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Conductance of a Permutation (Karel Král) 14

Parity Matching problem (Martin Loebl) 15

Maximum Number of Minimal Connected Vertex Covers in
Graphs – the lower bound (Tomáš Masař́ık) 16
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Program

8:30 breakfast

9:30 morning session I

10:30 break

11:00 morning session II

12:30 lunch

15:00 afternoon session I

16:30 break

17:00 afternoon session II

18:30 progress reports

19:00 dinner

Wednesday is planned to be free to make an excursion in the
neighbourhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. Laplacian spectra consisting of distinct integers
(suggested by Jan Bok)

Source: Proposed by Fallat et al. [1].

Conjecture: There is no simple graph on n vertices whose Laplacian spec-
trum is given by {0, 1, . . . , n− 1}.

Related results:
• Conjecture holds for n ≥ 6, 649, 688, 933 (see [3]) and for n ≤ 11 (see [1]).
• (from [2] and [4]) If we suppose that G is a (hypothetical?) graph on n
vertices with Laplacian spectrum {0, 1, . . . , n−1}, then we can say following:

• n ≡ 0 or 1(mod 4),

• (n− 1)! is divisible by n,

• n ≥ 12,

• G has n(n−1)
4

,

• if G has degree sequence d1, . . . , dn, then 2 ≤ di ≤ n − 3 for all i, and∑
d2i = n(n− 1)(n− 2)/3,

• G and its complement GC must have diameter 3.

References:
[1] Fallat, Shaun M., et al. On graphs whose Laplacian matrices have distinct
integer eigenvalues. Journal of Graph Theory 50.2 (2005): 162-174.
[2] Stevanović, Dragan. Research problems from the Aveiro workshop on
graph spectra. Linear Algebra and its Applications 423.1 (2007): 172-181.
[3] Goldberger, Assaf, and Michael Neumann. On a Conjecture on a Lapla-
cian Matrix with Distinct Integral Spectrum. Journal of Graph Theory 72.2
(2013): 178-208.
[4] Das, Kinkar Ch, Sang-Gu Lee, and Gi-Sang Cheon. On the conjecture for
certain Laplacian integral spectrum of graphs. Journal of Graph Theory 63.2
(2010): 106-113.
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Problem 2. Crushing Disks and Playing TRON (suggested by
Martin Böhm)

Source: Presented at IWOCA 2016.

Crushing Disks:
On input, we receive a set of n points (centers) in R2, each center i with

associated radius ri and priority pi.
Imagine that we run a simulation where the disks grow linearly in time;

namely, in time t, there is a disk with center i and radius t·ri. When two disks
touch, the one with the lower priority is eliminated and the more important
one continues to grow. This induces an order on the disks.

The task is to output the elimination order of the centers. The problem
originates in map rendering – as you zoom out on a digital map, the map
removes the labels which are less important.

A naive algorithm is able to compute the order in time O(n2 log n). At
IWOCA 2016, Funke, Krumpe and Storandt [1] showed how to do this order
in expected time O(n(log6 n+ ∆2 log2 n+ ∆4 log n)) where ∆ is the ratio of
the largest and smallest radius of the instance.

The open problem is to improve on this running time. One of the authors
stated that they would welcome a running time that is close to n ·polylog(n)
without the ∆ factor.

Playing TRON:
On input, we get information about a set of (light-)motorcycles, each

motorcycle i starting at a point pi in R2 riding in direction di with speed si.
For simplicity, the motorcycles do not change direction or speed.

Each motorcycle leaves a barrier in its track. Whenever a motorcycle
intersects a track of another motorcycle, it crashes into it and is eliminated.
In this problem, several motorcycles can continue without ever crashing.

The task is to compute the elimination order of the motorcycles.
A simple algorithm can be designed in time O(n2 log n), the currently

known best algorithm is due to [2] with running time O(n17/11+ε). The open
problem is to again improve the running time.

References:
[1] Funke, S., Krumpe, F., Storandt, S.: Crushing Disks Efficiently. 27th
International Workshop, IWOCA 2016, Helsinki, Finland, pp 43-54, LNCS,
Springer (2016).

[2] Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing
pool: appli- cations of a data structure for finding pairwise interactions.
Discrete Comput. Geometry 22(4), 569–592 (1999).
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Problem 3. A zero-player graph game (suggested by Pavel Dvořák)

Source: Proposed by Dohrau et al. [1].

