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Abstract: The increase in genomic data collection over the last decades has created a
challenge for efficient data storage and querying. Methods based on k-mers, substrings
of a small fixed length, have proven to be particularly useful and outperform standard
assembly-based methods in a variety of applications. The novel approach of masked su-
perstrings generalized k-mer-based methods and provided state-of-the-art compression
efficiency together with a simple and memory-efficient way to design data structures
for k-mers. However, the optimization of masked superstrings, which is NP-hard, has
only been done as a two-step process so far, leaving room for improvement.

In this thesis, we model the space complexity of masked superstrings with masks stored
in run-length and Elias-Fano encodings. We propose a polynomial-time heuristic
algorithm for joint optimization of masked superstrings, implement the algorithm,
and test it on eukaryotic genomes and microbial pangenomes. We then experimentally
prove that our implementation outperforms the best-performing methods used so far,
both theoretically and practically, especially for pangenomic datasets.
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Introduction

The amount of genomic data being collected worldwide has increased rapidly in the last
two decades, thanks to next-generation sequencing (NGS) technologies. Efficient data
storage and comparison techniques are therefore crucial for fields of interest depending
on genomics, such as drug design, disease prevention and detection, environmental
screening, and many more.

k-mers are substrings of genomic data of a small fixed length. They can be com-
puted directly from sequenced reads, without the need for computationally demanding
genome assembly. They can also be stored in a more efficient way than genomes.
k-mer based methods are used for studying pangenomes and metagenomes, genomic
data representing many individuals of possibly different species. In addition to storing
the data, k-mers are used for fast searching by creating efficiently compressible k-mer
data structures, such as indexes [Mar+21;|SVB25; |LZL19].

In recent years, k-mer-based methods have been used in a growing number of
practical tasks such as large-scale data search [Kar+24; Bfi+25], metagenomic classifi-
cation [WS14; KD15; BBS18], prediction of transcription factor binding sites [Fle+13]]
and identification of disease risk factors in the genome [[Cor+25].

The masked superstring framework is a recent generalization of textual repre-
sentations of k-mer sets [SVB23]. It improves compressibility by introducing false
positive k-mers, which are filtered out by a binary mask. The mask can be equipped
with a number of interpretation functions to simplify set operations on k-mer sets
[SVB25]. In addition, the combination of masked superstring with Burrows-Wheeler
transform allows to create a memory efficient k-mer index [SVB24]].

k-mers are defined in two different models, the uni-directional and the bi-
directional model. The bi-directional model, which treats each k-mer as equivalent
to the one with reverse complementary sequence, is used in most cases, as it has
biological relevance. Computing the masked superstring of optimal (smallest) length
is NP-complete in both models. This means that approximation algorithms and
heuristics must be used for computation.

The practical compressibility of masked superstrings depends both on the super-
string length and on the structure of the mask. So far, the best performing method
for masked superstring optimization was to use the two-step optimization — a global
greedy algorithm for superstring computation followed by mask optimization [SVB23].

However, the input of the second step and the overall quality of the result are
highly dependent on the output of the first step. As the optimization in the first step
does not consider the target of the second step, the results can be significantly worse
for certain optimization criteria.

In this thesis, we model the compressibility of masked superstrings by a linear
function of the superstring length and the count of maximal sequences of ones in the
mask, called runs. We show that optimization of this objective is NP-complete by a



reduction from the shortest superstring problem.

We develop a greedy heuristic algorithm for the joint (single-step) optimization
of a masked superstring with the aim of minimizing the defined objective function.
The algorithm is based on the Aho-Corasick automaton and is parametrized by the
amount of priority it gives to keeping the superstring short versus the number of runs
small.

Since the Aho-Corasick automaton of a k-mer set would be impractically big, we
only store the leaves of the tree and use the rest implicitly. The implementation is
therefore called Leaf-Only Aho-Corasick automaton, LOAC.

We implement the algorithm inside a fork of an open-source tool KMERCAMEL*
[SVB23].

We evaluate the performance of LOAC and the parameters of the resulting masked
superstrings against the state-of-the-art implementation of two-step optimization from
KMERCAMEL Y . We compare the result for eukaryotic genomes of model organisms,
such as S. cerevisiae and D. melanogaster, and for microbial pangenomes from Genomic
datasets used for evaluation of k-mer representations and indexes [VBS25].

For each dataset, we search for the optimal value of the input parameter called run
penalty. It represents the ratio of the importance of the resulting superstring length
to the number of runs of ones in the resulting mask considered by the optimization
algorithm.

From the data gathered, we suggest the suitable values of the run penalty parameter
to be used for different types of datasets.

We then use the optimal configuration for each dataset to compute the masked
superstring and compare its length, the number of runs of ones, and the objective
function with the results of the two-step optimization. We then compress the resulting
masked superstrings with commonly used compression tools to demonstrate the
superior compressibility of the masked superstrings produced by LOAC. We also
demonstrate the practical usability of LOAC by measuring and comparing the running
times and memory efficiency of the algorithms.

