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Program

8:00 breakfast

9:00 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the
neighborhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. Hat chromatic number (suggested by Václav
Blažej)

Source: Proposed by Bosek, Dudek, Farnik, Grytczuk, and Mazur
in Hat Chromatic Number of Graphs 2019.

We are given a graph G and number of colors k. Vertices of
G are occupied by players (called Bears) which can see all their
neighbors but not themselves. Each of them will be given a colored
hat and their task is to come up with a collective strategy such
that at least one of them will guess his hat correctly. The guess
may depend on hat colors of Bear’s neighbors. The coloring of G
is chosen by an evil adversary (called Demon) who knows Bears’
strategy. If the Bears’ strategy guarantees that at least one always
guesses correctly they win.

Definitions.
• The hat chromatic number µ(G) is the maximum number of col-
ors k such that there is a winning strategy for Bears.

Example:
• µ(K2) = 2. Note that each Bear recognizes 2 situations based on
its neighbor’s hat colors. If k = 3 then the adversary can choose a
color which each bear never uses. Bears’ winning strategy for k = 2
is for the first one to guess the same color as his neighbor has, and
the second one will guess the other color.
• µ(Kn) ≥ n. The winning strategy is not hard and is left as an
excercise.
• µ(Kn) ≤ n. The upper bound uses probabilistic method – excer-
cise.

Question:
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• Conjecture (max degree): µ(G) ≤ ∆ + 1
• Conjecture (max clique): χ(G) ≤ µ(G) + 1
• Conjecture (Hadwiger number): µ(G) ≤ h(G)
• Conjecture (weak coloring number): µ(G) ≤ f(col(G)) for a func-
tion f
• Conjecture (strong coloring number) : µ(G) ≤ col(G)
• Conjecture (weak planar): µ(G) ≤ C for planar graph for a
constant C
• Conjecture (strong planar): µ(G) ≤ 4 for planar graphs

Related results:
• Theorem (trees): µ(T ) ≤ 2
• Theorem (planar): µ(G) ≤ 6 for planar graphs G with girth at
least 14
• Theorem (max degree): µ(G) ≤ e(∆ + 1)
• Lemma (max clique): ω(G) ≤ µ(G)
• Theorem (paths): µ(Pn) = 2 for n ≥ 2

References: An extended list of results, conjectures, and sources is
available online at http://users.fit.cvut.cz/~blazeva1/res/
bears/
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Problem 2. Centered coloring of grids (suggested by
Michał Dȩbski)

Source: Proposed by Felsner, Micek and Schröder in 2019 year.

Definitions.
• A vertex coloring ψ of a graph G is p-centered if for every con-
nected subgraph H of G either ψ uses more than p colors on H or
there is a color that appears exactly once on H.
• A graph G is a grid if it is a subgraph of a Cartesian product of
two paths, i.e. vertices of G are pairs of integers and vertices (x, y)
and (x′, y′) form an edge iff |x− x′|+ |y − y′| = 1.

Example:
1-centered coloring of G is a proper vertex coloring of G.

Question: Determine the minimum number f(p) such that every
grid has a p-centered coloring that uses at most f(p) colors.

Related results:
• The answer is at most linear in p – from a general result for
bounded degree graphs it follows that f(p) ≤ 16384p.
• A trivial lower bound is that f(p) ≥ p.

References:
M. Dȩbski, S. Felsner, P. Micek and F. Schröder, Improved

bounds for centered colorings, arxiv:1907.04586, 2019.
M. Pilipczuk and S. Siebertz, Polynomial bounds for centered

colorings on proper minor-closed graph classes. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’19, pages 1501–1520, 2019.
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Problem 3. Large monochromatic rectangle for function
of short randomized protocol (suggested by Pavel Dvořák)

Source: Proposed by Arkadev Chattopadhyay et al. [1]

Definitions.
Let f be a function {0, 1}n × {0, 1}n → {0, 1}.
• Cost of randomized protocol computing f is a number of bits,
which Alice and Bob sends to each other to compute f(x, y) with
high probability when Alice gets x, Bob gets y and they can use a
shared random bits.
• A matrix Mf is a boolean matrix of size 2n × 2n and Mf (x, y) =
f(x, y).
• Rectangle R is a submatrix of Mf . The rectangle R is monochro-
matic if all entries of R are the same (0 or 1). The size of rectangle
|R| is the number of entries in R.