Definitions.
• A switch graph is a directed graph G in which every vertex has at most
two outgoing edges. Formally, a switch graph is a 4-tuple G = (V,E, s0, s1)
where s0, s1 : V → V and E =

{
(v, s0(v)), (v, s1(v)) : v ∈ V

}
. Loops (i.e.,

si(v) = v) and outdegree 1 (i.e., s1(v) = s2(v)) are allowed.
• We want to analyze the following process on a switch graph G and vertices
s, t ∈ V (G).

procedure Run (G, s, t)
for all u ∈ V : curr[u] = s0(u), next[u] = s1(u)
v = s
while v 6= t do
w = curr[v]
swap(curr[v], next[v])
v = w

end while
end procedure

Informally, we analyze the process when we start at the vertex s and in each
round we use an edge (v, s0(v)) or (v, s1(v)), if the number of visits of the
vertex v is even or odd, respectively. The process ends when we get to the
vertex t.
• A problem Arrival is to decide if the procedure Run(G, s, t) terminates
for a given switch graph G = (V,E, s0, s1) and vertices s, t ∈ V .

Question: Is the problem Arrival in P?

Related results:
• Dohrau et al. [1] proved the problem Arrival is in NP ∩ coNP.

References:
[1] J. Dohrau, B. Gärtner, M. Kohler, J. Matoušek and E. Welzl. A zero-
player graph game in NP ∩ coNP. https://arxiv.org/abs/1605.03546.
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Problem 4. Fixed-Parameter Approximation of Planar p-Centre
(suggested by Andreas E. Feldmann)

This problem is about approximating the p-Centre problem in planar
graphs within a factor better than 2 when allowing only a mild exponen-
tial running time, i.e. the running time should only be exponential in the
number p of centres.

Definitions.
• Let I be an instance of a minimization problem P with optimum solu-
tion OPT . An α-approximation of I is a solution S to I that is not worse
than α times the optimum solution: cost(S) ≤ α · cost(OPT ).
• Let A be an algorithm for a problem P that takes an instance I ∈ P and
a parameter p of I as input. We say that A is a fixed-parameter algorithm
for p if there exists a function f(p) independent of the input size n, and a
polynomial poly(n), such that A halts after at most f(p) · poly(n) steps on
any instance of P of size n with parameter p.
• A fixed-parameter α-approximation (α-FPA) algorithm A for a minimiza-
tion problem P is a fixed-parameter algorithm for p that computes an α-
approximation on any instance of P of size n with parameter p.

• Given a graph G = (V,E), let dist(u, v) denote the shortest-path distance
between two vertices u, v ∈ V in G.
• An instance to the p-Centre problem consists of an undirected graph G =
(V,E) and an integer p. A solution is a set C ⊆ V of at most p centres,
i.e. |C| ≤ p. The cost of a centre set C is the maximum distance of any
vertex of V to its closest centre: cost(C) = maxv∈V minu∈C dist(u, v). An
optimum solution is a centre set that minimizes the cost among all centre
sets of size at most p.
• A planar graph is a graph that can be drawn on the two-dimensional plane
such that no two edges cross, i.e. the only points shared by any pair of edges
may be their endpoints (their incident vertices).

Question: Is there a factor α < 2 for which the p-Centre problem on planar
graphs has an α-FPA algorithm for parameter p, i.e. the number of centres?

Related results:
• It is not hard to obtain a 2-approximation for any input graph of p-Centre
in polynomial time. (I can explain this result to you in 5 minutes, but see
also [1] or [2].)
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• Even for planar graphs there is no factor α < 2 for which an α-approximation
can be computed in polynomial time for the p-Centre problem (unless P=NP).
(See [3].)
• On general graphs there is no factor α < 2 for which the p-Centre problem
has an α-FPA algorithm for parameter p (unless P=W[2]). (This is also easy
to show; see [4].)
• For edge-weighted planar graphs there is no so-called FPT algorithm, which
is a fixed-parameter algorithm for p computing the optimum solution (un-
less P=W[1]).
• For other special graph classes α-FPA algorithms are known for α < 2.
For example for graphs with highway dimension h it is possible to obtain
α = 1.5 (here the parameter is the combination of p and h), and for graphs
with doubling dimension d it is even possible to obtain α = 1+ε for any ε > 0
(here the parameter is the combination of p, d, and ε). (For the former result
see [4], the latter result is easy and can be explained in about 10 minutes.)
References:

1. V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York,
Inc., 2001.

2. D. S. Hochbaum and D. B. Shmoys. A unified approach to approxima-
tion algorithms for bottleneck problems. JACM, 33(3):533–550, 1986.

3. J. Plesńık. On the computational complexity of centers locating in a
graph. Aplikace matematiky, 25(6): 445–452, 1980.

