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8:30 breakfast

9:30 morning session I
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11:00 morning session II
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15:00 afternoon session I
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17:00 afternoon session II

18:30 progress reports
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Wednesday is planned to be free to make an excursion in the
neighbourhood with everyone who would like to come.
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OPEN PROBLEMS

Problem 1. A swarm explores a tree (suggested by Martin Böhm)

Source: Proposed by Sándor P. Fekete at Euro Summer Institute 2015,
Szeged, Hungary.

A swarm of r robots starts at a root of an unknown tree with (unknown)
non-negative lengths on the edges. Their task is to explore the tree. When-
ever a robot arrives at a vertex, it learns the degree of this vertex, but the
length of an edge is made known only when a robot traverses it completely
(i.e. when it discovers the other vertex). The robot can change its direction
whenever it wishes, even in the middle of an edge.

Every robot has its own unlimited energy source for their movement. We
are interested the energy use of the robot that travelled the most distance.
The reason we care about this performance measure is because in practice,
every robot in the swarm will be outfitted with the same battery, and the
energy use of the most-used robot dictates the battery capacity needed.

We compare our energy use to the best offline algorithm, i.e., the best
possible utilization of the same number of robots when the tree is known in
advance but needs to be traversed anyway.

Question: What is the best competitive ratio for the problem of r robots
exploring a tree? Can we design a better lower bound than 3/2 and a better
algorithm than a greedy one? Can we design a good algorithm when the
number of robots is fixed, such as r = 3, 4? Can we design a good algorithm
on stars or other classes of trees?

Notes: There is a simple lower bound of 3/2 on the competitive ratio, for
general r ≥ 2. There is also a tight strategy in the case of r = 2: think of
two robots, each having its own colour and marking edges.

It was mentioned at the lecture that a greedy algorithm is 8-competitive
but a proof was not given.

In this model, we assume robots can communicate with each other wire-

lessly (i.e. a robot can make a decision based on the entire explored tree so

far and the state of all other robots).

Problem 2. The k-defensive domination on cographs (suggested
by Jiř́ı Fiala)
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Source: Proposed by Jǐŕı Fiala and Art Farley in 2015 year.

Definitions.
• Dk is a k-defensive set in a graph G, if for every subset A of vertices of
size k there exists an injective map f : A→ Dk such that for all u ∈ A either
u = f(u) or uisaneighboroff(u) (i.e. for k Attackers, the Defenders are on
the attacked vertices or could move in there in one step).
• A graph is a cograph if it can be constructed recursively using the following
rules:

1. single vertex graph is a cograph,

2. if G = (V,E), H = (W,F ) are cographs, then so is their disjoint union,
that is the graph (V ∪W,E ∪ F ),

3. if G = (V,E), H = (W,F ) are cographs, then so is their complete join,
that is the graph (v ∪W,E ∪ F ∪ {{v, w} : v ∈ V,w ∈ W}).

Question: The problem is to compute the minimum size of a set Dk for
given cograph G and k.

Related results:
• For the cograph decomposition, it is easy to handle the disjoint union, since
the minimum defense set for the disjoint union of G and G′ is just simply
the disjoint union of the defense sets of G and of G′. The tricky part is when
performing the join between G and G′.
• The size of the defense set might drop significantly as there is an upper
bound 2k, if both G and G′ have at least k vertices. It could be even less
than the minimum of the two.
•When the size of one of the two parts is smaller than k, say |G| = l < k. It
seems that the upper bound on is:

Dk(G join G′) ≤ l +Dk−l(G
′).

Problem 3. A-defensive domination (suggested by Tomáš Gaven-
ciak)

Source: Extension of k-def. dom. concept of A. Farley and A. Proskurowski.

Definitions.
• A (multi)set D defends against an attack (a multiset) A in graph G if there
is an injective map f : A → D mapping vertices to distance at most 1. D
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is a defense agains a family A of attacks if it defends every A ∈ A. The
problem of A-defensive domination is to find smallest such D for given G
and A ∈ A.
• With control over multisets: Aditionally, Dmin (pre-placed defenders) and
Dmax (vertex defender capacities) are given, and D has to satisfy Dmin ⊆
D ⊆ Dmax (as multisets).
• A comparability graph of a poset has the elements as vertices and an edge
between comparable elements. Co-comparability graph is a complement of
a comparabiliy graph. This includes interval graphs, cographs, permutation
graphs e.t.c. •

Question: What is the complexity of A-defensive domination on the follow-
ing graph classes: bounded tree-width, bounded path-width, interval graphs,
cographs and cocomparability graphs. Optionally with specified Dmin. Op-
tionally with Dmax ≡ 1 (simple sets) or arbitrary given Dmax.