Question: Let f : {0, 1}n × {0, 1}n → {0, 1} have a randomized
protocol of cost c. Is it true that Mf contains a monochromatic
rectangle R of size |R| ≥ 2−O(c)22n?

Related results:
• The question relates to the separation of communication classes
PNP and BPP.

• PNP – class of functions computable by deterministic protocol
of length polylog(n) with access to the NP oracle.

• BPP – class of functions computable by randomized protocol
of length polylog(n).

References:
[1] Arkadev Chattopadhyay, Shachar Lovett and Marc Vinyals.

Equality Alone Does not Simulate Randomness. 34th Computa-
tional Complexity Conference (CCC 2019).
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Problem 4. Linear space hypothesis for 2SAT3 (sug-
gested by Miloš Chromý):
Source: Proposed by Tomoyuki Yamakami 2016.

Hypothesis: For any choice of ε ∈ (0, 1) and any polylogarithmic
function l, no deterministic Turing machine solves 2SAT3 parame-
terized by number of variables n simultaneously in polynomial time
using nεl(|x|) space, where x refers to an input instance to 2SAT3.

Definitions.
• 2SAT3 is an instance of SAT, where each clause of an input
CNF has at most two literals and each variable has at most three
occurences.
• n is a paremetr for a problem P if for every input sequence x
of a problem P , n can be computed in log-space and there exists a
polynomial function p such that n ≤ p(|x|), where |x| is a number
of bits to represent an instance x.

Related results:
• Undirected graph reachibility can be done in sublinear time .
• Polytime algortithm for a directed graph reachibilty using “sub-
linear” space n1−c/

√
lognl(m+n) where l is polylog function and m

number of edges and n number of vertices. This algorithm can be
used for implication graph of a 2SAT3 instance.

Question: Can we get polytime algorithm with better space com-
plexity?

References:
Yamakami, Tomoyuki, The 2CNF Boolean Formula Satisfiabil-

ity Problem and the Linear Space Hypothesis. 2017.
https://arxiv.org/abs/1709.10453.

Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch
Schieber. 1998. A Sublinear Space, Polynomial Time Algorithm
for Directed s-t Connectivity. SIAM J. Comput. 27, 5 (October
1998), 1273-1282.
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Problem 5. Partitioning posets into chains and antichains
(suggested by Vít Jelínek)

Source: Proposed by Brandstädt and Kratsch (for permutations)
in 1986.

Definitions.
• A poset is a pair P = (X,4) where X is a set and 4 is a partial
order on X. A chain in a poset is a set C ⊆ X whose every two
elements are comparable by 4, while an antichain is a set A ⊆ X
whose every two distinct elements are incomparable.
• A permutation of size n is a sequence π = π1, π2, . . . , πn, in which
every number from the set {1, . . . , n} appears exactly once. To such
a permutation, we may associate a partial order 4 by putting πi 4
πj if an only if i ≤ j and πi ≤ πj. Notice that the chains of the
resulting poset correspond to increasing subsequences of π, while the
antichains correspond to decreasing subsequences.
• To partition a poset P = (X,4) into k chains and ` antichains
means to find k chains C1, . . . , Ck and ` antichains A1, . . . , A` in
P such that

X = C1 ∪ · · · ∪ Ck ∪A1 ∪ · · · ∪A`

(we may assume without loss of generality that C1, . . . , Ck, A1, . . . , A`

are all disjoint).

Question: Is there an algorithm which, for a given poset P and
a given integer k determines whether P can be partitioned into 1
chain and k antichains? And dually, is there an algorithm which
determines whether P can be partitioned into 1 antichain and k
chains? The problem is open even for permutation posets (for which
the two questions become equivalent by symmetry).

