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Program

8:00 breakfast

9:00 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the
neighborhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. Unions of k-convex point sets (suggested by
Martin Balko)

Source: Proposed by Aichholzer et al. [1] in 2014.

Definitions.
• For k ≥ 1, a k-convex polygon is a simple polygon that is inter-
sected by every line in at most k-connected components.
• For k ≥ 1, a point set S in the plane in general position (that is,
no three points of S lie on a common line) is k-convex if there is
a k-convex polygon with vertex set S.

Clearly, 1-convex polygons correspond to convex polygons and
1-convex sets to point sets in convex position. Note that every k-
convex set is also (k + 1)-convex. It is known that every subset
of a k-convex point set is k-convex [1]. Aichholzer et al. [1] also
showed that every set of n points in the plane in general position is
k-convex for some k ≤ O(

√
n) and this is tight for some point sets

(a perturbed
√
n×
√
n grid, for example).

Question: Are there examples for general k and j such that the
union of a k-convex point set and a j-convex point set is not (k+j)-
convex?

Related results:
• Aichholzer et al. [1] gave an example of 1-convex sets S and T
such that their union S ∪ T is not 2-convex; see the figure. They
also showed that a union of a k-convex set and a j-convex set is
always (k + j + 1)-convex.
• Balko et al. [2] found examples of k-convex sets and j-convex sets
such that their union is not (k + j − 1)-convex.

References:
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Figure 1: Union of two 1-convex point sets, each on five points,
that is not 2-convex. The inner point set is contained in the open
region bounded by the five dotted diagonals.

[1] Aichholzer O., Aurenhammer F., Hackl T., Hurtado F., Pilz A.,
Ramos P. et al. On k-Convex Point Sets. Computational geometry.
2014;47(8):809-832.
[2] Balko M., Bhore S., Sandoval L.M., Valtr P. On Erdős–Szekeres-
type problems for k-convex point sets. Submitted.
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Problem 2. Online Ramsey number of trees (suggested
by Václav Blažej)

Definitions.
• An online Ramsey game with the goal graph H is a game between
Builder and Painter, alternating in turns. In each round Builder
draws an edge and Painter colors it either red or blue. Builder wins
if after some round there is a monochromatic copy of the graph H,
otherwise Painter is the winner.
• An online Ramsey number r̃(H) is the minimum number of rounds
such that Builder has a winning strategy in the online Ramsey
game.

Example:
• It is possible to create a monochromatic triangle in 8 moves by
creating a S5 and connecting leaves of the monochromatic S3 with
three edges.
• We can create a monochromatic path Pn by induction by having
a red and blue path (possibly with length 0), joining them with an
edge and creating another edge from a common endpoint. It’s not
hard to see that sum of their lengths increases which eventually
causes one of them to have n edges.

Question: Show bounds on the r̃(T ) where T is an arbitrary tree.

Related results:
• It is possible to create paths, brooms, spiders, centipedes, and few
other tree classes in optimal time, however there is no polynomail
time strategy for general trees.
•A general strategy for trees shown in 2004 by Grytczuk, Haluszczak
and Kierstead shows that it is possible to create all forests on a
class of forest background graphs. This strategy needs exponential
number of rounds.

References:
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• Jaroslaw Grytczuk, Mariusz Hałuszczak, and Hal A. Kierstead.
On-line ramsey theory. Electronic Journal of Combinatorics, 11,
2004.
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Problem 3. Spanning Trees in Multipartite Geometric
Graphs (suggested by Miloslav Brožek)

Definitions.
• We are given multiple points on plane. Each point has one of K
colors assotiated with it. We have to connect the points by segments
in such way, that it forms minnimum spanning tree (where edges
are segments between points and their weight is the distance) while
only points of different colors can be connected.

Question: Is is possible to solve the problem faster than posed in
results? Is the result also lower bound?

Related results:
• It was shown it is possible to solve such problem inO(Nlog(N)log(K))
time.

References:
https://arxiv.org/pdf/1611.01661.pdf
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Problem 4. Inapproximability of Edit Distance (suggested
by Pavel Dvořák)

Let x, y be two strings over an alphabet Σ of length n.

Definitions.
• Edit distance (ED) of x and y is the minimum number of inser-
tion, deletion and substitution that transform x to y.
• Longest common subsequence (LCS) of x and y is the longest
string s such that s is a substring of x and y.