Related results:

•
(
V
k

)
-def. dom. with Dmax ≡ 1 is polynomial on trees [1].

• A-def. dom. is polynomial on interval graphs with Dmax ≡ ∞ [2].

• Cocomparability graphs are characterised by existence of cocomparability
order �: for any a � b � c if ac ∈ E then ab ∈ E or bc ∈ E (or both). For
interval graphs this is: if ac ∈ E then ab ∈ E. For unit interval graphs this
is: if ac ∈ E then both ab ∈ E and bc ∈ E. See [3].

References:
[1] A. Farley, A. Proskutowski: Defensive domination.
[2] D. Dereniowski, T. Gavenciak, J. Kratochvil: Cops, a fast robber and

defensive domination on interval graphs.

[3] D. G. Corneil, R. M. Krueger: A unified view of graph searching.

Problem 4. Enumerating of Ramsey color avoiding numbers
(suggested by Jaroslav Hančl)

Source: Proposed by Po-Shen Loh in 2015.

Definitions.
• Let f(n) be the maximum number such that every 3-coloring of the edges
of the n-vertex transitive tournament contains a directed path with at least
f(n) vertices, which avoids at least one of the colors.
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Question: Determine f(n).

Related results:
• By merging two of the three color classes, one may obtain a bound f(n) ≥√
n.
• Standard construction achieves f(n) ≤ n2/3 when n is a perfect cube.
• Best lower bound so far is due to Po-Shen Loh, who used close connection
to Ruzsa-Szemerédi induced matching problem and obtained bound f(n) ≥√
nelog

∗ n, where log∗ n is the inverse of the tower function T (n) = 2T (n−1),
T (0) = 1.

References:
Po-Shen Loh, Directed Paths: from Ramsey to Ruzsa and Szemerédi,

arxiv.org/pdf/1505.07312.pdf

Problem 5. The (2, 1) consecutive ones property testing (sug-
gested by Dušan Knop)

Source: Proposed by Murray Patterson at IWOCA 2013 open problem ses-
sion.

Definitions.
• We call a matrix binary if it is over the field Z2.
• Let A be an m × n matrix and π : [n] → [n] be a permutation. By ai
we denote the i-th column of matrix A. By Aπ we denote the matrix whose
i-th column is the column aπ(i) (i.e. Aπ is the matrix that arises from A by
permuting the columns according to the permutation π).
• Let A be an m× n binary matrix. The matrix A has the consecutive ones
property, if there exists a permutation (of columns of A) π : [n] → [n] such
that the matrix Aπ is of the form 0∗1∗0∗ (i.e. at most one block of ones).
• (A generalization of the previous) Let A be an m × n binary matrix. The
matrix A has the (p, q) consecutive ones property, if there exists a permutation
(of columns of A) π : [n]→ [n] such that the matrix Aπ is of the form

0∗(1∗0≤q)≤p−11∗0∗

(i.e. at most p blocks of ones with at most q zeroes between any two blocks).

Question: What is the time complexity of deciding the (2, 1) consecutive
ones property?

Related results:
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• There is a polynomial time algorithm [BoothLueker] that decides the con-
secutive ones property. Moreover there is a compact representation of all
possible permutations π.
• Deciding the (p, q) consecutive ones property is NP-hard [Maňuch et al.]
for all p ≥ 2, q ≥ 1 with the only (possible) exception p = 2, q = 1.

References:
[BoothLueker] K. S. Booth and G. S. Lueker. Testing for the consecutive

ones property, interval graphs, and graph planarity using PQ-tree algorithms,
Journal of Computer and System Sciences, 13(3): 335–379, 1976.

[Maňuch et al.] J. Maňuch, M. Patterson and C. Chauve. Hardness re-
sults for the gapped consecutive-ones property, Discrete Applied Mathematics,
160(18): 2760–2768, 2011.

Problem 6. The maximum edge q-coloring problem (suggested
by Dušan Knop)

Source: Proposed by Tommi Larjomaa and Alexandru Popa at IWOCA 2014
open problem session.

