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Program

8:30 breakfast

9:30 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the neighborhood
with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. Online Ramsey number of paths on three colors
(suggested by Václav Blažej)

Source: Grytczuk et al. in 2004

Definitions.
• An online Ramsey game with the goal graph H is a game between Builder
and Painter, alternating in turns. In each round Builder draws an edge and
Painter colors it either red or blue (generally k colors). Builder wins if after
some round there is a monochromatic copy of the graph H, otherwise Painter
is the winner.
• An online Ramsey number r̃(H) is the minimum number of rounds such
that Builder has a winning strategy in the online Ramsey game.

Example:
• In a c-color variant, we see that r̃(Sk) = c(k − 1) + 1, since we can create
Sc(k−1)+1 and at least k of those edges will have the same color.
• For 2-color variant, it is possible to create a monochromatic triangle in 8
moves by creating an S5 and connecting endpoints of monochromatic S3 with
three edges.

Question: Determine bounds on r̃(Pn) for the three color variant of the
online Ramsey game.

Related results:
• There is a well known linear upper bound on r̃(Pn) by Grytczuk et al. 2008
on two colors, however the same strategy does not work when Painter can
use three colors.
• In 1995 Haxell et al. proved an upper bound for size-Ramsey number of
induced cycles. This translates to a linear upper bound on online Ramsey
number of paths for arbitrary fixed number of colors.

References:
• Jaroslaw Grytczuk, Mariusz Ha luszczak, and Hal A. Kierstead. On-line
ramsey theory. Electronic Journal of Combinatorics, 11, 2004.
• Jaroslaw Grytczuk, Hal A. Kierstead, and Pawe l Pra lat. On-line ramsey
numbers for paths and stars. Discrete Mathematics & Theoretical Computer
Science, 10, 2008.
• P. E. Haxell, Y. Kohayakawa and T.  Luczak. The Induced Size-Ramsey
Number of Cycles. 1995.
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Problem 2. Lower Bound for the Span Problem (suggested by
Pavel Dvořák)

Source: personal communication with M. Koucký.

Definitions.
• A data structure for the Span problem stores a subspace U ⊆ Zn

2 and can
answer a question if some vector x ∈ Zn

2 is in U .
• The cell probe model for a data structure D which can answer queries Q
is defined as follows. The data structure D is mapped into s cells, where
each cell consists of b bits. Each query q ∈ Q is a decision tree Tq, where
each node of the tree probes a single cell c and branches according to the 2b

different values of c. Each leaf of Tq is labeled by an answer to q.
• The time tq used for answering the query q is a depth of Tq, i.e., the number
of probes. The query time t of the data structure D is the maximum tq over
all queries q ∈ Q.
• The bit probe model is the cell probe model for b = 1.

Example:
The data structure D can store n− dim(U) equations which define U (basi-
cally the basis of the orthogonal complement). And if we want to answer that
x ∈ U we can check if x satisfies every equation. Thus, the data structure
needs n2 bits and its query time is n.

Question: What is a lower bound of t and s for the Span problem in the
bit probe model?

Related results:
• In the cell probe model for b = n it can be proved that if t = o(n) then s ≥
2Ω(n/t) [1], which meets the upper bound if we want polynomial s. However, if
we use the same proof for b = 1 we get the same lower bound, but the upper
bound is t = O(n2), s = O(n2) – by the data structure from the example.

References:
[1] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge Uni-

versity Press New York, NY, USA ,1997.
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Problem 3. Improve the lower bound related to Chvátal’s tough-
ness conjecture (suggested by Adam Kabela)

Source: In 1973, Chvátal conjectured that there is a constant t such that
every t-tough graph has a Hamilton cycle. The conjecture is still open. The
progress in the study of Chvátal’s conjecture is well-documented by a series
of survey papers; see, for instance, Bauer, Broersma and Schmeichel (2006).

Definitions. We recall that the toughness of a graph G is the minimum of
|S|

c(G−S)
where c(G−S) denotes the number of components of the graph G−S

and the minimum is taken over all sets of vertices S such that c(G−S) ≥ 2.
The toughness of a complete graph is defined as ∞. We say that a graph is
t-tough if its toughness is at least t.