Related results:
There is a simple polynomial algorithm which, for a given poset

P , finds the smallest k such that P can be partitioned into k chains;
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this k is also equal to the size of the largest antichain in P , by
Dilworth’s theorem. There is also an (even simpler) algorithm that
finds an optimal partition of P into antichains. Moreover, for any
two fixed constants k and `, there is an algorithm which for a given
poset P determines whether P can be partitioned into k chains and
` antichains, in time polynomial in |P |; this follows from a more
general result of Kézdy, Snevily and Wang.

On the other hand, for k and ` part of the input, the previous
problem is NP-complete, as shown by Wagner. Fomin et al. later
showed that for a given P , the smallest value of k + ` for which
such a partition exists can be approximated in polynomial time
within a factor of 1 + 1/

√
2 ≈ 1.71. It is not known whether this

approximation ratio is optimal.

References:
A. Brandstädt, D. Kratsch: On partitions of permutations into in-
creasing and decreasing subsequences, Journal of Information Pro-
cessing and Cybernetics 22 (1986), 263–273.

F. V. Fomin, D. Kratsch. J.-C. Novelli: Approximating minimum
cocolorings, Information Processing Letters 84 (2002), 285–290.

A. E. Kézdy, H. S. Snevily, C. Wang: Partitioning permutations
into increasing and decreasing subsequences, Journal of Combina-
torial Theory, Series A 73(2) (1996), 353–359.

K. Wagner: Monotonic coverings of finite sets, Journal of Informa-
tion Processing and Cybernetics 20 (1984), 633–639.
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Problem 6. Dilworth number (suggested by Tereza Kli-
mošová)

Source: Proposed by Marthe Bonamy at Dagstuhl Workshop in
June 2019.

Definitions.
• For two vertices x and y, we say that x dominates y if N [x] ⊇
N(y).
• Dilworth number dilw(G) is the size of a largest set of pairwise
incomparable vertices.

Question: If dilw(G) is bounded

• is coloring in P?

• is clique-width bounded?

Random facts about Dilworth numbers
• Graphs with Dilworth number at most four are perfect [1]. (Best
possible—C5 has Dilworth number five and is not perfect.)
• dilw(G) = dilw(G)
• Deciding whether a graph has Dilworth number k can be done in
O(k2n2) time [2].
• Some characterisation of graphs with Dilworth number k is given
in [3].

References:
[1] Payan, Charles. "Perfectness and Dilworth number." Dis-

crete Mathematics 44.2 (1983): 229-230.
[2] Felsner, Stefan, Vijay Raghavan, and Jeremy P. Spinrad.

"Recognition algorithms for orders of small width and graphs of
small Dilworth number." Technical report (1999).

[3] Calamoneri, Tiziana, and Rossella Petreschi. "On pairwise
compatibility graphs having Dilworth number k." Theoretical Com-
puter Science 547 (2014): 82-89.
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Problem 7. Size Ramsey number of a path (suggested by
Tereza Klimošová)

Source: Deepak Bal and Louis DeBiasio in [1].

Definitions.
• Given a graph H, let R̂r(H) be the minimum m such that there
exists a graph G with m edges such that in every r-coloring of G,
there is a monochromatic copy of H.
• We call R̂2(H) the size-Ramsey number of H.

Known
• 74n ≥ R̂2(Pn) ≥ (3.75− o(1))n [1] and [2].

Question: What is the largest monochromatic path one can find
in an arbitrary 2-coloring of a d-regular graph on n vertices?

Note that the upper bound on the size Ramsey number gives
an upper bound for this question. Thus, the question is for which
values of d one can do better.