Definitions.
• A q edge coloring of a graph G = (V,E) is a function c : E → [q].
• A maximum q edge coloring of a graph G = (V,E) is an edge coloring of
the graph G such that for every vertex v ∈ V, all the edges incident with v
have to be colored with at most q colors (i.e. the set C(v) = {c(e) : v ∈ e}
has at most q elements).
• A min-max q edge coloring of a graph G = (V,E) is an maximum q edge
coloring such that the maxv∈V |C(v)| is minimized.

Questions:
• Is there an approximation algorithm for the maximum edge q coloring with
competitive ratio better that 2?
• Find a lower bound on approximation ratio for the maximum edge q col-
oring assuming P6= NP (based on the PCP-theorem).
• Design an approximation algorithm for the min-max edge q coloring prob-
lem.

Related results:
• The maximum edge q coloring problem is NP-hard, and moreover, hard to
approximate within a factor of 3/2 assuming the Unique Games Conjecture.
• No approximation algorithm is known for the min-max edge q coloring
problem.
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References:

• T. Larjomaa and A. Popa. The Min-Max Edge q-Coloring Problem, IWOCA,

2014. (Available on Arxiv: arXiv:1302.3404)

Problem 7. The Pancake Problems (suggested by Peter Korc-
sok)

Source: Proposed by Harry Dweighter in 1975.

Motivation.
We are given a stack of (possibly burnt) pancakes and we’d like to sort them
by their sizes (and the burnt ones should be burnt-side down). The only
allowed operation if to flip several top-most pancakes.

Definitions.
• A prefix of a permutation or string is an initial segment.
• A flip is the reversal of a prefix.
• In a signed permutation, each element i occurs as i or i′, and i′ is treated
as a negated element. When reversing a prefix of a signed permutation, the
signs also reverse.

Questions.
• What is the maximum number f(n) of flips needed to sort a permutation
of [n] into ascending order?
•What is the maximum number g(n) of flips needed to sort a signed permu-
tation of [n] into ascending order with all positive signs?
• Which permutation of [n] needs the most flips to sort?

Related results.
• There are known exact values of f(n) up to n = 19 and of g(n) up to
n = 17.
• In an average case, unsigned permutation can be sorted with at most
17n/12 +O(1) flips.

References.
• Harry Dweighter, Problem E2569, Amer. Math. Monthly 82 (1975) 1010.
•William H. Gates, Christos H. Papadimitriou, Bounds for sorting by prefix
reversal, Discrete Math. 27 (1979) 45–57.
• Josef Cibulka, On average and highest number of flips in pancake sorting,
Theoret. Comput. Sci. 412 (2011) 822–834.
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Problem 8. A Metric Group Product (suggested by Karel Král)

Source: Proposed by Dylan McKay in 2015.

Question: Is there a function f : R≥0 × R≥0 → R≥0 (R≥0 are non-negative
real numbers), such that (R≥0, f) is both a group and a metric space?

Definitions.
• The group axioms are:

• Closure: f(a, b) ∈ R≥0

• Identity: there exists e such that for all a ∈ R≥0 : f(a, e) = f(e, a) = a

• Associative: for all a, b, c ∈ R≥0 : f(f(a, b), c) = f(a, f(b, c))

• Inverse: for all a ∈ R≥0 there is b ∈ R≥0 such that f(a, b) = e.

• The metric axioms are:

• f(a, b) = 0 if and only if a = b

• f(a, b) = f(b, a)

• f(a, b) ≤ f(a, c) + f(c, b)

Example:
Xor of binary representations does not work because the representation is
not unique (see the reference for more information).

Related results:
• Xor of binary representations works for natural numbers.

References:
http://blog.computationalcomplexity.org/2015/06/a-metric-group-

product.html

Problem 9. Parity Matching problem (suggested by Martin Loebl)

Source: Proposed by Marcos Kiwi and Martin Loebl in 2015.

Definitions.
• Parity Matching problem P (G,w, p1, . . . , pg, k) is as follows: Given integer
k, graph G with n vertices, positive integer weights w(e) on edges and g
disjoint pairs of edges p1, . . . , pg, find out if there is a feasible perfect matching
or total weight at least k; perfect matching M is feasible if it has an even
number of edges from each pi, i = 1, . . . , g.
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Question: No deterministic or probabilistic algorithm for P (G,w, p1, . . . , pg, k)
has complexity less than poly(n)2g.