In 2017 Abboud et al.[1] showed that under SETH there is no(
2(logn)1−o(1))

-approximation for bichromatic version of LCS run-
ning in truly subquadratic time (i.e., n2−ε).

Question: Show inapproximability result for edit distance.

Related results:
• For exact algorithms edit distance and LCS is the same problem,
because LCS(x, y) = n− ED(x, y).
• Under SETH, there is no exact algorithm for edit distance which
runs in truly subquadratic time [2].
• There is a constant approximation for edit distance running in
time Õ

(
n2−2/7

)
[3].

References:
[1] Amir Abboud, Aviad Rubinstein, R. RyanWilliams. Distributed
PCP Theorems for Hardness of Approximation in P. FOCS 2017.
[2] Arturs Backurs, Piotr Indyk. Edit Distance Cannot Be Com-
puted in Strongly Subquadratic Time (unless SETH is false). STOC
2015.
[3] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal
Koucký, Michael Saks. Approximating Edit Distance Within Con-
stant Factor in Truly Sub-Quadratic Time, FOCS 2018.
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Problem 5. Subquadratic Conondeterministic Algorithm
for Orthogonal Vector Problem (suggested by Pavel Dvořák)

Definitions.
• Let 〈·, ·〉 be a standard inner product of vectors over R.
• Nondeterministic strong exponential time hypothesis (NSETH):
For every ε > 0 there exists k such that there is no nondeterministic
algorithm for k-TAUT running in time 2(1−ε)n.

Problem: Orthogonal Vector Problem (OVP)
Instance: A,B ⊆ {0, 1}d, |A| = |B| = n, d = O(log n)
Question: Are there orthogonal x ∈ A and y ∈ B, i.e.,

〈x, y〉 = 0?
Problem: k-TAUT
Instance: k-CNF formula ϕ
Question: Is ϕ a tautology?

Question: Find a truly subquadratic conondeterministic algo-
rithm for OVP, i.e., a nondeterministic algorithm which runs in
time O(n2−ε) and answer yes if all pairs of vectors x ∈ A and
y ∈ B are orthogonal.

Related results:
• An existence of truly subquadratic conondeterministic algorithm
for OVP would refute NSETH [1].

References:
[1] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mi-
hajlin, Ramamohan Paturi, Stefan Schneider. Nondeterministic
Extensions of the Strong Exponential Time Hypothesis and Con-
sequences for Non-reducibility. ITCS 2016.
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Problem 6. Intersection of longest paths (suggested by
Adam Kabela)
We might study the intersecting of longest paths (that is, paths of
maximum length). Clearly, every two longest paths of a connected
graph have a vertex in common. In 1966, Gallai asked whether all
longest paths of a connected graph share a vertex. This question
was answered in the negative (for instance, see the graphs depicted
in the figure below). However, many related questions remain open
(some of them are listed below).

Figure 2: Two examples of connected graphs whose every vertex
is missed by some longest path. Smallest such graph (left) found
independently by Walther and Voss, 1974 and by Zamfirescu, 1976.
Planar such graph (right) found by Schmitz, 1975 (in this graph,
we can choose seven longest paths such that no vertex belongs to
all of them).

Questions:
• Do all longest paths in a connected chordal graph have a common
vertex? (Balister et al., 2004)
• What about three longest paths in a connected chordal graph?
• Do every three longest paths of a connected graph share a vertex?
(Zamfirescu, 2001)
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• What about six longest paths in a connected graph?
• Is there a 4-connected graph such that every vertex is missed by
some longest path? (Zamfirescu, 2001)
• Is there a connected graph such that for every set of three of
its vertices, there is a longest path missing all three? (Zamfirescu,
2001)

Related results: For more details, see the survey of Shabbir et
al. and the references threrein.

References: A. Shabbir, C. T. Zamfirescu, T. I. Zamfirescu: In-
tersecting longest paths and longest cycles: a survey, Electronic
Journal of Graph Theory and Applications 1 (2013), 56–76.
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Problem 7. Bipartite induced subgraphs (suggested by
Tereza Klimošová)

Source: Proposed by Louis Esperet, Ross J. Kang, Stéphan Thoma-
ssé [EKT].