Best known lower bound: In 2000, Bauer, Broersma and Veldman con-
structed (9

4
− ε)-tough non-Hamiltonian graphs for every ε > 0 (in fact, the

graphs have no Hamilton path). The construction is outlined in Figure 1.
The previously best known bound is due to Enomoto et al. (1985) who pre-
sented (2 − ε)-tough graphs which have no 2-factor (and thus no Hamilton
cycle).

2n + 3 building blocks

n universal vertices

Kn

K4n+6

Figure 1: A sketch of the construction of (9
4
− ε)-tough non-Hamiltonian

graphs.

Question: Can we improve this lower bound? In other words, are there
9
4
-tough non-Hamiltonian graphs?

References:
• D. Bauer, H. J. Broersma, E. Schmeichel: Toughness in graphs — A survey,
Graphs and Combinatorics 22 (2006), 1–35.
• D. Bauer, H. J. Broersma, H. J. Veldman: Not every 2-tough graph is
Hamiltonian, Discrete Applied Mathematics 99 (2000), 317–321.
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• V. Chvátal: Tough graphs and hamiltonian circuits, Discrete Mathemat-
ics 5 (1973), 215–228.
• H. Enomoto, B. Jackson, P. Katerinis, A. Saito: Toughness and the exis-
tence of k-factors, Journal of Graph Theory 9 (1985), 87–95.
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Problem 4. Induced rainbow paths (suggested by Tereza Klimošová)

Source: Attributed to Aravind (2013), fist appeared in [1].

Definition. We call a subgraph of a properly (vertex) colored graph rainbow,
if no two vertices of the subgraph have the same color.

Conjecture 1. Let G be a triangle-free graph. Then for every colouring (not
necessarily optimal) of G, there is a rainbow induced subgraph isomorphic to
a χ(G)-vertex path.

The girth of a graph G is the length of a shortest cycle contained in the
graph, we denote it by g(G).

It is known that every properly colored graph (not necessarily by mini-
mum number of colors) has a rainbow path on χ(G) vertices but this path
might not be induced (corollary of Galai-Roy theorem). It follows the con-
jecture for graphs with girth larger than chromatic number. Moreover, it is
easy to observe that the conjecture holds for χ(G) ≤ 3.

In [1], it was shown that the conjecture holds for graphs where girth
equals chromatic number.

Theorem 1. Let G be a graph with g(G) = χ(G) whose vertices have been
properly coloured. Then there exists an induced rainbow path on χ(G) vertices
in G.

This implies that the conjecture holds also for χ(G) = 4.
A relaxed version of the conjecture was proven in [2] and later strength-

ened in [3].

Theorem 2. For all s ≥ 1 there exists c such that for every properly colored
graph G with girth at least 5 and χ(G) > c there is a rainbow induced subgraph
isomorphic to an s-vertex path.

Theorem 3. For all κ, s ≥ 1 there exists c such that for every properly
colored graph G with ω(G) ≤ κ and χ(G) > c, there is a rainbow induced
subgraph of G isomorphic to an s-vertex path.

In [3], the authors remark that they do not believe the conjecture (but do
not have a counterexample and seem to have tried to find one only manually)
and that analogous statement is false for graphs that are not paths. They
also ask a related question: is it true that for all fixed s, κ, if G is a graph
with ω(G) ≤ κ and χ(G) sufficiently large then in every colouring of G there
is a hole in which some set of s consecutive vertices is rainbow?

References:
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[1] J. Babu, M. Basavaraju, L. Chandran and M. Francis, “On induced
colorful graphs in trianglefree graphs”, arXiv:1604.06070.

[2] A. Gyárfás and G. Sárközy, “Induced colorful trees and paths in large
chromatic graphs”, Electronic J. Combinatorics 23 (2016), #P4.46.

[3] A. Scott and P. Seymour: “Induced subgraphs of graphs with large
chromatic number. IX. Rainbow paths.” arXiv preprint arXiv:1702.01094.
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Problem 5. Minimizing trace of even power (suggested by Tereza
Klimošová)

Source: Dan Král’, personal communication, motivated by graphons.

Definition. For a n×n matrix A = (aij) and a partition P of [n] we define
a partition averaged matrix B = (bij) to be a n × n matrix such that for
every Pk, P` ∈ P every bij satisfying (i, j) ∈ Pk × P` is equal to the average
of entries aij satisfying (i, j) ∈ Pk × P`.