Related results: I can explain that MaxCut problem for G with crossing
number g can be reduced to the Parity Matching problem for 2g. That can
be solved by calculating linear combination of 22g Pfaffians. After attempts
to find more straightforward algorithm, we start to think that no significantly
better way exists. The Parity Matching problem pinpoints the complexity of
MaxCut for graphs embedded on surfaces.

There is a straightforward reduction of P (G,w, p1, . . . , pg, k) to 2g weighted
perfect matching problems. I find it very surprising (but still we conjecture
it) that no better algorithm should exist.

We have some very pleriminary results very weakyl supposting the con-

jecture.

Problem 10. Reduction networks (suggested by Martin Loebl)

Source: Proposed by Andrea Jimenez and Martin Loebl in 2014.

A reduction network is a communication network consisting of intercon-
nected parts where each part has to perform some task. The elements of
each part need to communicate in order to successfully perform the task.
The parts are linearly ordered, and after a part performs its task, the part
is no more directly functional and it is reduced; that is, the communication
network is updated in such a way that the reduced part is removed and
only its residue remains. The goal is to make reductions whose residues help
communication in yet functional parts.

Definitions.
• The reduction network is modeled by an undirected cubic graph G, and its
linearly ordered parts by the ears of an ear-decomposition of G. The order of
the parts is reversed order of the ears. Each ear decomposition starts with an
induced cycle and each ear is a path of 2, 3 or 4 edges or a star of 3 edges;
in particular, an edge is not an ear. Let us describe reductions of a given
reduction network.
At the initial step, the first part (last ear: must be a star since the graph is
cubic) is reduced and the updated communication network becomes a mixed
graph; that is, we delete from G the inner vertices of the last ear, and add
between remaining vertices directed edges (arcs) which form the residue of the
initial reduction. We also identify pairs of directed edges which ’do not like
each other’ and we put them into set R which is updated during the reduction
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of the reduction network. Initially, R = ∅. Hence, mixed graph is 4-tuple
(V,E,A,R) where A is the set of its arcs.
At each later step, given current mixed graph and current ear L to be reduced,
we do the following:
(1) If L is path of 4 edges and the current mixed graph has no arc between its
inner vertices then we ALARM: all work and hope is lost, the network will
explode in five seconds and destroy the Earth.
(2) Otherwise we reduce the ear, if it has a reduction (to be described later).
If there is no possible reduction, we leave the network to its fate and collect
the money.
(3) If the current mixed graph consists of the initial cycle and some arcs only,
we also collect the money.
We need to say what is reduction of an ear in a mixed graph (V,E,A,R).
• Let H be the set of all the orientations of the edges of the ear L we want
to reduce. Hence H has each edge of L oriented twice. We first update R by
adding all pairs of new opositely directed arcs. Let H ′ consists of the arcs of
H along with the arcs of A incident to an inner vertex of L. We partition
H ′ into directed paths and directed cycles so that no pair of R belongs to the
same path or cycle. Finally, we replace each directed path by the arc from its
initial vertex to its terminal vertex, and delete the inner vertices of the ear.
We note that a reduction of an ear need not exist.
• The absolute hope would be that each reduction network has a reduction
which ends with money collection, but this is not true. Luckily, we can relax
this hope considerably.
(1) We assume that the descend of each ear L of 4 edges is connected; the
descend of L is induced subgraph on the subset W of inner vertices of later
ears; we put v to W if it is inner vertex of a later ear, and there is a path of
edges of later ears that connects v to an inner vertex of L.
(2) In fact, we can even change the input graph: Let L = L0 be an ear of
4 edges and let L1, . . . , Lk be a sequence of later ears which are paths of 3
edges and for each i = 1, . . . , k, the terminal vertices of Li are inner vertices
of Li−1. Let VL be the set of the inner vertices of the ears later than Lk. The
inner vertices of ∪Li are connected by exactly three edges to VL, since G is
cubic. Now, look at this: we can arbitrarily change the end-vertices of these
three edges along the inner vertices of degree 2 of ∪Li.

Question: Does every network have a money collection reduction?

Related results:
• This comes from the study of the directed cycle double cover conjecture.
• It is true, even without assuming (2), for planar networks: this I can
explain.
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Problem 11. Disjoint segments (suggested by Viola Mészáros)

Source: J. Pach’s website.