In Chapter (1} we briefly explain the biological and bioinformatical background
relevant for the thesis. In Chapter [2| we formulate the prerequisites and give an
overview of previous work related to the representation of k-mers and k-mer sets. In
Chapter 3| we prove the NP-completeness of the joint optimization of the objective
function studied and describe the algorithm for the joint optimization of masked
superstrings. In Chapter [4] we describe the practical implementation details of the
algorithm. In Chapter |5, we describe the experiments performed to evaluate the
performance of our implementation and discuss the results.

The selected results are presented as tables and plots in Appendix [A] and Ap-
pendix Bl respectively. The implementation can be found on GitHub: https://
github.com/Jajopi/Plachy-bc-thesis or as a supplementary material submitted
with this thesis.
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Chapter 1

Background

This chapter contains a basic and simplified overview of the biological and bioinfor-
matical background relevant to the work.

1.1 Genomic data in bioinformatics

1.1.1 Biology of informational macromolecules

Informational macromolecules play a crucial role in the existence of life. They are
present in all known forms of life (except for some simple viruses, however, these
are not always considered living organisms). There are two types of informational
macromolecules:

+ Nucleic acids, such as DNA (which encodes and stores genetic information) and
RNA (with various functions ranging from storing and transferring information
to catalyzing chemical reactions).

+ Polypeptides that act as functional molecules by catalyzing chemical reactions
or providing mechanical structures for the cell.

Other macromolecular compounds of cells, such as polysaccharides or polylipids,
are not considered informational macromolecules, although their structures can be of
high entropy.

DNA

Deoxyribonucleic acid (DNA) plays a key role in the storage of genetic information and
serves as a template for transcription. The whole set of DNA contained in an organism
is called a genome. The basic functional unit of the genome is called a gene. The
definition of a gene is quite unspecific, as any piece of DNA can have various functions,
depending on its context (the spatial arrangement of the DNA, the interaction with
the DNA-binding proteins, etc.). The set of genomes of more individuals of the same
species or even different species (for example, the bacterial population of the human
intestines) is called a pangenome or a metagenome, respectively.

Although DNA is considered a very stable molecule, in eukaryotic cells, it is
enclosed in the nucleus and protected by histones and other chromatin-forming
proteins to avoid its interactions with factors that could cause mutations. DNA in the
nucleus is present in the form of several linear molecules called chromosomes. The



number of chromosomes and the positions of different genes throughout the genome
often vary even between closely related species.

Mutations are one of the most significant forces of evolution and are, in general,
beneficial to species and life as a whole, as they allow adaptation to changing conditions.
However, they are often accompanied by negative effects on individuals such as loss
of functionality of fine-tuned cellular mechanisms, which creates strong evolutionary
pressure for their suppression and correction.

In prokaryotic cells, DNA is present in several (often circular) molecules in the
cytoplasm. Prokaryotes are single-cell organisms that lack cell compartmentation. This
results in a higher mutation rate and faster evolution, which increases the flexibility
of species but prevents the emergence of complexity of “higher” living forms.

Eukaryotic cells also contain organelles such as mitochondria or chloroplasts that
store their own DNA. According to endosymbiotic theory, these organelles originated
from events of endosymbiosis, the absorption of a bacterial cell by an archaeal cell (or,
in later events, an eukaryotic cell). The first eukaryotic cells appeared about two billion
years ago. The DNA in organelles is not sufficient for their independent survival as it
has lost most of its former genes.

DNA is composed of four (main) types of nucleotides, each of them contains
saccharide deoxyribose, a phosphate group and a nucleotide base — either adenine,
cytosine, guanine or thymine (denoted respectively as A, C, G and T). DNA is (most of
the time) a double-stranded molecule, where each chain of nucleotides proceeds in an
opposite direction. The canonical direction is the one in which transcription progresses
and is indicated by 5* — 3’ (based on the chemical numbering of deoxyribose). For
chains to pair correctly, each nucleotide base must be aligned with a complementary
one, adenine with thymine, and cytosine with guanine (this is called a canonical
pairing; although there are many spatial arrangements in which the nucleotides can
pair non-canonically, they require specific conditions).

Central dogma of molecular biology

The flow of information between the molecules is described by the central dogma
of molecular biology: The information moves only from a DNA molecule through
replication to a new DNA molecule, through transcription to an RNA molecule, and
through translation from an RNA molecule into the sequence of peptides that form
proteins.

This idea has been proposed in 1958 [Cri58|]. There have been several exceptions
discovered since then — enzymes called reverse transcriptases are able to create DNA
sequences based on an RNA template, there are mechanisms of RNA replication, and
some proteins called prions can force their own conformation to other proteins of the
same kind. However, most of the information that determines the development of
living forms is contained in their DNA.