4. A. E. Feldmann. Fixed-Parameter Approximations for k-Center Prob-
lems in Low Highway Dimension Graphs. ICALP, pages 588–600, 2015.
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Problem 5. Fixed-Parameter Approximation of Directed Steiner
Networks (suggested by Andreas E. Feldmann)

This problem is about approximating the Directed Steiner Network prob-
lem within a factor better than 2 when allowing only a mild exponential
running time, i.e. the running time should only be exponential in the num-
ber of demands between terminals.

Definitions.
• Let I be an instance of a minimization problem P with optimum solu-
tion OPT . An α-approximation of I is a solution S to I that is not worse
than α times the optimum solution: cost(S) ≤ α · cost(OPT ).
• Let A be an algorithm for a problem P that takes an instance I ∈ P and
a parameter p of I as input. We say that A is a fixed-parameter algorithm
for p if there exists a function f(p) independent of the input size n, and a
polynomial poly(n), such that A halts after at most f(p) · poly(n) steps on
any instance of P of size n with parameter p.
• A fixed-parameter α-approximation (α-FPA) algorithm A for a minimiza-
tion problem P is a fixed-parameter algorithm for p that computes an α-
approximation on any instance of P of size n with parameter p.

• Let a directed graph D = (V,A) with arc set A and a set of p demands
(or terminal pairs) {(s1, t1), . . . , (sp, tp)} ⊆ V 2 be given. A directed Steiner
network N is a subgraph of G that contains a directed path from si to ti for
every i ∈ {1, . . . , p}. That is, the network N connects every terminal pair,
and to do so it can contain some subset of the remaining Steiner vertices
V \ {si, ti | 1 ≤ i ≤ p} (i.e. non-terminals).
• An instance to the Directed Steiner Network problem consists of a directed
graph D = (V,A) and a set of p terminal pairs. A solution is a directed
Steiner network N , and its cost is its number of edges |E(N)|. An optimum
solution is a Steiner network N that minimizes the cost among all solutions.

Question: What is the smallest factor α for which the Directed Steiner
Network problem has an α-FPA algorithm for parameter p, i.e. the number
of demands? Even finding such algorithms for special cases is interesting.

Related results:
• The special case when the demands are of the form {(r, t1), . . . , (r, tp)} for
a specified root terminal r is known as the Directed Steiner Tree problem,
since the optimum solution will form a directed tree with root r (i.e. an
arborescence). For this problem there is a so-called FPT algorithm for p,
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i.e. a fixed-parameter algorithm for p computing the optimum solution in
time 2p · poly(n). (See [1,2].)
• Even for the special case when the demands are of the form {(r, t1), (t1, r) . . . ,
(r, tp), (tp, r)} for a specified root terminal r (the so-called Strongly Connected
Steiner Subgraph problem), there is no FPT algorithm for p, i.e. the opti-
mum solution cannot be computed in time f(p) · poly(n) for any function
f(p) independent of n (unless P=W[1]). (See [3].)
• For the special case when the optimum solution is strongly connected it is
not hard to obtain a 2-FPA by computing two optimal directed Steiner trees.
(This can be explained in 5 minutes, but see also [4].)
References:

1. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs.
Networks, 1(3):195–207, 1971.

2. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets
Möbius: fast subset convolution. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, pages 67–74, 2007.

3. J. Guo, R. Niedermeier, and O. Suchý. Parameterized complexity
of arc-weighted directed Steiner problems. SIAM J. Discrete Math.,
25(2):583–599, 2011.

4. R. H. Chitnis, M. Hajiaghayi, and D. Marx. Tight bounds for planar
strongly connected Steiner subgraph with fixed number of terminals
(and extensions). In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1782–1801, 2014.

7



Problem 6. Fixed-Parameter Approximation of Steiner Trees
(suggested by Andreas E. Feldmann)

Source: Proposed by Michael Lampis in 2014.
This problem is about approximating the Steiner Tree problem within a

factor better than 1.39 when allowing only a mild exponential running time,
i.e. the running time should only be exponential in the number of Steiner
vertices of the optimum solution.

Definitions.
• Let I be an instance of a minimization problem P with optimum solu-
tion OPT . An α-approximation of I is a solution S to I that is not worse
than α times the optimum solution: cost(S) ≤ α · cost(OPT ).
• Let A be an algorithm for a problem P that takes an instance I ∈ P and
a parameter p of I as input. We say that A is a fixed-parameter algorithm
for p if there exists a function f(p) independent of the input size n, and a
polynomial poly(n), such that A halts after at most f(p) · poly(n) steps on
any instance of P of size n with parameter p.
• A fixed-parameter α-approximation (α-FPA) algorithm A for a minimiza-
tion problem P is a fixed-parameter algorithm for p that computes an α-
approximation on any instance of P of size n with parameter p.