There is a collection of n pairwise disjoint line segments in the plane in
general position. We want to build a path using some of these segments. The
path is built so that between chosen endpoints of the given segments we add
rectilinear edges. Hence, in the path every other edge belongs to the given
segments and every other edge is added later.

Question: What is the maximum k = k(n) that it is possible to build a
noncrossing path of size k in any given set of n pairwise disjoint line segments?

Related results by J. Pach and R. Pinchasi:
• Upper bound: there is a set of n segments where no subset of size 2n1/2 or
more can be completed to such a path.
• Lower bound: in any set of n pairwise disjoint line segments one can find
a subcollection of Ω(n1/3) segments that can be completed to a noncrossing
path.

References:
Paper 191 at http://cs.nyu.edu/~pach/

Problem 12. Woodall’s Conjecture (suggested by Viola Mészáros)

Source: Open Problem Garden, posted in 2007 by M. DeVos.

Let G be a directed graph.

Definitions.
• A directed cut of G is a cut where all edges are directed in the same way.
• A dijoin is a set of edges that intersects every directed cut.
• A strongly connected digraph is a directed graph in which it is possible
to reach any node starting from any other node by traversing edges in the
direction in which they point.

Conjecture: If G is a directed graph with smallest directed cut of size k,
then G has k disjoint dijoins.

Related results:
• There seem to be few positive results towards Woodall’s conjecture for
general digraphs. Seymour and DeVos observed that the conjecture is true
for k = 2. To see this, note that the underlying graph is 2-edge-connected,
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so it may be oriented to give a strongly connected digraph H. Now partition
the edges into two sets {X, Y } where X consists of those edges which have
the same orientation in both H and G, and Y is the rest. It is immediate
that both X and Y meet every directed cut, so each is a dijoin. Extending
this to k = 3 appears to be difficult.

References:
http://www.ime.usp.br/~pf/dijoins/woodall/survey1-en.pdf

http://integer.tepper.cmu.edu/webpub/dijoin.pdf

Problem 13. First Selection Theorem for Boxes (suggested by
Saurabh Ray)

Source: This is one of the problems studied in the reference below that has
not been completely resolved.

Question: Any two points p, q ∈ Rd induce an axis parallel box of which p
and q are diagonally opposite corners. Thus n points in Rd induce

(
n
2

)
such

boxes - one for each pair of points. What is the largest constant αd (assuming
d is fixed), so that given any set of n points in Rd, at least αdn

2 − o(n2) of
the

(
n
2

)
boxes induced by them have a common intersection? Even for d = 3,

the right bound is not known.

Related results:
• In two dimensions the exact answer is known, α2 = 1

8
. Given n points in the

plane, we can take a vertical line and a horizontal line, each of which bisect
the point set. It can be easily show that the intersection point of these two
lines is in at least n2/8 of the induced rectangles. On the other hand, it can
be shown that if the n points are placed at the corners of a regular n-gon,
then no point in the plane is contained in more than n2/8 of the induced
rectangles.
• In higher dimensions, there is a large gap in the bounds known. It is known
that 1

22d−1
≤ αd ≤ 1

2d+1 . Even in three dimensions, the right bound is not
known.
• A well studied problem in this area asks the same question for simplices
spanned by (d + 1) points in Rd. It is conjectured that among the

(
n
d+1

)
d-simplices (convex hull of d + 1 points) induced by n points in Rd, at least(

n
d+1

)d+1
have a common intersection. It is know that this bound cannot be

improved. The statement is known to be true in two dimensions: the center-
point of any set of n points is contained in n3/27 of the

(
n
3

)
triangles induced

by the points and there are point sets where no point in the plane is contained
in more than these many induced triangles. Already in three dimensions, the
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problem becomes very challenging and has so far defied solution despite the
development of sophisticated topological machinery for improving the lower
bound.

References: P. Ashok, N. Rajgopal, S. Govindarajan: Selection Lemmas
for various geometric objects (http://arxiv.org/pdf/1401.0443v1.pdf),
2014.