References:
[1] Deepak Bal, Louis DeBiasio: New lower bounds on the size-

Ramsey number of a path, arXiv:1909.06354.
[2] A. Dudek, P. Prałat. On some multicolor Ramsey properties

of random graphs. SIAM Journal on Discrete Mathematics 31, no.
3 (2017): 2079–2092.
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Problem 8. Small elements in the colouring poset (sug-
gested by Robert Lukoťka)

Definitions.
• A colour is an element from {0, 1, 2}. An n-colour-tuple is an
element from {0, 1, 2}n. We denote i-th colour, i ≤ 0 < n (indexing
from zero), of an n-colour-tuple t as ti. An n-colour-set is a set of
n-colour-tuples.
• An n-colour-tuple satisfies the parity lemma if each colour is used
the same number of times mod 2.
• An n-tuple-set S is proper if every element of S satisfies the parity
lemma and if every element t of S allows Kempe switches, that is
for each 0 ≤ i < n, and for each set C of two colours that includes
ti, there exists j 6= i, 0 ≤ i < n, such that tj ∈ C and if we change
the colours of ti and tj to the other colour from C, the resulting
n-colouring-tuple is in S.
• We can identify some n-colouring sets into equivalence classes,
one can consider swapping of the colours irrelevant, and one can
consider the order in the tuples irrelevant (that is to change the
order of all tuples at once).
• A cubic n-network N = (G, o), where G is a graph that has of
n vertices of degree 1 (terminals) and vertices of degree 3, and o
is an ordering of its terminals. We say that N admits a colouring
tuple t if there exists a colouring such that the edge incident with
i-th terminal. We say that N represents a colouring set if it admits
exactly the tuples of the set.
• The set of all n-colouring-sets creates a c-colouring-poset.

Every n-network represents some proper n-tuple-set. However,
it is not known if every proper n-tuple-set is represented by some
n-network. For n < 6 this statement holds. For n = 6 we do
not have a representant of several n-colour-sets. Then case when
n = 6 might be the only interesting case as no snark without non-
trivial ≤ 6-cuts is known. As we are not able to find the 6-networks
representing certain proper 6-tuple-sets, maybe one can somewhat
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restrict the notion of properness. This is, however, probably too
much to ask I propose a partial problem to work on.

Problem: Pick a property that is satisfied only of n-colouring-sets
that are very close to ∅ in the poset and try to characterize the
networks representing this n-colouring set.

An interesting property is e.g. that the n-colouring-set is “uniquely-
proper”, that is we modify the definition of properness to “for every
t and i there exists exactly one j”. It seems intuitive, that in this
setting, small edge-cuts should appear.

References:
J. Karabáš, E. Máčajová, R. Nedela: 6-decomposition of snarks,
European Journal of Combinatorics 34 (2013), 111 – 122.
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Problem 9. Unbalanced flow values on cycles (suggested
by Robert Lukoťka)

Definitions.
• A (Z2×Z2)-flow on a graph G is a mapping ϕ : E(G)→ Z2×Z2

such that for every v ∈ V (G) the sum of ϕ on all edges incident
with v is zero.
• The support of ϕ (S(ϕ)) is the set of edges of G that have non-zero
value in ϕ.

Problem: Let G be a cubic graph and let C by a cycle of G.
Let ϕ be a (Z2 × Z2)-flow on G. Let ϕ′ be a flow on G such that
S(ϕ) − E(C) = S(ϕ′) − E(C). The aim is to choose ϕ′ so that
|S(ϕ′)| is as big as possible. The aim is to find a good bound on
|S(ϕ′)| with respect to E(C).

There are several interesting variants of this problem we can work
on: planar, weighted, non-cubic etc.

Related results:
• One can easy show that there exists ϕ′ such that |S(ϕ′)| ≤ 1/4 ·
|E(C)|.
• If one can find a flow where all four flow values are not present
approximately equally, one can modify this flow to contain few zero
values (and thus, the flow has large support)
• Fan showed, that there exists ϕ′ such that |S(ϕ′)| < 1/4 · |E(C)|.

References:
G. Fan, Integer 4-Flows and Cycle Covers, Combinatorica 37 (2017),
1097–1112.
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Problem 10. (List) 3-coloring of 2P4-free graphs (sug-
gested by Jana Novotná)

Definitions.
• A graph is Pt-free if it does not contain a path on t vertices as
an induced subgraph.

Question: What is the time complexity of (list) 3-coloring of 2P4-
free graphs? Can you find a polynomial algorithm?