• Let an undirected graph G = (V,E) and a set R ⊆ V of terminals be given.
A Steiner tree T is a connected acyclic subgraph of G containing R. That is,
the tree T connects all terminals, and to do so it can contain some subset of
the remaining Steiner vertices V \R (i.e. non-terminals).
• An instance to the Steiner Tree problem consists of an undirected graph
G = (V,E) and a set of terminals. A solution is a Steiner tree T , and its
cost is its number |E(T )| of edges. An optimum solution is a Steiner tree
that minimizes the cost among all solutions.
• Let p = |V (T ) \ R| be the number of Steiner vertices contained in the
optimum Steiner tree T .

Question: Is there a factor α < 1.39 for which the Steiner Tree problem
has an α-FPA algorithm for parameter p, i.e. the number of needed Steiner
vertices?

Related results:
• It is possible to obtain a 1.39-approximation for any instance of Steiner
Tree in polynomial time. (See [1].)
• There is a (small) constant α > 1 for which no polynomial time algo-
rithm can compute an α-approximation for any instance of Steiner Tree (un-
less P=NP). (See [2].)
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• For the Steiner Tree problem there is no so-called FPT algorithm for p,
which is a fixed-parameter algorithm for parameter p computing the optimum
solution (unless P=W[2]). (This can be explained in about 5 minutes.)
References:

1. J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6, 2013.

2. M. Chleb́ık and J. Chleb́ıková. Approximation hardness of the Steiner
tree problem on graphs. In Proceedings, Scandinavian Workshop on
Algorithm Theory, pages 170–179, 2002.
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Problem 7. Complexity of Computing the Spectral Radius of
an Interval Matrix (suggested by Milan Hlad́ık)

Source: Known to be an open problem for decades.

Definitions.
• The spectral radius ρ(A) of a square matrix is the largest absolute value of
its eigenvalues.
• An interval matrix is defined as A = [A,A] = {A | aij ≤ aij ≤ aij ∀i, j},
where A ≤ A are given.
• The spectral radius ρ(A) of an interval matrix A is the interval [ρ(A), ρ(A)],
where

ρ(A) = min
A∈A

ρ(A),

ρ(A) = max
A∈A

ρ(A).

Question: What is the complexity of computing ρ(A)?

Related results:
• It is posted as an open problem for decades, but probably not studied
heavily, so there is a chance to do it.
• To the best of my knowledge the complexity of computing ρ(A) has not
been investigated at all.
• I believe it is NP-hard as many related results are NP-hard (checking
Hurwitz stability, regularity etc. of an interval matrix, as well as the spectral
radius of an interval symmetric matrix).

Why is it interesting:
• For example: If A represents an uncertain matrix of a dynamical system,
then ρ(A) < 1 implies that all matrices in A are Schur stable, so the system
is stable whatever is the true matrix in A.

References:

[1] A. Nemirovskii. Several NP-hard problems arising in robust stability
analysis. Math. Control Signals Syst., 6(2):99–105, 1993.

[2] J. Rohn. Checking Properties of Interval Matrices. Technical Re-
port No. 686, Institute of Computer Science, Academy of Sciences
of the Czech Republic, Prague 1996, http://hdl.handle.net/11104/
0123221
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Problem 8. Extending matchings in Qn for n ≥ 2 to 2-factors
(suggested by Tereza Hulcová)

Source: Suggested by Jennifer Vandenbussche and Douglas B. West [1].

Definition. An f-factor of a graph G for a function f : V (G) → N is a
spanning subgraph H of G such that degH(v) = f(v) for every v ∈ V (G).

Theorem 1. (Ore-Ryser) A bipartite graph G = (A ∪B,E) has an f-factor
if and only if f(A) = f(B) and for every S ⊆ A

f(S) ≤
∑

b∈N(S)

min(f(b), |NS(b)|).

The question is if every matching of the hypercube with dimension n ≥ 2
can be extended to 2-factor. This is true for n = 1, 2, 3, 4. Vandenbussche
and Douglas proved this for n = 5 applying the Ore-Ryser theorem.