1.1.2 Sequencing methods

The key step in the study of informational macromolecules is to obtain information
about their sequence. Data are collected from a source of physical signal. In the
past, the single DNA molecule was insufficient for analysis. Therefore, most older
sequencing methods rely on DNA amplification in the polymerase chain reaction (PCR)
process.



Polymerase chain reaction [Erl89]

PCR uses thermally stable DNA polymerase enzymes to amplify (synthesize billions of
copies of) a certain DNA fragment bounded by short sequences called primers. These
are added into the reaction mixture in a large number of copies together with free
nucleotides to be used to synthesize the DNA.

The amplification works in cycles consisting of three phases at different temper-
atures. In the denaturation phase (with a temperature = 100°C), hydrogen bonds
between the complementary bases break and the DNA strands unravel. In the anneal-
ing phase (with a temperature = 50 — 65°C), the primers bind (hybridize) to the DNA
strands. In the elongation phase (with a temperature = 75°C), the DNA polymerase
synthesizes the rest of each sequence starting from the primer, using the strand to
which the primer binds.

In ideal conditions, this would result in the number of DNA strands doubling
in each iteration. Practically, about 30 iterations are sufficient to reach a number of
copies that is sufficient for further analysis.

Sanger sequencing [Val+13]]

The sequencing method developed by Frederick Sanger in 1977 is based on irreversible
termination of DNA synthesis and separation of DNA fragments by electrophoresis.

The complement of an amplified DNA sample is synthesized in the mixture en-
hanced by labeled dideoxynucleotides in low concentrations. If one of those modified
nucleotides becomes incorporated into the chain, the synthesis cannot continue, and
the resulting fragment is shorter than it would be if a normal nucleotide was incorpo-
rated instead.

The fragments are then separated by length (molecular weight) using the gel
electrophoresis method. The sequence can be obtained by reading the terminating
nucleotides of fragments sorted by length, which can be fluorescently labeled.

Sanger sequencing was the most widely used method for almost 40 years, until
the emergence of next-generation sequencing methods. It is still used in some cases
because of its high precision and relatively large length of the sequences obtained (up
to 1000 bases).

Next-generation sequencing [GMM16; SGA18; Hu+21]]

Most sequencing data are currently produced by several methods developed after the
year 2000, commonly referred to as the next-generation sequencing (NGS) or second-
generation sequencing methods.

The most dominant method is [llumina sequencing; most of the reads produced
yearly in the last decade were sequenced using this method. The method is often
called sequencing by synthesis. Amplified DNA is cut into polynucleotides of length
up to several hundreds of bases. They are then equipped with specific primers at
both ends and randomly distributed across the sequencing chip, where they bind to
complementary primers present on the chip in large numbers. The sequences are then
amplified using PCR, but the primers are bound to the surface of the chip. This results
in a huge number of copies of each sequence occupying small spots on the chip.

The complementary sequences are then synthesized in cycles. Each nucleotide
carries fluorescent dye which prevents the synthesis from proceeding with more than



one nucleotide at a time. The fluorescent dye is then washed away from all nucleotides,
allowing the next repetition to proceed. In each cycle, the optical signal from the dyes
is detected for each spot on the chip.

Many similar approaches are also widely used [Liu+12]. NGS methods allow
billions of sequences to be read at the same time. Therefore, they are also known as
massively parallel sequencing and are very efficient in terms of the cost of the data
produced.

The main disadvantage of NGS methods is the small length of individual reads, up
to a few hundreds of bases. Therefore, in most cases, a lot of computational power
is required for a further detailed analysis of the data obtained. In addition, some
interesting features of genomes, such as the number of repetitions in highly repetitive
regions, cannot be studied in this way.

Third-generation sequencing [Lee+16; STK10; Ama+20]

The third-generation sequencing methods are able to produce reads of length greater
than 10,000 bases (possibly reaching several hundreds of thousands of bases). Although
they are almost as old as NGS methods, they have not been used much in the past
because of high error rates. However, thanks to the improvements in precision in
recent years, these methods are currently on the rise.

In Oxford Nanopore sequencing, the single molecule of DNA travels through a
special pore in a membrane, altering the electrical potential between the solutions on
both sides of the membrane. The exact potential change depends on the geometry
of the molecule (the specific bases passing through the pore) and can be measured
precisely. The resulting potential is influenced by several bases present in the pore at
the moment. Therefore, it is difficult to obtain the exact sequence from measurements,
and machine learning principles are used. This technique outputs very long reads
of lower quality and is also capable of detecting modified or non-standard bases.
Sequencers are very small (often the size of a USB stick), but can use hundreds of
thousands of pores [Goo+15; Sim+16]].

The Pacific Biosciencies sequencing is another method that reads the sequence of a
single molecule and is therefore called single-molecule real-time (SMRT) sequencing. It
uses DNA polymerase placed close to a hole of depth and diameter = 100 nanometers
(called a zero-mode waveguide), which effectively blocks light emitted from sources
outside its small volume. The complementary strand of DNA is synthesized from
nucleotides with attached fluorescent dyes, which are released during synthesis and
detected. To increase error correction, the molecule is circularized and possibly read
several tens of times during each sequencing run [RA15].