The problem is motivated by a connection between minimum
degree and separation choosability which I will not discuss here.

Conjecture 1. There are functions f1 and f2 such that f1(d)→∞
and f2(d) → ∞ as d → ∞ such that any graph with minimum
degree at least d < contains a complete subgraph on f1(d) vertices
or a bipartite induced subgraph with minimum degree at least f2(x).

An interesting subcase of the conjecture are triangle-free graphs:

Problem 8. Is there a function f such that every triangle-free
graph with minimum degree d has an induced bipartite subgraph
with minimum degree f(d)? (Where f(d)→∞ as d→∞.)

In [EKT], it is shown that if f exists, f(d) = O(log d). Another
question to ask in this setting is a connection to girth.

Conjecture 2. There exist d0 and g0 such that any graph of girth
at least g0 with minimum degree at least d0 contains a bipartite
induced subgraph of minimum degree at least 3.

Related results:
• For 3 is replaced by 2 in Conjecture 2, the statement is true with
g0 = 4 and d0 = 3 [RV].
• Conjecture 1 holds for regular graphs and graphs with high min-
imum degree. This is implied by the following result from [EKT].

Theorem 1. Any graph with chromatic number at most k and
minimum degree d has a bipartite induced subgraph of minimum
degree at least d/2k.
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References:
[EKT] Louis Esperet, Ross J. Kang, Stéphan Thomassé: Separation
choosability and dense bipartite induced subgraphs. arXiv:1802.03727.
[RV] M. Radovanović and K. Vušković: A class of three-colorable
triangle-free graphs. Journal of Graph Theory, 72(4):430–439, 2013.
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Problem 9. Difference between flow and circular flow
number of signed graphs (suggested by Anna Kompišová)

Source: Proposed by Raspaud and Zhu in 2011.

Definitions.
• A signed graph (G, σ) is a graph G with signes (+/−) on the
edges (signature σ). Edges with plus sign are positive and edges
with minus sign are negative.
• An oriented signed graph is bidirected graph. That means that
every edge consists of two half edges oriented separately. Orienta-
tion has to fulfill a rule that half edges of positive and negative edge
are oriented to the same or opposite directions, respectively.
• Let A be an additive group with zero. An A-flow is pair of ori-
entation O and flow function f : E → A such that for every vertex
v: ∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e)

Where E+(v) and E−(v) are outgoing resp. incoming edges to v.
• A nowhere-zero k-flow (O, f) of the signed graph (G, σ) is an
integer flow such that for every edge e: 1 ≤ |f(e)| ≤ k − 1.
• A flow number Φ(G, σ) of (G, σ) is the smallest k such that (G, σ)
has nowhere-zero k-flow.
• A circular r-flow (O, f) of the signed graph (G, σ) is an R-flow
such that for every edge e: 1 ≤ |f(e)| ≤ r − 1.
• A circular flow number Φc(G, σ) of (G, σ) is the infimum of values
r such that (G, σ) has circular r-flow.
• A switching at a vertex v is the operation which changes the signes
of edges incident with v to the opposite signs.
• Signed graphs are switching equivalent if they have identical base
graph and the signature of one graph can be switched to the signa-
ture of the other.

Switching equivalent graphs have the same flow and circular
flow number.
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Figure 3: Signed graph (G, σ)

Example: Consider a signed graph (G, σ) at the figure 3.

This graph has circular 4-flow (figure 4) and does not have
circural r-flow for r < 4. Therefore the circular flow number
Φc(G, σ) = 4.

1.5

1 2

32.5 1

3

2 1

1.51 2.5

1.5 1.5
1

Figure 4: Circular 4-flow of (G, σ)

Similarly, the graph has nowhere-zero 5-flow (figure 5) and does
not have nowhere-zero k-flow for k < 5. Therefore the flow number
Φ(G, σ) = 5.
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Figure 5: Nowhere-zero 5-flow of (G, σ)

The difference between flow and circular flow number can be 1.
And this is the biggest number proved for signed cubic graphs.

Question: How big can the difference Φ(G, σ) − Φc(G, σ) be, if
the signed graph (G, σ) is cubic and Φ(G, σ) = 6?

