The contribution of x and y to betweenness
of u is 4

4+3 = 4
7 , as there are four shortest paths between x and y

through u and seven shortest paths between x and y in total.

with central vertex denoted by c. It holds

B(c) = 2k2 − 161k

30
=

(n− 1)2

2
+

161(n− 1)

60
B(v) = 2k − 3 = n− 4 if deg(v) = 3

B(v) =
41

30
if deg(v) = 2

Theorem 4 (Aytac, 2017). Let SFk be a sunflower on n = 2k+ 1
vertices with central vertex c. Then

B(c) = 2k2 − 281k

30
=

(n− 1)2

2
− 281(n− 1)

60

B(v) = 2k − 49

30
= n− 79

30
if deg(v) = 5

B(v) = 0 if deg(v) = 2

Proposition 5 (Sunil Kumar, Balakrishnan, 2019). Take a vertex
x in Pm�Pn ; then x = (a, b), where 1 ≤ a ≤ m, 1 ≤ b ≤ n. The
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Figure 7: Sunflower SF8 with subdivided edges incident to the
central vertex and with subdivided edges of the main cycle

paths P a
n and P b

m passing through (a, b) divide the rectangular grid
into four quadrants A,B,C,D sharing their common sides. Any
pair of vertices lying in the diagonal regions A, B or C, D makes a
contribution to the betweenness centrality of (a, b). Hence

B(x) = B[(a, b)] =

=
∑
u,v

σ(u, x)σ(x, v)

σ(u, v)
+
∑
w,z

σ(w, x)σ(x, z)

σ(w, z)
−[(a−1)·(m−a)+(b−1)·(n−b)]

where u ∈ A, v ∈ B,w ∈ C, z ∈ D.

Proposition 6 (Sunil Kumar, Balakrishnan, 2019). In a grid Pn�Pm,
for any inner vertex w0 = (a, b), any vertex at a distance d =
min(a, b,m − a,m − b) > 0 from w0 induces a contribution 4d to
B(w0).

Proposition 7 (Sunil Kumar, Balakrishnan, 2019). In a grid Pm�Pn,
for any vertex w0 = (a, b), 1 < a < m, 1 < b < n, the k-
neighbourhood of w0 where k = min(a, b,m− a,m− b) > 0 denoted

13



Figure 8: Illustration to proposition 5.

by Nk(w0) contains 2k(k + 1) vertices and the contribution to the
betweenness centrality of w0 induced by Nk(w0) is 2k2(k + 1).

References:
R. S. Kumar and K. Balakrishnan. Betweenness centrality in

Cartesian prod- uct of graphs. AKCE International Journal of
Graphs and Combinatorics, Mar 2019. doi: 10.1016/j.akcej.2019.03.012

V. Aytac. On the centrality of some graphs. New Trends
in Mathematical Science, 4:1–11, Okt 2017. doi: 10.20852/ntm-
sci.2017.209.

R. S. Kumar, K. Balakrishnan, and M. Jathavedan. Between-
ness centrality in some classes of graphs. International Journal of
Combinatorics, 2014. ISSN 1687-9163. doi: 10.1155/2014/241723.
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Problem 9. Star coloring (suggested by Robert Šámal)
Source: Proposed by Z. Dvořák, B. Mohar and R. Šámal

The star chromatic index χ′s(G) of a graph G is the minimum
number of colors needed to properly color the edges of the graph
so that no path or cycle of length four is bi-colored.
Question: What is χ′s(Kn)?
Conjecture: If G is a subcubic graph then χ′s(G) ≤ 6.

Related results:
• [DBŠ] obtain a near-linear upper bound in terms of the maximum
degree ∆ = ∆(G). In particular,

χ′s(Kn) ≤ n · 22
√
2(1+o(1))

√
logn

(log n)1/4
.

or more crudely, for every ε > 0 there exists a constant c such that
χ′s(Kn) ≤ cn1+ε for every n ≥ 1.
• [DBŠ] χ′s(Kn) ≥ 2n(1 + o(1)).
• [DBŠ] If G is a subcubic graph, then χ′s(G) ≤ 7. If G is a simple
cubic graph, then χ′s(G) ≥ 4, and the equality holds if and only if
G covers the graph of the 3-cube.
• [BLMSS] If G is a cubic outerplanar graph or a cubic tree then
χ′s(G) ≤ 6.
• [GGR] If G is a cubic Halin graph then χ′s(G) ≤ 6.
• [GGR] If G is a bipartite graph where one part has max. degree
2 and the other part max. degree 3, then χ′s(G) ≤ 5

References:
• L. Bezegova, B. Luzar, M. Mockovciakova, R. Sotak, R. Skrekovski,
Star edge coloring of some families of graphs, Journal of Graph
Theory 81 (2016), 73–82.
• C. J. Casselgren, J. B. Granholm, A. Raspaud: On star edge col-
orings of bipartite and subcubic graphs, https://arxiv.org/abs/1912.02467
• and references therein
• Z. Dvořák, B. Mohar, R. Šámal: Star chromatic index, J. Graph
Theory 72 (2013), 313–326
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Problem 10. How dense must a random graph be so that
at each vertex we see approximately the same number of
trees of a given shape? (suggested by Matas Šileikis)

The binomial random graph G(n, p) is a graph on n labeled
vertices obtained by connecting each each pair i < j of vertices
independently with probability p. We allow p = p(n) and study
properties of G(n, p) that hold w.h.p. (with high probability), that
is with probability tending to 1, as n grows.