Related results: • For every k ≥ 3, if H is not a linear for-
est (disjoint union of paths), k-coloring is NP-complete on H-free
graphs.
• List-3 coloring is polynomial on P6 +rP3-free and P7-free graphs.
• Summary for Pt-free graphs:

k-Colouring List k-Colouring
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 4 ≤ k ≤ 5 k ≥ 6

t ≤ 5 P P P P P P P
t = 6 P P NP-c NP-c P NP-c NP-c
t = 7 P NP-c NP-c NP-c P NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c

References:
• Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, Mingxian
Zhong:
List-three-coloring graphs with no induced P6+rP3, 2018.
• Klimošová, Malík, Masařík, Novotná,
• Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt,
Maya Stein, and Mingxian Zhong: Three-coloring and list three-
coloring of graphs without induced paths on seven vertices, 2017.
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Problem 11. Permutation superpatterns (suggested by
Michal Opler)
Source: Several variants mentioned by Engen and Vatter [4] and
Bannister et al. [3].

Definitions.
• A permutation is a sequence π = π1, π2, . . . , πn in which each
number from the set [n] = {1, 2, . . . , n} appears exactly once.
• A permutation π contains a permutation σ, if π has a subsequence
of length k whose elements have the same relative order as the ele-
ments of σ, otherwise we say that π avoids σ, or π is σ-avoiding.
• A permutation class C is a down-set of permutations, i.e. if π
is in C, then all the permutations contained in π are in C as well.
Av(σ) denotes the class of σ-avoiding permutations.
• Given a permutation class C, the permutation π is said to be
n-universal for C if π contains all of the permutations of length
n in C (the alternate term superpattern is sometimes used in the
literature). A permutation is said to be simply n-universal if it
contains all permutations of length n.
• Consider a pair of permutations σ = σ1, . . . , σk and τ = τ1, . . . , τ`.
The direct sum of σ and τ , denoted σ ⊕ τ , is the permutation
π = σ1, . . . , σk, k+ τ1, k+ τ2, . . . , k+ τ`. Similarly, their skew sum,
denoted σ 	 π, is the permutation `+ σ1, . . . , `+ σk, τ1, τ2, . . . , τ`.
• The class of separable permutations is the smallest non-empty
class closed under taking direct and skew sums.

Question: Investigate what is the shortest n-universal permuta-
tion for various permutation classes C, in particular for the class of
separable permutations.

Related results:
• To date, the best bounds on the size of the smallest n-universal
permutation are that it lies between n2/e2 (a consequence of Stir-
ling’s Formula) and dn

2+1
2 e, which was established by Engen and

Vatter [4].
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231⊕ 321 = 231654 231	 321 = 564321

Figure 1: Example of direct and skew sum.

• The exact formula for smallest n-universal permutation for the
class of layered permutations, i.e. Av(231, 312) was given by Albert
et al [1].
• Banninster et al. [2] constructed n-universal permutation for
Av(213) of size n2/4 + Θ(n) and n-universal permutation of size
O(n logO(1) n) for any proper subclass of Av(213).
• Moreover, Bannister et al. [2] proved a connection between the
superpatterns of Av(213) and universal point sets, i.e. sets of points
that can be used as vertices for straight-line drawings of all n-vertex
planar graphs. Consequently, they obtained the current best upper
bound for a size of universal point set of n2/4−Θ(n).
• Banninster et al. [3] constructed n-universal superpattern of size
O(n3/2) for Av(321).

References:
[1] Albert, M. H., Engen, M. T., Pantone, J. T., and Vat-

ter, V. Universal layered permutations. Electron. J. Combin.,
Vol. 25, 3 (2018).

[2] Bannister, M. J., Cheng, Z., Devanny, W. E., and Epp-
stein, D. A. Superpatterns and universal point sets. J. Graph
Algorithms Appl., Vol. 18, 2 (2014).
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[3] Bannister, M., Devanny, W., and Eppstein, D. Small su-
perpatterns for dominance drawing. In ANALCO14 — Meeting
on Analytic Algorithmics and Combinatorics, (2014).