Example: For a matrix

A =

0 2 1
2 0 3
1 3 4


and a partition P = {{1, 2}, {3}}, a(A,P) =

a(A,P) =

1 1 2
1 1 2
2 2 4


Problem: For a symmetric matrix with entries from [0, 1], show that trace
of sixth (or, more generally 2m-th) power of the matrix is at least trace of
sixth (or 2m-th) power of its partition averaged matrix for any partition.

Known for the trivial partition P = {[n]}. Also known for fourth power [1].

References:
[1] J.W. Cooper, D. Král’, T.L. Martins: Finitely forcible graph limits

are universal. Preprint available as arXiv:1701.03846.
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Problem 6. Maker Breaker Games (suggested by Karel Král)

Source: MCW 2017.

Definitions.
• Two players – maker and breaker are playing a game on a given connected
multigraph. Breaker starts by claiming k previously unclaimed edges then
maker claims k previously unclaimed edges and then they alternate in turns.
Maker’s goal is to claim all edges of some spanning tree of the given graph,
breaker’s goal is to prevent maker from doing that.

Question: Study the case when k = 2 and find a characterization of graphs
where maker wins. Find the complexity of deciding if maker wins.

Related results:
• (Lehman and Edmonds) In the case when k = 1 maker wins iff the graph
contains two edge disjoint spanning trees (thus deciding if maker wins is
poly-time).
• (Chvátal and Erdős) if k is sufficiently large breaker wins on a clique of
size n (where the breaking point of large is around k = n/ log n).

References:
Biased positional games, Chvátal, Vašek and Erdös, Paul,

Annals of Discrete Mathematics, 2, 221–229, 1978, Elsevier.
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Problem 7. Open perfect neighborhood sets on trees (suggested
by Josef Maĺık)

Source: Proposed by Stephen T. Hedetniemi in 2006 ([1]).

Definitions.
• Let G = (V,E) be a graph and let S ⊂ V be an arbitrary subset of vertices.
• A vertex v ∈ V is open perfect if |N(v) ∩ S| = 1.
• We call S an open perfect neighborhood set, if every vertex v ∈ V is either
open perfect or is adjacent to an open perfect vertex with respect to S.
• The open perfect neighborhood number θo(G) is the minimum size of an
open perfect neighborhood set in G.
• The upper open perfect neighborhood number Θo(G) is the maximum size
of an open perfect neighborhood set in G.

Question:
Design a polynomial-time algorithm that computes the value θo(T ) for

any tree T or show that the problem is NP-complete on trees.
Design a polynomial-time algorithm that computes the value Θo(T ) for

any tree T or show that the problem is NP-complete on trees.

Related results:
• The problem of deciding whether a graph has an open perfect neighborhood
set of size at most k is NP-complete for bipartite and chordal graphs ([2]).

References:

[1] Hedetniemi, S.T. Unsolved algorithmic problems on trees. AKCE In-
ternational Journal of Graphs and Combinatorics, 3 (2006), 1-37.

[2] Hedetniemi, S.T., Jacobs, D.P., Laskar, R., and Pillone D. Open perfect
neighborhood sets in graphs. Unpublished manuscript, dated August
23, 1996.
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Problem 8. Local dimension of Partial Ordered Set (suggested
by Tomáš Masař́ık)

Definitions.
• Dimension of a Poset P dim(P ) is a minimum number of linear extensions
that represents a given poset.
• Local Dimension of a Poset ldim(P ) is a minimum number of partial linear
extensions that represents a given poset.

Question:
• Two element removal lemma. At least for posets of height 3. (For each
poset P there exists two elements x, y such that

ldim(P \ {x, y}) + 1 ≤ ldim(P ))

• Determine the local dimension of some specific well-known posets. e.g.
Subset poset.

Related results:
• Two element removal lemma for posets of height 2.
• Four element removal lemma.

References: Jinha Kim, Ryan R. Martin, Tomáš Masař́ık, Warren Shull,
Heather Smith, Andrew Uzzell, Zhiyu Wang: Local Dimension 2017+
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Problem 9. Complexity of some problems on P`-free graphs
(suggested by Jana Novotná)

Definitions.
• A graph is P`-free if it does not contain a path on ` vertices as an induced
subgraph.
• Independent Odd Cycle Transversal is an independent set of vertices such
that the rest of the graph is bipartite.
• Independent Feedback Vertex Set is an independent set of vertices such
that the rest of the graph is a forest.
• Dominated Induced Matching is an independent set of vertices such that
the rest of the graph is an induced matching.