Related results:
• Let (G, σ) be a signed cubic graph:

- Φ(G, σ) = 3⇔ Φc(G, σ) = 3.
- Φ(G, σ) = 4⇒ Φc(G, σ) = 4
- Φ(G, σ) = 5⇒ Φc(G, σ) ∈ [4, 5]

For every combination of flow number and circular flow number
allowed by these constraints there are infinitely many signed cubic
graphs belonging to this category.
• Let (G, σ) be a signed cubic graph then Φc(G, σ) /∈ (3, 4).
• Known graphs with flow number 6 have circular flow number 6
as well.
• For every signed graph (G, σ): Φc(G, σ) ≤ Φ(G, σ).
• For every signed graph (G, σ): Φ(G, σ) ≤ 2dΦc(G, σ)e − 1.

References:
• E. Máčajová, E. Steffen, The difference between the circular and
the integer flow number of bidirected graphs, Discrete Mathematics
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338 (2015), 866–867.
• A. Raspaud, X. Zhu, Circular flow on signed graphs, Journal of
Combinatorial Theory, Series B 101 (2011), 464–479.
• M. Schubert, E. Steffen, Nowhere-zero flows on signed regular
graphs, European Journal of Combinatorics 48 (2015), 34–47.

15



Problem 10. Bound on the inducibility of cycles (sug-
gested by Karel Král)

Source: Dan Kráľ, personal communication.

Definitions.
• Pippenger and Golumbic 1975 conjectured that every n-vertex
graph has at most nk/(kk − k) induced cycles of length k ≥ 5.

Question: Make the bound tighter.

Related results:
• Pippenger and Golumbic showed that the inducibility of every
k-vertex graph H is at least k!/(kk − k). Where inducibility of a
graph H is the limit of the maximum induced densities (number of
induced copies of H in G divided by

(|V (G)|
|V (H)|

)
) of H in an n-vertex

graph.
• D. Kráľ, S. Norin, and J. Volec 2018 prove that every n-vertex
graph has at most 2nk/kk induced cycles of length k ≥ 5.

References:
The inducibility of graphs, N. Pippenger, M. C. Golumbic, J.

Combinatorial Theory Ser. B 19 (1975), 189-203.
A bound on the inducibility of cycles, Kráľ, Norin, Volec,

Arxiv https://arxiv.org/abs/1801.01556
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Problem 11. Rainbow parity matching (suggested by Mar-
tin Loebl)

Source: Proposed by Martin Loebl in 2017.

Definitions.
• Given pairs p1, . . . , pk of edges, a perfect matching is called rain-
bow even (REM) if it has an even number of edges from each pi.

Question: 1. Is there an algorithm for planar graphs with the
running time asymptotically better than 2g?

2. Are there classes of planar graphs (e.g. outer-planar graphs)
for which deciding whether the graph has a REM is polynomial?

3. Relate REM problem to the Strong Exponential time hy-
pethesis.

Related results:
• It is not difficult to show that existence of REM is NP-complete
for the planar graphs.
• It is not difficult to relate REM in planar graphs to the Expo-
nential time hypothesis.

17



Problem 12. Exact algorithm for 3-edge coloring (sug-
gested by Robert Lukoťka)

Question: Find an exact algorithm for deciding 3-edge-colorability
of a graph with asymptotically as good time as possible.

Question: Find an exact algorithm for deciding 3-edge-colorability
of a cubic graph with asymptotically as good time as possible.

Related results:
• Eppstein’s algorithm [1] uses a reduction to special CSP and has
running time O(2n/2) (which is O(1.415n)).
• Kowalik’s algorithm is asymptotically best up to date and has
running time O(1.334n).
• On this year spring school I presented two approaches, how to
attain running time O(2n/2) relatively easily on cubic graph. Thus
probably if we try hard, we should be able to improve Kowalik’s
algorithm’s running time.

References:
[1] D. Eppstein: Improved Algorithms for 3-Coloring, 3-Edge-Color-
ing, and Constraint Satisfaction, SODA 2001.
[2] L. Kowalik: Improved edge-coloring with three colors, Theoret-
ical Computer Science 410 (2009), 3733–3742.
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Problem 13. Tic-tac-toe on custom boards (suggested by
Robert Lukoťka)

Definitions.
• A board is a finite subset of Z2. The elements of B are fields
• A three-in-a-row on a board B is a set of fields {a, a+ x, a+
2x}, where a, x ∈ Z2 and ||x||∞ = 1 (this is as in an ordinary
tic-tac-toe game).
• A simple tic-tac-toe game on board B is a game played by
two players. Each player has a set of fields he owns. At the start
of the game each player owns ∅. Players take turns. In his turn a
player chooses a field not owned by either player and adds it to the
set of fields he owns. The game ends when each field is owned by
one of the players. First player wins if he owns a three-ina-a-row,
otherwise second player wins.
• A full tic-tac-toe game on board B has the same rules as the
simple tic-tac-toe game. However the game ends also whenever a
player owns three-in-a-row.