[4] Engen, M., and Vatter, V. Containing all permutations.
arXiv:1810.08252 [math.CO].
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Problem 12. Characterizing class of directed graphs closed
on χ′(D) = ∆cycle(D) (suggested by Aneta Šťastná)

Source: Proposed by Sebastian Widerrecht in 2019.

Definitions.
• D is a directed graph with digons 1 allowed.
• degcycle(v) is number of directed cycles containing v.
• ∆cycle(v) = max{degcycle(v) | v ∈ V (G)}
• χ′(D) is minimal number of colors to color the directed cycles of
D such that no two intersecting cycles share a colour.
• CD is a hypergraph derived from D,

CD = (V (D), {v ∈ C |C directed cycle in D}).

• A vertex shrink is operation on hypergraph H where we remove
a vertex v by removing it from all hyperedges.
• A hypergraph H is balanced iff χ′(H ′) = ∆(H ′) for all hyper-
graphs H ′ obtained from H by edge deletions and vertex shrinks.
• A hypergraph H is normal iff χ′(H ′) = ∆(H ′) for all hypergraphs
H ′ obtained from H by edge deletions.
• A directed graph is non-even iff arcs can be 0-1-weighted such
that each directed cycle has odd weight.

Question: Characterize class of graphs D such that directed graph
D belongs to D iff χ′(D′) = degcycle(D′) for all D′ ⊆ D.

Related results:
• It is easy to observe that

∆cycle(D) = ∆CD (1)
χ′(D) = χ′(CD) (2)

• D ( non-even digraphs
• D is a minor-closed class.

1A digon is a pair of arcs (u, v), (v, u) between u, v ∈ V (D).
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Figure 2: Digraph A4 and it’s corresponding cycle hypergraph
CA4

• Graphs Ai for i ∈ 4, 6, . . . are not in D and A4 is a forbidden mi-
nor. The graph A4 is shown on first figure of this problem together
with it’s cycle hypergraph. Other Ai’s are obtained by replacing a
bidirected edge at the bottom part of the figure by path containing
edges of both orientation of length i− 3.
• D contains no odd bicycles. The smallest odd bicycle is shown
on the second figure of this problem.
• Any results already known for balaced and normal hypergraphs
can be of use.
• Directed treewidth is bounded for D (by directed grid theorem,
see references).

References:
K. Kawarabayashi, K. Stephan: The Directed Grid Theorem, Pro-
ceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing (2015).
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Problem 13. Chromatic number of cycle digraphs (sug-
gested by Aneta Šťastná)
Source: Proposed by Sebastian Widerrecht in 2019.

Definitions.
• D is a directed graph with digons 2 allowed.
• degcycle(v) is number of directed cycles containing v.
• ∆cycle(v) = max{degcycle(v) | v ∈ V (G)}
• χ′(D) is minimal number of colors to color the directed cycles of
D such that no two intersecting cycles share a colour.
• CD is a hypergraph derived from D. CD is defined as

(V (D), {v ∈ C |C directed cycle in D}).

Example:
On first figure of this problem we can observe a digraph A4 and its
corresponding cycle hypergraph C. We can observe that hypergraph
C is not colorable by 4 colors. A coloring using 5 colors is shown
on the second figure of this problem.

Question: Prove χ′(CD) ≤ b 32∆(CD)c or a some other bound bet-
ter than general using CD ( H for H class of all hypergraphs.

Given a hypergraph H, how can we decide if there exists a
directed graph D such that H = CD?

Related results:
• It holds that χ′(H) ≤ 2∆(H)− 1 for any hypergraph H.
• There exists a conjecture that χ′(H) ≤ b32∆(H)c for any hyper-
graph H.
• It is easy to observe that

∆cycle(D) = ∆CD (3)
χ′(D) = χ′(CD) (4)

2A digon is a pair of arcs (u, v), (v, u) between u, v ∈ V (D).
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Figure 3: Digraph A4 and it’s corresponding cycle hypergraph C

Figure 4: A coloring of C using 5 colors.
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