Fix a rooted tree T with k edges (say, a path of length k with
one endpoint being the root vertex).

Let Xn,v be the number of trees in G(n, p) which are rooted at
v and are isomorphic to T . Let’s call such trees T -extensions of
v. In the simplest case where T is a single edge, we have Xn,v =
degG(n,p)(v). So we can interpret the vector (Xn,1, . . . , Xn,n) as a
generalization of the degree sequence.

We want to understand when the number T -extension are ap-
proximately the same for every vertex. This problem, for more
general rooted graphs (not just trees) was considered by Spencer
(1990) and refined by Šileikis and Warnke (2019+).

We will assume np ≥ log n, since otherwise (an exercise!) with
positive probability there is an isolated vertex, so we cannot even
expect that Xn,v ≥ 1 w.h.p.

Further, we fix a sequence ε = ε(n) > 0 that slowly tends to 0.
The question is: for what sequences p = p(n, ε) is it true that

P {∀ vertex v Xn,v = EXn,v(1± ε)} → 1, as n→∞? (2)

Example: If it looks scary, let’s look at the simplest case when
T is an edge, so Xn,v is a binomial random variable (thus with
expectation (n− 1)p ∼ np). One of the many inequalities which is
called Chernoff implies

P {|Xn,v − (n− 1)p| ≥ εnp} ≤ exp

{
− ε2np

2 + o(1)

}
. (3)
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(Here we assume ε2np → ∞, that is what “ε slowly tends to 0”
means in this case.) If, we require p to satisfy

ε2np ≥ (2 + δ) log n, (4)

for some fixed δ > 0, then inequality (3), combined with the union
bound, implies that

max |Xn,v − (n− 1)p| ≤ εnp w.h.p.

The constant 2 in (4) is optimal. It’s not too hard to show that if

ε2np ≤ (2− δ) log n,

then
max |Xn,v − (n− 1)p| > εnp w.h.p.

Hoping that for a general tree T the situation is similar, we
reformulate our question as follows.
Question: For which rooted trees T , there is a constant C =
C(T ) > 0 such that for any constant δ > 0

P {∀ vertex v Xn,v = EXn,v(1± ε)} →

{
1, if ε2np ≥ (C + δ) log n

0, if ε2np ≤ (C − δ) log n.

(5)

References:
Šileikis, M., & Warnke, L. (2019). Counting extensions revis-

ited. arXiv preprint arXiv:1911.03012.
Spencer, J. (1990). Counting extensions. Journal of Combina-

torial Theory, Series A, 55(2), 247-255.
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Problem 11. Monochromatic antipodal paths in hyper-
cubes (suggested by Tung Anh Vu)

Source: S. Norine [1]

Definitions.
• Let ∆H(u, v) denote the Hamming distance between vectors u, v ∈
Zn
2 . An n-dimensional hypercube Qn is an undirected graph with

vertex set V (Qn) = Zn
2 and edge set

E(Qn) = {{u, v} : ∆H(u, v) = 1}.

• By a 2-coloring of a hypercube we mean any function c : E(Qn)→
{0, 1}.
• For a vertex u = (u1, . . . , un) ∈ V (Qn) its antipodal vertex u′ is
the vertex (1− u1, . . . , 1− un). For an edge e = {u, v} ∈ E(Qn) its
antipodal edge is the edge e′ = {u′, v′}.
• An antipodal coloring of a hypercube is a coloring such that each
pair of antipodal vertices have opposing colors.

Example: A properly colored Q2 ' C4 is not antipodally colored
and does not have such a pair. However an antipodally colored Q2

has such a pair, hence the motivation for an antipodal coloring.
Question: Let G be a hypercube Qn. Is there a pair of antipodal
vertices connected by a monochromatic path for each antipodal
coloring c?

Related results:
• This conjecture has been verified for n ≤ 6.
• The following conjecture by Feder and Subi [2] is equivalent to
Norine’s conjecture: Is there a pair of antipodal vertices connected
by a path which changes colors at most once for any 2-coloring of
Qn?
• See http://reu.dimacs.rutgers.edu/~tv157/topic-presentation.pdf
and http://reu.dimacs.rutgers.edu/~tv157/final-presentation.pdf.
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References:
[1] Edge-antipodal colorings of cubes. The Open Problem Garden,
Norine, S, 2008.
[2] On hypercube labellings and antipodal monochromatic paths,
Feder, Tomás and Subi, Carlos, Discrete Applied Mathematics, 161,
10-11, 1421–1426, 2013, Elsevier.
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