Problem 14. Counting generalized permutations (suggested by
Robert Šámal)

Source: Proposed by Linial in 2012
We identify permutations with the corresponding permutation matrix: an

n× n array of 0s and 1s, with exactly one 1 per every line (row or columns).
We generalize this concept as follows: a d-dimensional permutation is an
array of n× · · · × n = nd+1 zeros and ones, with exactly one 1 per every line
(a set of n entries with d indices fixed and the remaining one going over all
possible n values).
Conjecture: The number of d-dimensional permutations of order n is(

(1 + o(1))
n

ed

)nd

.

Related results:
• The result is true for d = 1 (Stirling formula).
• The result is true for d = 2 (Latin squares).
• It is true that the number of d-dimensional permutations is at most the
given quantity. [LL] Thus the goal is to provide a matching lower bound.

References: [LL] Linial, Luria: An upper bound on the number of high-
dimensional permutations, Combinatorica, 2014

Problem 15. Four-peg Hanoi towers (suggested by Robert Šámal)

Source: Proposed by H.E. Dudeney in 19008.
The puzzle of Hanoi towers is usually played with three pegs and n disks

of distinct sizes. Originally, all disks are on the first peg, they are to be
moved to the last one in as small number of moves as possible, while at no
time is a larger disk put over a smaller one. It is a simple exercise that the
minimum number of moves is exactly 2n− 1. The question is what happens,
when we have four pegs; we let Qn denote the minimum number of moves
that are required.
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Problem: Determine Qn.
Conjecture: An optimal sequence of moves is given by a recursive proce-
dure, described below (so-called Frame–Stewart algorithm.)
Related results:
• [Sz] Qn ≤ 2(1+o(1))Bkn

1/(k−2)
(k is the number of pegs, i.e., k = 4)

• [Sz] Qn ≥ 2(1+o(1))Ckn
1/(k−2)

• [F],[S] An upper bound Qn: pick m ≤ n. Perform Qm moves to transfer
the top m disks to the second peg, then do the usual 3-peg Hanoi tower
algorithm on the remaining three pegs and finally use another Qm moves to
finish. It is conjectured, that this (for some m) is actually an optimal way.
(But not a unique one! Even the best b is not always unique.)

References: [Sz] Mario Szegedy, In How Many Steps the k Peg Version
of the Towers of Hanoi Game Can Be Solved? STACS’99, LNCS 1563, pp.
356–361, 1999.

[F] J.S. Frame, A Solution to AMM Problem 3918 (1939), American
Mathematical Monthly, vol. 48, pp.216–217, 1941.

[S] B.M. Stewart, Solution to Problem 3918, American Mathematical
Monthly, vol. 48, pp. 217–219, 1941.

[KMP] Sandi Klavžar, Uroš Milutinović, Ciril Petr, On the Frame–Stewart
algorithm for the multi-peg Tower of Hanoi problem, Discrete Applied Math-
ematics, Volume 120, Issues 1–3, pp. 141–157

Problem 16. Independent spanning trees (suggested by Robert
Šámal)

Source: Proposed by Itai and Rodeh 1984
Conjecture 1: Given a vertex k-connected graph G and a vertex d ∈ V (G),
there exists spanning trees T1, . . . , Tk in G such that for every v ∈ V (G), all
k paths from v to s (in T1, . . . , Tk) are internally vertex disjoint.
Conjecture 2: Given an edge k-connected graph G and a vertex d ∈ V (G),
there exists spanning trees T1, . . . , Tk in G such that for every v ∈ V (G), all
k paths from v to s (in T1, . . . , Tk) are edge disjoint.

For the last conjecture we need to explain a concept of local routing
tables. Given a graph G, routing tables consist of a sequence of mappings.
For each vertex v ∈ G we have a mapping fv : δ(v) → (δ(v))k; that is, fv
assigns to each edge incident to v a sequence of k such edges. To use the
routing tables, we construct a walk in the graph. Given a vertex v and edge e
by which we enter v, we decide to leave v by the first available edge in fv(e)
– an edge may not be available, we are assuming some edges were damaged.
Then we repeat, until we (hopefully) reach d.
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Conjecture 3: Given an edge k-connected graph G and a vertex d ∈ V (G),
there exist routing tables that lead from every start to d, provided < k edges
are damaged.
Related results:
• [IR] Conjecture 1 is true for k = 2.
• [ZI] Conjecture 1 is true for k = 3.
• [N] Conjecture 2 is true for k ≤ 4.
• Conjecture 1 implies Conjecture 2.