References:
[1] Jennifer Vandenbussche, Douglas B. West: Extensions to 2-factors in
bipartite graphs, 2013.
[2] Petr Gregor: Lecture notes for the subject Hypercube Problems.
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Problem 9. Majority coloring of digraphs (suggested by Tereza
Klimošová)

Source: Stephan Kreutzer, Sang-il Oum, Paul Seymour, Dominic van der
Zypen, David R. Wood [1].

Definitions. A majority coloring of a digraph is a function that assigns each
vertex v a color, such that at most half of the out-neighbors of v receive the
same color as v. In other words, majority of the out-neighbors of v receive a
color different from v.

A concept of majority coloring was recently introduced by Dominic van
der Zypen, who posed as an open problem whether any digraph has a ma-
jority coloring by a bounded number of colors.

Very recently a very short proof (5 lines) of the following theorem ap-
peared in [1].

Theorem 2. Every digraph has a majority 4-coloring.

It leads to the following conjecture.

Conjecture 3. Every digraph has a majority 3-coloring.

This would be best possible, since an odd directed cycles do not have
a majority 2-coloring. (And there exist other, more complex examples of
graphs requiring at least 3 colors.)

In [1], some evidence for Conjecture 3 is given. In particular, it is shown
that a large minimum out-degree (greater than 72 ln(3v(G))) implies the
existence of a majority 3-coloring. The authors also propose a number of
open problems related to Conjecture 3.
• Does every tournament have a majority 3-coloring?
• Does every Eulerian digraph have a majority 3-coloring?
• Provide a characterisation of digraphs that have a majority 2-coloring (or
a polynomial time algorithm for their recognition).
• Consider a fractional version of Conjecture 3. Perhaps 3 can be replaced
by something smaller.
• Generalization of Conjecture 3: For k ≥ 2, every digraph has a (k + 1)-
coloring such that for each vertex v, at most 1/k of its out-neighbors receive
the same color as v.

See [1] for more problems and background.

References:
[1] Kreutzer, Stephan, Sang-il Oum, Paul Seymour, Dominic van der

Zypen, and David R. Wood. ”Majority Colourings of Digraphs.” arXiv
preprint arXiv:1608.03040 (2016).
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Problem 10. The P3-game on paths (suggested by Dušan Knop)

Source: Proposed by Hon, Kloks, Liu, Liu, and Wang [1].

Definitions.
• Let G = (V,E) be a graph. A set S ⊆ V is P3-closed if

∀v ∈ V v /∈ S ⇒ |N(v) ∩ S| < 2.

• Two players play the P3-game on a graph by alternately selecting vertices.
At the start of the game all vertices are unlabeled. During the game players
label vertices. Prior to every move, the set of labeled vertices is P3-closed. A
move consists of labeling a, previously unlabeled, vertex v.

Examples:
• When the graph is a clique with at least two vertices, then the second
player wins the game.
• When the graph is a star K1,l, then player one has a winning strategy if
and only if l is even.

Related results:
• There exists an O(n2) algorithm that decides the P3-game on paths.
• There exists a polynomial-time algorithm to decide the P3-game on cycles.

Question: Characterise the number of vertices n for which player one wins
the P3-game on path Pn. What about cycle Cn?

References:
[1] Hon, W.-K., Kloks, T., Liu, F.-H., Liu, H.-H., & Wang, T.-M. 2016,
arXiv:1608.05169
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Problem 11. Conductance of a Permutation
(suggested by Karel Král)

Source: Proposed by Yevgeniy Dodis in 2016.

Definitions.
• Conductance of a permutation π : {0, 1}wn → {0, 1}wn at q queries is the
maximum over all possible pairs of cartesian products (U1 × · · · × Uw, V1 ×
· · · × Vw), where Ui, Vi ⊆ {0, 1}n and |Ui| = |Vi| = q for each 1 ≤ i ≤ w, of
the numbers of pairs (x, y) ∈ {0, 1}wn × {0, 1}wn such that

π(x) = y and (x, y) ∈ (U1 × · · · × Uw, V1 × · · · × Vw).

In other words:

condπ(q) = max
U1,...,Uw,V1,...,Vw,|Ui|=|Vi|=q

|π(U1 × · · · × Uw) ∩ [V1 × · · · × Vw]|.

Question: What is the smallest conductance of a linear permutation (that
is a permutation that is a linear function)?

Related results:
• Conductance of any permutation π : {0, 1}wn → {0, 1}wn lies between q
and qw.
• A random permutation has conductance close to wqn.

• Linear permutations satisfy Condτ (q) ≥ Ω(q2−
1

2w−1 ).