Figure 2: Overview of complexity of problems on P` free graphs.

Question:
• Determine computational complexity of some problems on P`-free graphs.
See Figure 1.
• or possibly determine the complexity of 4-coloring for P6-free graphs.
• or possibly determine the complexity of 3-coloring for P`-free graphs,
for all ` ≥ 8.

Related results:
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• There are various results concerning several well studied problem, see Fig-
ure 1.

References:
• Cardoso, Korpelainen and Lozin: On the complexity of the dominating
induced matching problem in hereditary classes of graphs, 2011.
• Brandstädt and Mosca: Weighted Efficient Domination for P6-Free Graphs
in Polynomial Time, 2017.
• Bonamy, Dabrowski, Feghali, Johnson, Paulusma:Independent Feedback
Vertex Sets for Graphs of Bounded Diameter, 2017.
• Chiarelli, Hartinger, Johnson, Milanič, and Paulusma: Minimum Con-
nected Transversals in Graphs: New Hardness Results and Tractable Cases
Using the Price of Connectivity, 2017+.
• Grzesik, Klimošová, Pilipczuk, and Pilipczuk, 2017+.
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Problem 10. Pattern-avoiding permutations and number of in-
versions (suggested by Michal Opler)

Source: Proposed by Claesson, Jeĺınek and Steingŕımsson in 2011

Definitions.
• Let Sn be the set of permutations of the letters {1, 2, . . . , n} = [n].
• We say that two sequences of distinct numbers a1, . . . , an and b1, . . . , bn are
order-isomorphic if for every two indices i < j we have ai < aj if and only if
bi < bj.
• Given two permutations π ∈ Sn and σ ∈ Sk, we say that π contains σ
if there is a k-tuple 1 ≤ i1 < i2 < · · · < ik ≤ n such that the sequence
πi1 , πi2 , . . . , πik is order-isomorphic to σ
• For a pattern σ let Sn(σ) be the set of all σ-avoiding permutations of
length n, and Sn(σ) its cardinality.
• An inversion in a permutation π = π1π2 · · · πn is a pair (i, j) such that
1 ≤ i < j ≤ n and πi > πj. Let Sk

n(σ) denote the number of σ-avoiding
permutations of length n with k inversions.

Example:
Permutation 51234 has 4 inversions each of the form (1, i) for i ∈ {2, 3, 4, 5}.

Questions:
• Is it true that for all nonnegative integers n and k, we have Sk

n(1324) ≤
Sk
n+1(1324)?
• Let σ be any pattern that is not an identity, i.e. 12 · · ·n. Is it true that
for all nonnegative integers n and k, we have Sk

n(σ) ≤ Sk
n+1(σ)?

Related results:
• Answering the question positively would yield an improved upper bound
on the Stanley-Wilf limit of 1324. More specifically, it would imply that the
limit is at most 13.002 while the current best bounds are 10.27 from below
and 13.5 from above. See Jeĺınek, Claesson and Steingŕımsson.
• It was shown to be true for major index which is a related permutation
statistic.

References:
A. Claesson, V. Jeĺınek, E. Steingŕımsson, Upper bounds for the Stanley-Wilf
limit of 1324 and other layered patterns, J. Combin. Theory Ser. A 119 (8)
(2012) 1680–1691.
M. Opler, Major index distribution over permutation classes, Advances in
Applied Mathematics 80 (2016) 131–150.

13

http://dx.doi.org/10.1016/j.jcta.2012.05.006
http://dx.doi.org/10.1016/j.jcta.2012.05.006
https://doi.org/10.1016/j.aam.2016.06.011


Problem 11. Hardness of train problem - revisited (suggested
by Veronika Sĺıvová)

Source: Proposed by Karthik C. S. in 2017.

Definitions.
• A switch graph is a directed graph G in which every vertex v has exactly
two outgoing edges s0(v), s1(v) (loops and multi-edges are allowed).
• A train travels from a given vertex o (origin) along the switch graph. When-
ever a train arrives to a vertex it continues along the active edge (starting
with an edge s0) and switches the active edge to the another one. The train
stops only at a given vertex d (destination). The problem Arrival asks
whether the train stops.
• Problem S-Arrival asks for a certificate that the train reaches the desti-
nation d or a certificate for the fact that it will travel infinitely long.
• Local-OPT is a problem where given two circuits S : {0, 1}n → {0, 1}n
and V : {0, 1}n → [2n] we want to find a string x satisfying V (x) ≥ V (S(x)).
• Local-Max-Cut Given a weighted graph find a partitioning of its vertices
into two disjoint parts such that the sum of weights of cut edges cannot be
increased by moving a vertex from one part to another one.
• Sink-of-path is a problem where given two circuits S : {0, 1}n → {0, 1}n
and V : {0, 1}n → [2n] and a string s ∈ {0, 1}n we want to find a string x
such that x = Sr(s) for some r and V (x) ≥ V (S(x)).