Question: Having a board B as an input, how hard is it to deter-
mine, whether the first player has a winning strategy in the simple
tic-tac-toe game?

Question: Having a board B as an input, how hard is it to de-
termine, whether the first player has a winning strategy in the full
tic-tac-toe game?

Related results:
• There are many generalizations of tic-tac-toe game studied. But
they are either played on a rectangular board [2] or a more general
board [1]. One would guess that such a decision problem is either
easy or hard, and it should be easy to distinguish.
• In 2016 (I guess) we spent some time on these problems during
the Spring school. But, to our surprise, we were not able to find
neither a simple algorithm nor a proof that these problems are NP-
complete.
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References:
[1] J. Beck: Games, Randomness and Algorithm, In: The Mathe-
matics of Paul Erdös I, Springer, 2013.
[2] M. Y. Hsieh, S.-Ch. Tsai: On the fairness and complexity of
generalized k-in-a-row games, Theoretical Computer Science 385
(2007), 88–100.
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Problem 14. Restricted Pattern Permutation Matching
(suggested by Michal Opler)

Source: Proposed by Albert et al. [1] in 2016.

Definitions.
• A permutation is a sequence π = π1, π2, . . . , πn in which each
number from the set [n] = {1, 2, . . . , n} appears exactly once.
• A permutation π contains a permutation σ, if π has a subsequence
of length k whose elements have the same relative order as the ele-
ments of σ, otherwise we say that π avoids σ, or π is σ-avoiding.
• A permutation class C is a down-set of permutations, i.e. if π
is in C, then all the permutations contained in π are in C as well.
Av(σ) denotes the class of σ-avoiding permutations.

Permutation Pattern Matching (PPM)

Input: A text permutation τ of size n and a pattern π of
size k.

Question: Does τ contain π?

PPM and C-PPM

C Permutation Pattern Matching (C-PPM)

Input: A text permutation τ of size n and a pattern π of
size k, both belonging to a fixed permutation class
C.

Question: Does τ contain π?

Example:
Question: For which permutations σ can Av(σ)-PPM be solved
in polynomial time?

Related results:
• Bose, Buss, and Lubiw [2] showed in 1998 that the PPM problem
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Figure 6: An occurence of pattern 213 in a permutation 421365.

is NP-complete. There is an FPT algorithm parametrized by the
length of the pattern due to Marx and Guillemot [3].
• Guillemot and Vialette [4] showed that Av(321)-PPM is polyno-
mially solvable and better algorithm was later provided by Albert
et al. [1] who also proved the tractability of Av(2143, 3412)-PPM.
• It was shown by Jelínek and Kynčl [5] that Av(4321)-PPM is
NP-hard. Furthermore, their results imply that Av(σ)-PPM is
NP-hard for any σ of size at least 10.

References:
[1] Michael H. Albert, Marie-Louise Lackner, Martin Lackner, and
Vincent Vatter. The Complexity of Pattern Matching for 321-
Avoiding and Skew-Merged Permutations. Discrete Mathematics &
Theoretical Computer Science, Vol. 18 no. 2, Permutation Patterns
2015, December 2016.
[2] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern
matching for permutations. In Algorithms and data structures
(Montreal, PQ, 1993), volume 709 of Lecture Notes in Comput.
Sci., pages 200–209. Springer, Berlin, 1993.
[3] Sylvain Guillemot and Dániel Marx. Finding small patterns in
permutations in linear time. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 82–
101. ACM, New York, 2014.
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[4] Sylvain Guillemot and Stéphane Vialette. Pattern matching
for 321-avoiding permutations. In Algorithms and computation,
volume 5878 of Lecture Notes in Comput. Sci., pages 1064–1073.
Springer, Berlin, 2009.
[5] Vít Jelínek and Jan Kynčl. Hardness of permutation pattern
matching. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 378–396. SIAM,
Philadelphia, PA, 2017.
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Problem 15. A matching inequality (suggested by Robert
Šámal)