References:
Indifferentiability of Confusion-Diffusion Networks

Yevgeniy Dodis, Martijn Stam, John Steinberger, Liu Tianren.
https://www.cs.nyu.edu/~dodis/ps/cd-networks.pdf
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Problem 12. Parity Matching problem (suggested by Martin
Loebl)

Source: Proposed by Marcos Kiwi and Martin Loebl in 2015.

Definitions.
• Parity Matching problem P (G,w, p1, . . . , pg, k) is as follows: Given integer
k, graph G with n vertices, positive integer weights w(e) on edges and g
disjoint pairs of edges p1, . . . , pg, find out if there is a feasible perfect matching
or total weight at least k; perfect matching M is feasible if it has an even
number of edges from each pi, i = 1, . . . , g.

Question: No deterministic or probabilistic algorithm for

P (G,w, p2, . . . , pg, k)

has complexity less than poly(n)2g.

Related results: I can explain that MaxCut problem for G with crossing
number g can be reduced to the Parity Matching problem for 2g. That can
be solved by calculating linear combination of 22g Pfaffians. After attempts
to find more straightforward algorithm, we start to think that no significantly
better way exists. The Parity Matching problem pinpoints the complexity of
MaxCut for graphs embedded on surfaces.

There is a straightforward reduction of P (G,w, p1, . . . , pg, k) to 2g weighted
perfect matching problems. I find it very surprising (but still we conjecture
it) that no better algorithm should exist.

We have some very pleriminary results very weakly supposting the con-
jecture.
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Problem 13. Maximum Number of Minimal Connected Vertex
Covers in Graphs–the lower bound (suggested by Tomáš Masař́ık)

Source: This question was proposed by Golovach et all in 2015 on IWOCA
conference.

Definitions.
• Minimal connected vertex cover is a minimal connected set of vertices such
that for every edge there is at least one endpoint in it.

Figure 1: Actual lower bound.

Question: The maximum number of minimal connected vertex covers of
an arbitrary graph on n vertices is at most 1.8668n and also this can be
enumerated in the same time. Is this result tight? Can we construct a graph
with that many minimal connected vertex covers? The authors are able to
construct a graph with 3(n−1)/3 ≈ 1.4422 minimal connected vertex covers.

References: Petr A. Golovach, Pinar Heggernes and Dieter Kratsch: Enu-
meration and Maximum Number of Minimal Connected Vertex Covers in
Graphs, Combinatorial Algorithms - 26th International Workshop, IWOCA
2015, Verona, Italy, October 5-7, 2015, Revised Selected Papers, 235–247.
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Problem 14. Decomposibility of 3-edge-connected graphs (sug-
gested by Jan Muśılek)

Source: Proposed by Barát and Thomassen in 2003.

Definitions.
• Let us have connected graph G with count of edges m = m1+ · · ·+mk where
m1, . . . ,mk ∈ Z+. Then by decomposition G according to (m1, . . . ,mk) we
mean the set G1, . . . , Gk of connected subgraphs G such that:

1. ∀i ∈ {1, . . . , k} : |E(Gi)| = mi

2. Graphs G1, . . . Gk cover the set of edges of graph G.

Alternatively, we can imagine that each edge of G is coloured by one of k
colours in such way, that there are exactly mi edges coloured by color i and
that subgraph G induced by edges of color i is connected.
•We say about graph G that it is decomposible if there exists ∀k ∈ {1, . . . ,m}
the decomposition of G according to every k-tuple (m1, . . . ,mk) such that
m1 + · · ·+mk = m and m1, . . . ,mk ∈ Z+.

Question: Is it true that every 3-edge-connected graph is decomposible?

Related results:
• Every 4-edge-connected graph is decomposible.
• There are 2-edge-connected graphs that are not decomposible.
• If G contains open dominating trail then G is decomposible.
• Every 2-edge-connected graph G is 2-decomposible (can be decomposed
into 2 parts of prescribed size).

References:
[1] Barát, J.; Thomassen, C.: Dividing the edges of a graph into connected

subgraphs of prescribed size. Abstrakt na konferenci Eurocomb, 2003.
[2] Györi, E.: On division of graphs to connected subgraphs. In Combi-

natorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. 1, 1976, s.
485–494.

[3] Muśılek, J.: Decomposition of graphs into connected subgraphs. Mas-
ter thesis, 2015.
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Problem 15. Trains on switch graphs (suggested by Veronika
Sĺıvová)

Source: Proposed by Matoušek and Welzl in 2014 (Question A) and Michal
Koucký in 2016 (Question B).