Despite the rise of third-generation sequencing methods, NGS methods are likely
to remain widely used in the future, mainly because of their efficiency and ability to
generate large amounts of data at once.

1.1.3 Challenges of genomic data management

As the amount of genomic data collected and used every day has been increasing
yearly for several decades, new challenges arise for their storage and analysis [Ste+15].

There are various types of data produced by measurements and analyses, but
the largest volume is obtained from the NGS sequencers in the form of FASTQ files.
Those "raw” data consume huge amounts of storage space. The simple solution to



this problem would be to use them for certain analyses right after the sequencing and
discard them afterward. However, this is often expensive and inefficient as additional
analyses would require repeating the sequencing, which is not always possible.

Another possible solution is to store as much raw data as possible. However, this
approach is also very expensive because petabytes of sequencing data are generated
daily. Various compression techniques have been developed to address this challenge
[Her+19; DG13;|Zhu+15].

Single genome sequencing data can be effectively stored by mapping reads to a
reference genome [BM13]], possibly storing only the differences, called variants. If the
reference genome is not present, genome assembly can be performed [RG19; KM95].
However, this is quite impractical with pangenomic data (which come from a number
of different individuals) and very challenging with metagenomic data (from different
species).

Problems also arise with database storage and searching. As more genomes of
different organisms and individuals are sequenced, storing the assembled genomes
or individual genes in the databases requires more resources. In addition, searching
databases for similar sequences (with tools such as BLAST [Alt+90]]) becomes slower
and more computationally demanding.

Many computational techniques have been developed to overcome the challenges
faced by genomics [Bfi16]. k-mer-based methods are especially promising.

1.2 k-mer based methods

k-mer sets are obtained by taking every substring of length k from given DNA se-
quences and discarding duplicates; the order of the substrings in the original sequences
is not preserved (the mathematical perspective of the k-mer sets is explained in Chap-
ter [2). The values of k usually range between 15 and 127, with 31 being the most
used.

k-mer based methods find various usages in the field of comparative genomics.
Probably the biggest advantage of storing genomic sequences in a form of k-mer sets
over storing assembled genomes is the possibility of skipping the genome assembly
phase. k-mers can be computed directly from sequenced reads (possibly filtering out
those not present enough times, occurring due to sequencing errors).

In some cases, genome assembly or is too computationally demanding (for example,
when studying pangenomes, or when we need to perform de novo assembly of a genome
without known structure). Mapping reads (with mutations and errors) to a genome
scaffold is a much harder task than creating a k-mer index. The efficient index also
simplifies working with k-mer sets and can be optimized for different types of queries.

k-mer sets allow us to store only "biologically relevant” information — whole
genomes often contain repetitive sequences like telomeric sequences at the ends of
chromosomes or a significant amount of transposable elements at various places in the
genome (for example, about 10% of the human genome is formed by about a million
copies of Alu element [SNH98]]). Those sequences are problematic for the genome
assembly process, but are effectively compressed in the k-mer sets.

By encoding the genome as a k-mer set, we lose information about the absolute
positions of genes, and even their respective sequences, which may seem like a problem.
However, if we choose a sufficiently high k, the number of possible distinct k-mers
is orders of magnitude higher than the number of k-mers we might get from the



genome. This makes it possible to recompute longer parts of the genome considering,
for example, the paths in the de Bruijn graph (see Section for more details).
Moreover, when comparing genomes of (even closely related) species, the absolute
positions of given parts of their genomes tend to differ dramatically (see, for example,
Figure 4 of [McN+11]]).

k-mer based techniques are increasingly used in a growing number of practical
tasks. Notable applications include metagenomic classification [WS14; KD15; BBS18]],
large-scale data search [Kar+24; Bfi+25], prediction of transcription factor binding sites
[Fle+13]], detection of structural variation and cancer detection [[Abo+15]], antibiotic
resistance inference [Bri+20], viral infection detection [Ren+17;Bai+19], identification
of disease risk factors in the genome [Cor+25], and many more [Moe+24]].

k-mer sets can be effectively stored and used as a base for building indexes, allowing
for a fast comparison of genomic data [Mar+21; SVB25; LZL19].
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Chapter 2

k-mer set based techniques

2.1 Definitions

2.1.1 k-mers and complements

k-mer Q is defined as a string of length k € IN over alphabet Xpy4 = {A, C, G, T}. There
exist 4% distinct k-mers of length k. Examples of k-mers of length 3 are AAA, ATG, CAT.

A reverse complement of k-mer Q, RC (Q) is the string obtained by substituting each
letter of Q by the letter of its complementary base and reversing the order of the result.
Complementary pairs of bases are (A, T) and (C,G). For example, RC (AAA) = TTT,
RC (ATG) = CAT. We refer to the reverse complement of Q simply as a complement of
Q.