Source: Proposed by Eberhard Triesch at MCW 1997. Also by Jan
Volec at MCW 2017.
Question: Suppose that G = (V,E) and G′ = (V,E′) are bipartite
graphs on the same vertex set V and with the same 2-colouring
V = U ∪W where both colour classes U andW contain n elements.
Assume further that for all A ⊂ U the number of neighbours in G
is at least as large as in G′:

|NG(A)| ≥ |NG′(A)| for all A ⊂ U.

Then the number of perfect matchings in G is at least as large
as the number of perfect matchings in G′.

Related results:
• The case where G′ is 1-regular is just the Hall’s “marriage theo-
rem”.
• The result would follow from a positive solution to Aharoni–Keich
conjecture on a certain generalization of determinants.

References:
• kam.mff.cuni.cz/~kamserie/serie/clanky/1997/s339.ps
• and references therein.
•R. Aharoni, U. Keich, A generalization of the Ahlswede–Daykin
inequality, Discrete Math. 152 (1996), pp. 1–12.
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Problem 16. Induced bipartite subgraph (suggested by
Robert Šámal)

Source: Proposed by Louis Esperet, Ross J. Kang, and Stéphan
Thomassé
Question: There is a constant C > 0 such that any triangle-free
graph with minimum degree at least d contains a bipartite induced
subgraph of minimum degree at least C log d.

Related results:
• Triangle-free graph with minimum degree at least 3 contains a
bipartite induced subgraph of minimum degree at least 2. [RV]
• It is open, whether large girth and large minimum degree forces
a bipartite induced subgraph of minimum degree at least 3.
• Triangle-free graph with n vertices and minimum degree at least
d contains a bipartite induced subgraph of minimum degree at least
d2/(2n). [BKVP]

References:
• [RV] Radovanović and Vušković: A class of three-colorable triangle-
free graphs. Journal of Graph Theory, 72(4):430–439, 2013.
• [BKVP] Wouter Cames van Batenburg, Ross J. Kang, Rémi de
Joannis de Verclos, and François Pirot: Bipartite induced density
in triangle-free graphs, arXiv:1808.02512
• [EKT] Louis Esperet, Ross J. Kang, and Stéphan Thomassé: Sep-
aration choosability and dense bipartite induced subgraphs, arXiv:1802.03727

25



Problem 17. Improving the best known algorithm for
maximum independent set (suggested by Jakub Tětek)

Definitions.
• Independent set is a subset of vertices I ⊆ V (G) of a graph G
such that no two vertices in I are adjacent in G.

• Asymptotic notation with * means that it is ignoring polynomial
factors. For example O∗(2n) =

⋃
cO(nc2n).

The best currently known algorithm for finding a maximum in-
dependent set runs in time O∗(1.1996n). All known algorithms for
maximum independent set rely on the branch-and-reduce paradigm,
meaning that reduction rules are applied and when no reduction
rule can be applied, the algorithm branches on some specified ver-
tex, recursively solving two subproblems (therefore leading to ex-
ponential running time). New ideas are needed if speedups are to
be obtained without introducing overly complicated reduction and
branching rules.

The goal would be to come up with a novel approach, most
likely based on the branch-and-reduce paradigm, that would allow
for faster algorithms or tighter analysis. It would also be very
interesting to come up with an algorithm using some novel approach
(not branch-and-reduce) even if it the running time would not be
state-of-the-art.
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Problem 18. Circular colorings of cubic graphs with large
girth (suggested by Jan Volec)

Source: Hamed Hatami, 2005

Circular colorings and circular chromatic number.
For positive integers k and d satisfying k ≥ 2d, let Kk/d be

the graph with the vertex-set {0, 1, . . . , k − 1} so that x and y are
adjacent if and only if d ≤ |x − y| ≤ k − d. Note that K5/2 is
isomorphic to C5, and more generally, K(2d+1)/d is isomorphic to
C2d+1. Also note that if G is homomorphic to Kk/d, then it is also
homomorphic to Kk′/d′ for all k′ and d′ satisfying k′/d′ ≥ k/d.