Definitions.
• A switch graph is a directed graph G in which every vertex has two outgo-
ing edges going to its even and odd successor (loops and multiple edges are
allowed).
• A train drives from a given vertex o (origin) along the switch graph. If a
train has visited a vertex even (resp. odd) number of times it leaves it along
the even (resp. odd) edge from this vertex. The train stops only at a given
vertex d (destination).

Example:

o

1

5

2 3 4 d0

1

0

1

0

1 0

1

0

1

0

1

Figure 2: A graph with exponentially long route.

Question A: Can we decide in polynomial time if the train stops (i.e. arrives
to the destination d)? Or is this problem as hard as some other problem in
NP ∩ coNP (e.g. factoring, parity games, . . . )?

Question B: What can we say about probability of arriving when the
switches are chosen uniformly at random in the beginning? What is the
expected length of the route?

This question can be restated as a question about deterministic random
walks on directed graphs. See for example Friedrich and Sauerwald.
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Related results:
• By the result of Dohrau et al. the problem of deciding whether the train
arrives to the given destination is in NP ∩ coNP.
• There are results showing similarities between the expectation of a random
walk and a deterministic random walk on undirected graphs. Does something
like this hold also for directed graphs?

References:
A zero-player graph game in NP ∩ coNP

Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jǐŕı Matoušek, Emo Welzl
https://arxiv.org/pdf/1605.03546v1.pdf

The Cover Time of Deterministic Random Walks
Tobias Friedrich, Thomas Sauerwald
http://arxiv.org/pdf/1006.3430.pdf
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Problem 16. The NIM game on graphs (inspired by a poster
in poster session at Mathematics of Jiř́ı Matoušek conference –
suggested by Jana Syrovátková)

Source: Proposed by Criel Merino in 2016

Definitions.
• A graph G, one vertex is a sink, on each vertex is some number of stones.
• One move of one player is to choose a vertex v and move one or more
stones from v to each of his neighbors (on each of them the same number of
stones).
• A game consists of moves by players. Who cannot play, looses the game.

Example:
The usually played form of a Nim game is: ”You have a number of heaps of
stones and you can take away any number of stones from any but one heap.
Who cannot play, loses.” This could be realized as our game where G is a
star and the center is the sink.

Question: You have a graph and some distribution of stones on its vertices.
Who can win? How should he play to win?
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Problem 17. Compressing planar graphs (suggested by Robert
Šámal)

Source: Proposed by Thomas Böhme in 2016
Conjecture: Let G be a connected planar graph with maximal degree ∆.
Then there exists p = p(∆), a planar graph H and a mapping f : V (G) →
V (H) such that

• |f−1(v)| ≤ p for every vertex v ∈ V (H),

• for all x, y ∈ V (G) with dG(x, y) ≤ 2 we have f(x) = f(y) or {f(x), f(y)} ∈
E(H).
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Problem 18. Balancing two spanning trees (suggested by Robert
Šámal)

Source: Proposed by Matthias Kriesell in 2016 (and also earlier).
Conjecture: Suppose G is a union of two edge-disjoint spanning trees. Then
we can write G as a union of two edge-disjoint spanning trees S, T such that
for every x ∈ V (G) we have | degS(x) − degT (x)| ≤ C for some absolute
constant C.

A weaker version asks for degS(x)/ degT (x) ≤ C.
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Problem 19. Irregularity strength (suggested by Robert Šámal)

Source: Proposed by Faudre and Lehel in 1987
Definition: A multigraph is irregular if no two vertex degrees are equal.
A multigraph can be viewed as a weighted graph with nonnegative-integer
weights on the edges. The degree of a vertex in a weighted graph is the sum
of the incident weights. Chartrand et al. [CJLORS] defined the irregularity
strength of a graph G, written s(G), to be the minimum of the maximum
edge weight in an irregular multigraph with underlying graph G.

Conjecture: Prove or disprove that if a tree T has n1 leaves and n2 vertices
of degree 2, then s(T ) = n1 + n2/2. If true, this would be sharp.
Conjecture: There is a constant c such that if G is a d-regular graph with
n vertices, then s(G) ≤ (n/d) + c.
Related results:
• Always s(G) is at least the number of vertices with degree 1.
• Amar and Togni [AT] proved that equality holds for trees without vertices
of degree 2.
• Bohman and Kravitz [BK] proved that there are trees (with 2-valent ver-
tices) whose irregularity strength is greater than c times the number of leaves,
where c is some constant greater than 1.
• Faudree and Lehel [FL] proved that s(G) ≤ dn/2e+ 9 when G is 2-regular.
For general d, the best result is by Przybylo [P]: s(G) < 16(n/d) + 6. This
improves results by Frieze-Gould-Karoński-Pfender [FGKP] and Cuckler-
Lazebnik [CL].
• Another result of Przybylo: s(G) ≤ (4 + o(1))n

δ
+ 4 if G has minimum

degree δ ≥
√
n log n.