Question 1: Is S-Arrival PLS-hard? In other words can we reduce
Local-OPT or Local-Max-Cut to S-Arrival.

Question 2: Is the problem of determining how many times is each edge
used (finding running profile) FPSPACE-complete (an equivalent of PSPACE
but we ask for a whole solution except of asking only for an existence of a
solution)? Equivalently is the problem Sink-of-path reducible to the train
problem?

Note that we are interested in finding a solution of those problems. It
means that A is reducible to B only if we have algorithms X, Y such that
X given an instance of problem A returns an instance of problem B and Y
given a solution of problem B returns a solution of problem A. Moreover if
a solution x of problem B is locally optimal, then also the solution Y (x) has
to be locally optimal.
Related results:
• Problem Arrival is in NP ∩ co−NP . (Dohrau et al.)
• Problem S-Arrival is in the class PLS. (Karthik C. S.)

References:
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Dohrau, Jérôme, et al. “ARRIVAL: A zero-player graph game in NP ∩
coNP.” arXiv preprint arXiv:1605.03546 (2016).

Karthik, C. S. “Did the train reach its destination: The complexity of
finding a witness.” Information Processing Letters 121 (2017): 17-21.

Schäffer, Alejandro A. “Simple local search problems that are hard to
solve.” SIAM journal on Computing 20.1 (1991): 56-87.
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Problem 12. Improve bounds on dispersion of the unit cube
(suggested by Jakub Sosnovec)

Source: Proposed by Aicke Hinrichs [1].

Definitions.
• Let Bd be the set of all axis-parallel open boxes inside [0, 1]d, i.e.,

Bd = {I1 × · · · × Id : I1, . . . , Id ⊂ [0, 1] are open intervals}.

For a set T of n points in [0, 1]d, the volume of the largest open box avoiding
all points from T is called the dispersion of T and is defined as

disp(T ) = sup
B∈Bd, B∩T=∅

vol(B),

where vol(I1 × · · · × Id) = |I1| · · · |Id|. Note that the supremum is attained,
since there are only finitely many inclusion-maximal boxes B ∈ Bd avoiding
T .
• The minimal dispersion for any point set is defined as

disp∗(n, d) = inf
T⊂[0,1]d, |T |=n

disp(T ).

Again, observe that the infimum is actually attained, since any sequence of
n-element point sets inside [0, 1]d has a convergent subsequence.
• Sometimes it is more convenient to work with the inversion of minimal
dispersion, defined as

N(r, d) = min{n ∈ N : disp∗(n, d) ≤ r}.

Questions:

1. Improve known bounds on minimal dispersion. Especially interesting
would be to prove (or disprove) that disp∗(n, d) = O(d/n).

2. Give explicit constructions of (small) points sets that achieve small
dispersion. Note that both results in [3] and [4] use probabilistic argu-
ments to find such sets.

Related results:

• Trivial lower bound: disp∗(n, d) ≥ 1/(n+ 1)

16



• Improved lower bound [2]: disp∗(n, d) ≥ log2 d
4(n+log2 d)

, also can be refor-

mulated as N(r, d) ≥ 1−4r
4r

log d.

• Upper bound [2]: disp∗(n, d) ≤ 27d+1

n

• Very recent upper bound [3]: disp∗(n, d) ≤ 4 d
n

log(9n
d

) – note that this
is almost O(d/n), but the dependence on n is slightly worse than the
previous bound, so this bound is not strictly better.

• Upper bound asymptotically tight in d [4]: N(r, d) ≤ cr log d, where cr
is a (large) constant depending only on r.