For a rational x = k/d, a circular x-coloring of G can be viewed
as a homomorphism from G to Kk/d. The circular chromatic num-
ber χc(G) of a graph G is defined as the infimum of k/d such that
G is homomorphic to Kk/d. It is known that for any graph G the
infimum is attained, and χ(G) = dχc(G)e.

Question: Is it true that any 3-regular graph G with sufficiently
large girth has χc(G) < 3?
Conjecture (Nešetřil’s Pentagon Problem): Is it true that any
3-regular graph with sufficiently large girth is homomorphic to C5?

Related results:
• There are 3-regular graphs with arbitrary large girth that are not
homomorphic to C7.

References:
• H. Hatami: Random cubic graphs are not homomorphic to the
cycle of size 7, J. Combin. Theory Ser. B 93 (2005), 319–325.
• J. Nešetřil: Aspects of structural combinatorics (graph homomor-
phisms and their use), Taiwanese J. Math. 3 (1999), 381–423.
• X. Zhu: Circular chromatic number: a survey, Discrete Math.
229 (2001), 371–410.
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Problem 19. Fractional Chromatic Number vs. Hall Ra-
tio (suggested by Jan Volec)

Fractional colorings and fractional chromatic number.
Let G be a graph and k a positive real. A fractional k-coloring

is an assignment of measurable subsets of the interval [0 , k) to the
vertices of G such that each vertex is assigned a subset of measure
one and the subsets assigned to adjacent vertices are disjoint. The
fractional chromatic number of G is the infimum over all positive
real numbers k such that G admits a fractional k-coloring. Note
that for finite graphs, such a real k always exists, the infimum is in
fact a minimum, and its value is always rational. We let χf (G) be
this minimum.

Let us mention a different way how to define χf . A simple
averaging argument shows that χf (G) ≥ n/α(G). However, the
argument stays valid even in the setting where the vertices have
weights, and we measure the size of the independent set by the
weight it takes rather than its cardinality.

Formally, let G = (V,E) be a graph and w : V → R a weight
function. Let α(G,w) be the maximum sum of the weights of the
vertices that form an independent set, i.e.,

α(G,w) := max
I∈I

∑
v∈I

w(v).

It holds that

χf (G) = max
w:V→[0,1]

∑
v∈V w(v)

α(G,w)
.

Hall ratio.
As mentioned above, the ratio v(G)/α(G) is a lower-bound on

χf (G). However, since a fractional k-coloring of G is also a frac-
tional k-coloring of any H ⊆ G, we have that

χf (G) ≥ v(H)

α(H)
.
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We define ρ(G) — the Hall ratio of a graph G — to be the best
lower-bound obtained in this way, i.e.,

ρ(G) := max
H⊆G

v(H)

α(H)
.

Clearly, ρ(G) is attained by some induced subgraph H ⊆ G.
Therefore,

ρ(G) = max
w:V→{0,1}

∑
v∈V w(v)

α(G,w)
.

Question 1: Is there a function g : R → R such that χf (G) ≤
g(ρ(G)) for every graph G?
Question 2: Is χf = O(ρ) for every ∆-free graphs?
Question 3: Is χf = O(ρ) for every K4-free graphs?
Question 4: Is χf = O(d/ log d) for d-degenerate ∆-free graphs?
Question 5: Every ∆-free G with δ(G) ≥ d contains an induced
bipartite subgraph H with δ(H) = Ω(log d).

Related results:
• There exists C0 > 0 such that for all C ≥ C0 there exists a graph
G with ρ(G) ≤ C and χf (G) ≥ elog2(C)/5.
• There exists C1 > 0 such that for every C ≥ C1 there exists a
K5-free graph G with ρ(G) ≤ C and χf (G) ≥ (C/20)2.
• If Question 2 holds, then Question 4 holds.
• If Question 4 holds, then Question 5 holds.

References:
• L. Esperet, R. Kang, S. Thomassé: Separation choosability and
dense bipartite induced subgraphs,
https://arxiv.org/pdf/1802.03727.pdf.
• D.G. Harris: Some results on chromatic number as a function of
triangle count, https://arxiv.org/pdf/1604.00438.pdf.
• E. R. Scheinerman, D. H. Ullman: Fractional graph theory, John
Wiley & Sons Inc., New York, 1997.
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