Being a complement is a symmetrical relation — for k-mers Q and Q" = RC(Q),
always RC (Q”) = Q. The lexicographically smaller k-mer from pair (Q,RC (Q)) is
called the canonical k-mer of Q.

Note that if k is even, there exist 4/2 k-mers for which Q = RC(Q). For example
k-mer AAGCTT is its own complement. This complicates the computation with k-mers
and is a reason why odd values of k are mostly used.

2.1.2 k-mer sets

We focus on sets of k-mers obtained from the input sequences, denoted by K. The
only information K stores about k-mers is whether they were present in the input. We
therefore lose any information on the positions and counts of the respective k-mers in
the input.

Most of the currently used sequencing techniques lack information on the DNA
strand from which a sample originated. This means that, in most cases, we are only
interested in storing whether Q or RC (Q) was present in the sample. This concept is
called the bi-directional model, as opposed to uni-directional model where Q and RC (Q)

k
are considered distinct. In the bi-directional model, there are only 4? distinct k-mers

for odd k and 4k+24 i distinct k-mers for even k. In both models, it therefore holds that
log, K| < k.

For practical purposes, it is often sufficient to use k = 31. Note that even the
largest known genomes, such as the one of T. oblanceolata [Fer+24] (or P. japonica
[PFL10]], previously considered the largest) are approximately 150 billion base pairs in
size; with log,(1.5 - 101%) = 20. Even if all k-mers in K were distinct, there would still

11



be = 419 k-mers not present in K for each k-mer present in K. It is also impractical to
work with such large k-mer sets, so the ones used are usually much smaller. k-mers of
length 31 can also be stored as 64-bit integers.

2.1.3 Overlaps

When creating K from strings sy ... s,, we take all substrings of length k from each s;.
In case there are no duplicate k-mers and [s;| > k, the sum of lengths of all k-mers in K
is up to k times larger than the sum of all substrings. This comes from the fact that
in the original strings, the k-mers were overlapping. An overlap between k-mers Q,
and Q, is a suffix E| of Q; that is also a prefix of Q,. As there may be more such strings
(for example, an empty one), we are only interested in the longest one of them, the
maximal overlap.

We refer to the maximal overlap simply as the overlap and denote it by ov (Q;, Q5).
For example, ov (ATGC, TGCA) = TGC, while ov (TGCA, ATGC) = A. Note that

RC (ov (Q4,0Q2)) = ov(RC(Q,) ,RC(Qy)).

Overlap graph

An overlap graph (OG) of K is a directed graph with k-mers from K as vertices. Each
pair of vertices is connected by a weighted edge with weight equal to the length of the
overlap between the vertices. Each vertex is also connected to itself with a self-loop.
As even edges of zero length are allowed, the graph is complete and therefore requires
© (K|?) space to be stored. Overlap graphs are used, for example, in the de novo
genome assembly [Riz+19].

Hierarchical overlap graph

To be able to store the overlap graph efficiently, hierarchical overlap graph (HOG)
was developed. It requires only linear space to encode all overlaps between pairs of
k-mers from K [[CR20]. It can be constructed in linear time from the Aho-Corasick
automaton [Par+21]. The currently best-performing algorithm first creates EHOG
(extended HOG) by removing vertices that cannot be visited by following failure links
from the leaves of the tree. Then it further removes the vertices that do not encode
maximal overlaps [Tal+24].

de Bruijn graph

A special OG subgraph called the node-centric de Bruijn graph contains only edges with
weights of k — 1. The result is that each vertex can only have a constant number of
in- and out-edges (up to four in uni-directional and eight in the bi-directional model),
and the graph can be stored in linear space.

Note that the edge-centric version of the de Bruijn graph also exists, where the
nodes represent overlaps (strings of length k — 1) and the edges represent k-mers.

Because shorter overlaps are not included in the graph, it does not store all the
information from the OG. Despite this limitation, de Bruijn graphs are widely used in
bioinformatics [CPT11; DJ22] and many other fields of study [HZB24].

"We only consider a proper prefix or suffix of string s, which must be shorter than s.

12
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Figure 2.1 de Bruijn graph of k-mer set {AAA, AAC, ACA, ACT, CAA, CAC, CTA, CTC} with k = 3.

Arrows mark overlaps of length k — 1.
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Figure 2.2 de Bruijn graph of k-mer set Kygmpie = {GCA, CAA, AAC, ACG, CGT, AAG, AGT, GTT,

TTC, TCC, TTA} with k = 3. Arrows mark overlaps of length k — 1.

2.2 Textual representations of k-mer sets

Recall that the total length of k-mers in the set K can be up to k times larger than the
initial data to be stored. This means that we need to compress the set to be able to use
it efficiently.

A superstring representation of the set K is a string S with these properties:

1. Every substring of S of length k is a k-mer of K.
2. Every k-mer of K is a substring of S.

However, it is not always possible to create such S to store an arbitrary K. For example,
if there is more than one Q; € K such that vQ; € K : |ov (Qs Qj) |<k-1.
There are two main approaches to solving this problem:

« Splitting K into m subsets Kj ... K, and encoding them separately with super-
strings S; ... S, (unitigs, simplitigs, and matchtigs).