References: [IR] Itai, Rodeh, The multi-tree approach to reliability in dis-
tributed networks, 25th FOCS, 1984, 137–147, (also in Info. and Comput.)

[ZI] Zehavi, Itai: Three tree-paths. J. Graph Theory 13 (1989), no. 2,
175–188.

[N] Jitka Novotná: diploma thesis.

Problem 17. Free flows (suggested by Robert Šámal)

Source: Proposed by Nešetřil and Šámal
Let G be a digraph, M an abelian group, ϕ : E(G)→M a flow. We say ϕ

is p-free if ϕ(e1)+· · ·+ϕ(ek) is never zero for 1 ≤ k ≤ p and e1, . . . , ek ∈ E(G).
Conjecture For every p ≥ 1 exists a kp such that any orientation of a (p+1)-
edge-connected graph has a p-free flow ϕ : E(G) → M where M is a group
of order ≤ kp.
Related results:
• It is true for p = 1 (Jaeger) and for p = 2 (DeVos, Johnson and Seymour).
• It is true for every p if we assume the graph is (2p+ 1)-edge connected.

Problem 18. Magic square of squares (suggested by Robert Šámal)

Source: This question was first asked in 1984 by Martin LaBar and popu-
larized in 1996 by Martin Gardner, who offered $100 to the first person to
construct such a square.

A 3 × 3 square is called magic if all three columns, all three rows, and
both diagonals have the same sum.
Question Is there a magic square in which all elements are squares of distinct
positive integers?
Reference:
• Christian Boyer. Some notes on the magic squares of squares problem.
The Mathematical Intelligencer 27 (2005), 2, 52–64.
• Paul Pierrat, Franc Ois Thiriet, Paul Zimmermann: Magic squares of
squares. http://www.loria.fr/~zimmerma/papers/squares.pdf
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Problem 19. Regular systems of vectors (suggested by Robert
Šámal)

Source: Proposed by William Martin at CanaDAM (and probably famous in
the crypto community).
Challenge 1 Find, as many as you can, equiangular lines in Cd (unit vectors
whose inner products have constant absolute value). Find d2, if possible.
Challenge 2 Find, as many as you can, equiangular lines in Rd (unit vectors
whose inner products have constant absolute value). Find

(
d+1
2

)
, if possible.

Challenge 3 Find, as many as you can, orthonormal bases in Cd where unit
vectors from distict bases have inner product with constant absolute value.
Find d+ 1, if possible.
Challenge 4 Find, as many as you can, orthonormal bases in Rd where unit
vectors from distict bases have inner product with constant absolute value.
Find d

2
+ 1, if possible.

Related results:
• Challenge 1 is solved for d = 2, 3, 8 using Hadamard matrices. (Jedwab
and Wiede, 2014)

Problem 20. Dissecting the square into congruent copies (sug-
gested by Martin Tancer)

Source: Proposed by Yuan, Zamfirescu and Zamfirescu [YYZ]; goes back to
questions of Danzer in 1980’s .

Question: Let p be an odd prime number. Is there any other dissection of
the square into p congruent convex polygons apart from the standard one?
(See Figure 1.)

Figure 1: The standard dissection for p = 5.

Related results:
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• The answer is known to be ’no’ for p = 3 [Mal] and for p = 5 [YYZ]. The
first open case is therefore for p = 7. It might also be of interest to avoid a
complicated case analysis for p = 5.

References:
[Mal] Samuel J. Maltby. Trisecting a rectangle, Journal of Combinatorial

Theory, Series A, 66(1):4052, 1994.
[YYZ] Liping Yuan, Carol T. Zamfirescu, and Tudor I. Zamfirescu. Dis-

secting the square into five congruent parts, Discrete Mathematics, 339(1):288–
298, 2016.

Problem 21. No three points on a line in discrete toroidal grid
(suggested by Martin Tancer)

Source: Essentially Misiak et al. [MSS+] .

Definitions.
• By the discrete toroidal m × n grid we mean the quotient of Z2 under
identifications (x, y) ∼ (x′, y) and (x, y) ∼ (x, y′) whenever x ≡ x′ (mod m)
and y ≡ y′ (mod n).
• A line in such a grid is an image of a line in Z2 under this quotient. See
Figure 2.

Figure 2: The discrete toroidal 6 × 4 grid and six points on a same line in
this grid.