References:

1. Report from Oberwolfach Mini-Workshop: Perspectives in High-Dimensional
Probability and Convexity, chapter Discrepancy & dispersion of point
distributions, https://www.mfo.de/document/1706c/preliminary_OWR_
2017_10.pdf

2. C. Aistleitner, A. Hinrichs and D. Rudolf, On the size of the largest
empty box amidst a point set, https://arxiv.org/abs/1507.02067

3. D. Rudolf, An upper bound of the minimal dispersion via delta covers,
https://arxiv.org/pdf/1701.06430

4. J. Sosnovec, A note on minimal dispersion of point sets in the unit
cube, https://arxiv.org/pdf/1707.08794
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Problem 13. A matching inequality (suggested by Robert Šámal)

Source: Proposed by Eberhard Triesch at MCW 1997. Also by Jan Volec at
MCW 2017.
Question: Suppose that G = (V,E) and G′ = (V,E ′) are bipartite graphs
on the same vertex set V and with the same 2-colouring V = U ∪W where
both colour classes U and W contain n elements. Assume further that for
all A ⊂ U the number of neighbours in G is at least as large as in G′:

|NG(A)| ≥ |NG′(A)| for all A ⊂ U.

Then the number of perfect matchings in G is at least as large as the
number of perfect matchings in G′.

Related results:
• The case where G′ is 1-regular is just the Hall’s “marriage theorem”.
• The result would follow from a positive solution to Aharoni–Keich conjec-
ture on a certain generalization of determinants.

References:
• kam.mff.cuni.cz/~kamserie/serie/clanky/1997/s339.ps
• and references therein.
• R. Aharoni, U. Keich, A generalization of the Ahlswede–Daykin in-
equality, Discrete Math. 152 (1996), pp. 1–12.
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Problem 14. The binary paint shop problem (suggested by Robert
Šámal)

Source: Proposed by Meunier&Neveu in 2012.

Definitions.
• A double occurrence word w is a word in which every letter occurs exactly
twice.
• Legal 2-coloring of w is a coloring of individual letters such that each letter
occurs once red and once blue.
• The goal is to find a legal 2-coloring of w with minimal number of color
changes. Let us call this quantity cc(w).
• Also let ccn be the expectation of cc(w) when w is a random double occur-
rence word of length 2n.

Example:
ADEBAFCBCDEF – 4 changes, but 2 changes possible with a different
coloring.

Question: Is ccn = o(n)?

Related results:
• The problem is also called necklace splitting by Alon and others.
• Computing cc(w) is NP-complete, even APX-hard to approximate.
• It is easy to show that ccn ≤ n

2
+ o(n).

• It is known that ccn ≤ 2
5
n+ 7

10
.

• Other related problems about complexity/algorithms.

References:
• http://gt-alea.math.cnrs.fr/alea2015/transp/Meunier.pdf
• http://kam.mff.cuni.cz/workshops/mcw/work18/mcw12andres.pdf
• and references therein.
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Problem 15. Home-Away-Pattern Set Feasibility (suggested by
Pavel Veselý)

Source: Proposed by Dirk Briskorn at MAPSP 2017.

Definitions.
• We consider a sport league with an even number n of teams.
• In a Single Round Robin Tournament (SRRT) there are n − 1 rounds of
matches such that each team plays once per round and each pair of teams
plays exactly one match. In each match, one of the two teams plays at home.
• A Home-Away-Pattern (HAP) is a table h with rows corresponding to teams
and columns corresponding to rounds such that ht,i = H iff team t plays at
home in round i; otherwise ht,i = A.
• In the Home-Away-Pattern Set Feasibility problem the goal is to determine
whether for a given HAP h there exists an SRRT such that for each team
t and round i we have ht,i = H iff team t plays at home in round i in the
SRRT. We call such h feasible.

Examples:

A feasible HAP:
1 2 3 4 5

1 H H H H H
2 A H H H A
3 H A H A A
4 A A A H H
5 H H A A H
6 A A A A A

An infeasible HAP:
1 2 3 4 5

1 A H H A A
2 A H A H A
3 A H H H A
4 H A A H H
5 H A H A H
6 H A A A H

Question: Are there some nice (combinatorial?) necessary or sufficient
conditions for feasible HAPs? Or can we even find a characterization?

Previous results:
There are some obvious necessary conditions for feasible HAPs:
• In each round the number of away-teams must equal the number of home-
teams.
• Any two teams must have different rows.
There is an integer programming formulation and the corresponding linear
programming relaxation provides a necessary condition [Briskorn D., 2008]
which is the strongest one known so far. The author conjectured that this
condition is also sufficient.
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