+ Relaxing the first property and encoding S as a masked superstring with binary
mask M to distinguish the false positive k-mers.

2.2.1 Unitigs
Unitigs are defined as a set of superstrings S; of k-mer sets K;, with additional properties:
3. VKj,Kj 1 i#j = (Kin KJ) = @ (every k-mer is present in exactly one S;),

4. VQ,, if there is more than one Q, such that [ov (Qx, Qy) | = k—1(Q, has an
out-degree higher than one in the de Bruijn graph), Q, must be the last k-mer
of its superstring. Symmetrically, every k-mer with in-degree higher than one
must be the first one of its superstring.

13
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Figure 2.3 Unitigs representation of k-mer set K,y qmpe visualized in its de Bruijn graph.
Unitigs containing more than one k-mer are distinguished by color.
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Figure 2.4 Simplitigs representation of k-mer set K., visualized in its de Bruijn graph.
Simplitigs containing more than one k-mer are distinguished by color.

For optimal unitigs (with the smallest possible sum of lengths), it also holds that
vQ, with exactly one Q), such that |ov (Qx, Qy) | = k — 1, Q is not the last k-mers in
their (common) superstring.

Unitigs therefore represent non-overlapping paths in the de Bruijn graph which
start and end at branching vertices. The fourth property guarantees that unitigs
preserve the topology of the de Bruijn graph; they are referred to as compacted de
Bruijn graphs. [Chi+14].

Optimal unitigs can be efficiently calculated using tools such as BCALM2 [CLM16],
GGCAT [CT23], or cutTLEFISH3 [KDP25]. This approach is effective for storing k-mer
sets of single genomes, where de Bruijn graphs have a low number of branching nodes;
its effectiveness increases with increasing k.

2.2.2 Spectrum-preserving string sets

Storing highly branching de Bruijn graphs (for example, when used to compress k-mer
sets of pangenomes) results in a high number of short unitigs, which decreases the
storing effectiveness.

Spectrum-preserving string sets (SPSS) or simplitigs [RM21; BBK21]] relax the fourth
property of unitigs, allowing them to be any vertex-disjoint paths in the de Bruijn
graph. In most cases, the fourth property is not needed in applications, and if it is,
unitigs can be recomputed from simplitigs without information loss.

Simplitigs can be efficiently computed greedily (using, for example, PROPHASM
[BBK21]]). In addition, optimal simplitigs can be computed in linear time using the
Eulertigs algorithm [SA23].

2.2.3 Matchtigs

Matchtigs are a further generalization of simplitigs (also called repetitive SPSS —
rSPSS) that relaxes the third property of unitigs, allowing each k-mer to occur in
more sets K; and also to occur more times in a superstring of K;. This allows even
better compression in some cases, especially when compressing bacterial pangenomes.
Although matchtigs can be efficiently computed greedily with good results, only a
polynomial-time algorithm is known for optimal matchtigs computation [Sch+23].

14
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Figure 2.5 Matchtigs representation of k-mer set K,ympe visualized in its de Bruijn graph.
Matchtigs are distinguished by color. Note that k-mer GTT is present in both matchtigs.

2.3 Masked superstring

The masked superstring approach relaxes the first property of superstring represen-
tation by allowing ‘false positive® k-mers to appear in S;. This means that the whole
set K can always be encoded by a single superstring S. However, the false positive
k-mers (also called ghost k-mers) have to be distinguished from k-mers in K. This is
done using a binary mask M [SVB23].

Definition 1 (Masked superstring). Masked superstring of k-mer set K is a pair of
superstring S over alphabet 3pn 4 and mask M (a string) over alphabet {0, 1} such that:

1. |S| = |[M| (the mask is of the same length as the superstring),

2.Vie[l,...,|S|—k] : M[i] =1 = S|i,...,i + k] € K (all k-mers masked with 1
are in K),

3. VQeK, 3i: Mli]=1 A S[i,...,i + k] = Q (every k-mer from K is masked with 1
at least once),

4. Vie[|S|—k+1,...,|S|]] : M[i] = 0 (the last k— 1 characters of the mask are always
zeros).

We denote masked superstring by (M, S) or simply by MS.

Note that not all occurrences of Q; in S have to be masked with 1 — it is sufficient
that at least one such occurrence exists. Depending on the further usage of MS for
indexing, we can choose to mask any number of occurrences, but most often we mask
either all or exactly one of them.

The maximal substring of M that contains only ones is called a run of ones. A run
of zeros is defined similarly. Note that if M contains a run of zeros of length > k, we
can remove all but the first k — 1 characters from S and M corresponding to the run
and (trivially and unambiguously) obtain a shorter M’S’ representing the same set K.
We therefore consider all MS equivalent to their respective shortened versions and
assume all runs of zeros in their masks to be at most k — 1 characters long. This means
that we can implicitly store the value of k with the length of the last run of zeros in
the string.