Question: What is the maximal number of points of the discrete toroidal
m× n grid that can be selected so that no three of them are on a line?

Related results:
• Let v(m,n) be the value in the question. Misiak et al. [MSS+] show
that v(m,n) ≤ 2 gcd(m,n) (easy) and moreover v(m,n) = gcd(m,n) if
gcd(m,n) ∈ {1, 2} or if gcd(m,n) = p where p is a prime number and at
least one of the values m, n is divisible by p2 (still quite easy). On the other
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hand they show that v(m,n) = p + 1 if gcd(m,n) = p where p is a prime
number and none of the values m,n is divisible by p2.
References:

[MSS+] Aleksander Misiak, Zofia Stepieň, Alicja Szymaszkiewicz, Lucjan
Szymaszkiewicz, and Maciej Zwierzchowski. A note on the no-three-in-line
problem on a torus, Discrete Mathematics, 339(1):217–221, 2016.

Problem 22. Rectangle covering bound for Unique Disjointness
(suggested by Hans Raj Tiwary)

Source: See reference.

Let n > 1 be a natural number and let N = 2n. Let M be a N×N matrix
with 0/1 entries.

Definitions.
• A rectangle R is submatrix of M induced by a subset r × c ⊆ [N ] × [N ]
of rows and columns.
• A rectangle is called monochromatic if either every entry in it is 1 or
every entry is zero.
• A set of rectangles are said to cover M if every non-zero entry of M is in
at least one of the rectangles.
• The rectangle cover number of M , denoted by rc(M), is the smallest
number of monochromatic rectangles needed to cover M .

Example: A 5×5 matrix with a cover of size 4 (Each rectangle is represented
by a distinct color).

Let D be an N × N matrix defined as follows. Rows and columns of D
are indexed by 0/1 vectors of length n, and the entry Dab is defined to be

Dab =

{
1 if aᵀb 6= 1
0 otw.
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Question: What is the rectangle covering number of D?

Related results:
• rc(M) 6 2n. (This is trivial).
• rc(M) > 1.5n (See reference)

References: Volker Kaibel, Stefan Wltge: A Short Proof that the Extension
Complexity of the Correlation Polytope Grows Exponentially.

Problem 23. Automorphism Groups of 3-dimensional Compa-
rability Graphs (suggested by Peter Zeman)

Definitions.
• A graph that has a transitive orientation is called a comparability graph.
• The Dushnik-Miller dimension of a poset P is the least number of linear
orderings L1, . . . , Lk such that P = L1 ∩ · · · ∩ Lk.
• Similarly, we define the dimension of a comparability graph X, denoted
by dim(X), as the dimension of any transitive orientation of X. (Every
transitive orientation has the same dimension.)
• We denote the class of comparability graphs by COMP, and the class of
comparability graphs of dimension at most k by k-DIM. We get the following
infinite hierarchy of graph classes:

1-DIM ( 2-DIM ( 3-DIM ( 4-DIM ( · · · ( COMP.

• Let Aut(X) denote the automorphism group of the graph X. For a graph
class C, let Aut(C) =

{
G : X ∈ C, G ∼= Aut(X)

}
. The class C is called uni-

versal if every abstract finite group is contained in Aut(C), and non-universal
otherwise.

Question: Show that Aut(3-DIM) is universal.

Related results:
• Since 1-DIM consists of all complete graphs, Aut(1-DIM) = {Sn : n ∈
N}. The automorphism groups of 2-DIM are non-universal and they were
completely characterized in [1].
• The automorphism groups of k-DIM, for k ≥ 4, are universal [1]. For
a given graph X there is a comparability graph CX ∈ 4-DIM such that
Aut(X) ∼= Aut(CX). The construction is simple, however, the proof that
CX ∈ 4-DIM is quite involved and technical.
• Yannakakis showed that the recognition of 3-DIM is NP-complete by a
reduction from 3-coloring [2]. For a graph X, a comparability graph Y is
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constructed with several vertices representing each element of V (X)∪E(X).
It is proved that dim(Y ) = 3 if and only if X is 3-colorable. Unfortunately,
the automorphisms of X are lost in Y since it depends on the labels of V (X)
and E(X) and Y contains some additional edges according to these labels.

References:
[1] P. Klav́ık and P. Zeman: Automorphism groups of comparability graphs.
[2] M. Yannakakis: The complexity of the partial order dimension problem.
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