References:
http://www.math.illinois.edu/~dwest/regs/irreg.html

[AT] Amar, D.; Togni, O.; Irregularity strength of trees. Discrete Math.
190 (1998), no. 1–3, 15–38.

[BK] Bohman, Tom; Kravitz, David; On the irregularity strength of trees.
J. Graph Theory 45 (2004), no. 4, 241–254.

[CJLORS] Chartrand, Gary; Jacobson, Michael S.; Lehel, Jenö; Oeller-
mann, Ortrud R.; Ruiz, Sergio; Saba, Farrokh; Irregular networks. 250th
Anniversary Conference on Graph Theory (Fort Wayne, IN, 1986). Congr.
Numer. 64 (1988), 197–210.

[CL] Cuckler, Bill; Lazebnik, Felix; Irregularity Strength of Dense Graphs.
J. Graph Theory (to appear).

[FL] Faudree, R. J.; Lehel, J.; Bound on the irregularity strength of
regular graphs. Combinatorics (Eger, 1987), 247–256, Colloq. Math. Soc.
János Bolyai, 52, North-Holland, Amsterdam, 1988.
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[FGJW] Ferrara, M.; Gilbert, J.; Jacobson, M.; Whalen, T.; Irregularity
Strength of Digraphs. Discrete Math (to appear).

[FGKP] Frieze, Alan; Gould, Ronald J.; Karoński, Michal; Pfender, Flo-
rian; On graph irregularity strength. J. Graph Theory 41 (2002), no. 2,
120–137.

[G] Gilbert, J.; Irregularity Strength of Digraphs, Ph.D. Dissertation, The
University of Colorado Denver, May 2008.

[P] Przybylo, Jakub; Irregularity strength of regular graphs, Electr. J.
Combin. 15 (2008), Paper #82, 10 pages.
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Problem 20. Path partitions (suggested by Robert Šámal)

Source: Proposed by Gyárfáš in 1989
Conjecture: Every r-coloredKn has a partition of its edges into r monochro-
matic paths.
Related results:
• True for r = 2 (Gerencer and Gyárfáš 1967)
• True for r = 3 (Pokrovskiy 2014)
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Problem 21. When are random permutations k-universal (sug-
gested by Matas Šileikis)

Source: Proposed by Noga Alon [2] in 2016 at Oberwolfach workshop “Com-
binatorics and Probability”.

Definitions.
• A sequence (x1, . . . , xn) of distinct real numbers defines a permutation σ ∈
Sk, where σ(i) < σ(j) whenever xi < xj.
• For n > k, a sequence (x1, . . . , xn) of n distinct real numbers contains a
permutation σ ∈ Sk if there is a subsequence (xi1 , . . . , xik) defining σ. It is
k-universal if it contains every σ ∈ Sk.

Example:
If we denote a permutation by a vector σ(1)σ(2) . . . σ(n), we have that se-
quence (0.9, 0.1, 0.2) defines the permutation 312 and is 2-universal, since
(0.9, 0.1) (or (0.9, 0.2)) defines 21 and (0.1, 0.2) defines 12.

Definitions.
• Let (x1, . . . , xn) be real numbers chosen independently and uniformly from
interval [0, 1]. They define a permutation chosen uniformly from Sn. Let

f(k) = min {n : Sn is k-universal with probability ≥ 1/2}

Example:
Only monotone increasing and decreasing permutations are not 2-universal.
The probability of 2-universality is thus (n!− 2)/n!, which is zero for n = 2
and larger than 1/2 for n ≥ 3, so f(2) = 3.

Related results:
• Arratia [1]: f(k) ≥ (1/4 + o(1))k2.
• Alon [2]: it is easy to show that f(k) = O(k2 log k).

Question: In [2] Alon asked: is it true that f(k) ≤ 1000k2 for k large
enough?

References:
[1] R. Arratia, On the Stanley-Wilf Conjecture for the Number of Per-

mutations Avoiding a Given Pattern, Electronic J. Combinatorics 6 (1999),
N1.

[2] N. Alon, Optimal induced universal graphs, Report of Oberwolfach
workshop 1616 “Combinatorics and Probability”, April 2016 www.mfo.de/

document/1616/preliminary_OWR_2016_22.pdf
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