The masked superstring is a generalization of matchtigs. This can be proven
constructively — for any representation of K with matchtigs S; ... S,, we can construct
S by concatenating all superstrings S; and M by concatenating runs of ones of length
IS;| — k + 1, each followed by a run of zeros of length k — 1.

Masked superstrings are used to store k-mer sets (as they achieve better compress-
ibility than matchtigs [SVB23]]) and as a base for k-mer set indexes [SVB24]. The
generalization of properties 2 and 3 allows us to encode the presence of a k-mer in the
set as any binary function of its occurrences in the mask [SVB25]. This can be used to
perform various set operations with k-mer sets.
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Figure 2.6 (Masked) superstring representation of k-mer set K,yqmp visualized in its de
Bruijn graph. Solid arrows mark overlaps of length k — 1. Dashed arrow marks an overlap of
length k — 2. Note that k-mer GTT appears two times in the resulting masked superstring.

2.3.1 Space complexity of storing the masked superstring

To achieve an efficient representation of K, our aim is to minimize the space required
to store MS, which is simply the sum of the space required to store S and M.

We model the space complexity of S to be linear with its length, |S|. As most of the
patterns present in the input data are not preserved during the construction of MS, we
expect no predictable structure usable for compression in SEl The strictly bounded
size of our alphabet allows us to use 2 bits per character, giving us a space complexity
of 2|S| bits.

The space complexity of storing M depends on the structure of M and the encoding
chosen. We present two of the most theoretically relevant encodings: run-length
encoding and Elias-Fano encoding. They both use the fact that, typically, M contains
a small number of long runs of ones El When compressing pangenomes, the resulting
mask usually contains more shorter runs than when compressing single genomes.

In practice, there are many highly optimized encodings that can be used to com-
press the mask. However, it is usually more practical to compress the whole MS at once.
Compressors such as gzip, bzip2, Irzip, or xz use complex compressing techniques that
can utilize the patterns present in MS to achieve an extremely efficient representation.

2.3.2 Efficient encodings for storing the mask
Run-length encoding

Run-length encoding (abbreviated as RLE) views M as an array of alternating blocks
of ones and zeros. M is then stored as an array of numbers representing the lengths.
We assume that the zero runs in the resulting MS are of length at most k — 1. This
means that the space complexity of storing one length of a run of zeroes is O (log k).
The runs of ones can have length of up to |S|. Storing the length of such a run
requires O (log|S|) space.

For each run of ones, there is exactly one run of zeros present in M. This holds
trivially because each run of ones is only interrupted by one or more zeros, and the
mask always starts with a run of ones and ends with a run of zeros.

Let R be the number of runs of ones in M. This gives us a total complexity of
storing M with run-length encoding in the number of bits:

=~ R (log (ISI) + log, (K)) = R log, (IS] - K).

?This has also been proven experimentally [SVB23].

3We can also use the fact that the mask contains a small number of zeros, and encode their individual
positions. However, since we expect an average length of run of zeros to be more than 2, encoding run
lengths is more efficient.
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The total complexity of storing MS (in bits) is then:
~ 2 (log, (IS)) - R+15]).

In practice, the effectiveness of the encoding depends on the number of runs of
ones. A mask with a small number of long runs of ones is compressed more efficiently.

Elias-Fano encoding

Elias-Fano encoding (EFE) utilizes the fact that the starting positions of the runs form
a strictly increasing sorted sequence of =~ 2R integers of size O(|S|) [PV17].

It uses gap compression technique, which relies on storing the differences between
integers in the sequence instead of their values (note that those differences are the
lengths of runs). It also uses fewer bits per average-sized gaps than for storing the
larger ones. The lower log, (|S|/R) bits of the run length are stored explicitly, while
the remaining bits are stored in unary encoding, which is optimal for geometric
distributions.

EFE has been proven to be quasi-succinct [Vig13]], which means that it provides

compression close to the theoretical lower bound. It requires © (log |—§

which is better than RLE. The total complexity of storing MS is then:

) bits per run,

S
@(R-log%HSI).

In practice, EFE requires = (2 + log, %) bits per stored number, which is =
151

2. (1 +log, f) bits per run of ones. The factor of 2 comes from the fact that for each
run of ones, we also need to encode the following run of zeros.

The real compression effectiveness depends on the distribution of gap lengths —
distributions with less variation need less space to be stored. As with the RLE, masks
with small number of long runs get encoded more effectively.

2.4 Masked superstring optimization

Finding an optimal (shortest) superstring S of K is NP-complete (in both uni-directional
[GJ02] and bi-directional model [SVB23] for a sufficiently large value of k).

However, the optimization objectives for MS can be more complex than those for
S, as they can also include the mask; therefore, any function of the form f(S, M) —» R
can be used as an optimization objective. For example, if an objective is the number
of runs in the mask, optimal MS can be computed in polynomial time [Sla24]. Other
objectives can be NP-hard to compute and require the use of heuristics.

In Section we prove that NP-completeness holds for the objective in the form
IS| + ¢ - R for every constant ¢ > 0 that we later use to model the space complexity of
storing the masked superstring.

2.4.1 Two-step optimization

The former work in the field of masked superstring optimization focused on two-step
computation [SVB23]]. In the first step, the superstring S is computed using a heuristic
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method. In the second step, the mask M is optimized for S. This method allows to
choose from several optimization criteria for M, including computing the least number
of runs of ones.

The main advantage of the two-step optimization method is that it allows the mask
for a given superstring to be re-optimized according to a different objective, which is
usually the less time-consuming step.

The disadvantage is that the input of the second step and the overall quality of the
result are highly dependent on the output of the first step. However, optimization in
the first step does not consider the target of the second step of optimization, which
can lead to significantly worse results for certain optimization criteria.

Computing the superstring

In this step, the aim is to compute the shortest possible superstring which contains
all k-mers from K. As computing the shortest possible superstring for a set of strings
(of non-trivial lengths) is NP-complete, approximation algorithms are used. So far,
two main greedy heuristics have been used, called global and local [SVB23]. Both of
them also work in the bi-directional model by removing the edges between a k-mer
and its complement from the overlap graph and constructing two complementary
Hamiltonian paths in the graph.

The local greedy algorithm is a generalization of PRoPHAsM [BBK21|] with overlaps
in the overlap graph considered instead of only the ones in the de Bruijn graph.

It constructs a superstring by repeatedly picking an arbitrary k-mer from K and
extending it to the left (with a prefix) or to the right (with a suffix) as long as the
respective overlap has at least the length specified with a parameter k — d,,,. The
k-mers used are then removed from K, and the resulting string is appended to the
masked superstring created in the previous steps.

The local greedy algorithm can be implemented with linear time complexity using
the Aho-Corasick automaton [SVB23] (see Section for the explanation of the
Aho-Corasick automaton). In practice, the hashing-based implementation is used,
although its time complexity is exponential with respect to the parameter d,, .

The global greedy algorithm is based on the linear time approximation algorithm for
the shortest superstring [Ukk90]]. It works by iteratively constructing the Hamiltonian
path by adding edges from the overlap graph in order of an increasing overlap length.
During computation, each k-mer can have in-degree and out-degree at most 1. Edges
that would violate this invariant or create a cycle are skipped. For each edge between
k-mers Q;, Q; added to the path in bi-directional model, edge between RC(Q;), RC(Q;)
is also added to the complementary path.

The global greedy algorithm can be also implemented with linear time complexity
using the Aho-Corasick automaton. The hashing-based implementation of global
greedy used in practice has a linear expected time complexity for constant k.

For several datasets, the results of compressing the masked superstring computed
using the global greedy algorithm are in practice better by = 15% than the results
obtained using the local greedy algorithm or the results obtained using matchtigs
[Sla24].
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Optimizing the mask

The mask can be optimized according to a number of objectives. The most practical
ones include the minimization and maximization of the number of ones and the
minimization of the number of runs of ones in the mask.

The minimization of the number of ones can be performed trivially in a single
pass by assigning 1 to only one occurrence of each k-mer in MS. The maximization of
the number of ones is very similar except that 1 is assigned to every occurrence of a
k-mer. However, it cannot be done in a single pass, unless we assume that the first
occurrence of each k-mer is masked with 1.

The minimization of the number of runs of ones in MS is an NP-complete problem,
which is proven by a reduction from the set cover problem [SVB23]. The problem is
solved using integer linear programming (ILP) [Sla24].

2.4.2 Aho-Corasick automaton

In the joint optimization algorithm proposed in Chapter |3} we use a modification of
the Aho-Corasick automaton [AC75| data structure (abbreviated AC) to store k-mers
of K

AC is a data structure used to find the occurrences of strings in a text. It is created
by extending the trie (prefix tree). AC contains nodes which represent the prefixes
of strings and two types of oriented edges E| (also called links of the respective nodes
they start at):

« Forward (or goto) edges u — v connect pairs of nodes u and vwhere u is a proper
prefix of vand |u| + 1 = |v|. The node vis called a child of u. Each non-leaf node
has a number of forward edges between 1 and the size of the alphabet (4).

« Failure edges v — u connect pairs of nodes vand u, where u is the longest proper
suffix of v.

We call the node representing the zero-length prefix a root. For each node, we
define its depth as the length of the prefix represented by that node (or, equally, as the
number of forward edges on a path from the root to the respective node). Nodes with
a depth of k represent k-mers Q; ... Q, of K, we call them leaves. Nodes that are not
leaves are called internal nodes.

We also define a failure path ¢; of a leaf Q; as the path starting in Q; and following
the failure links until it reaches the root. Note that each node, except the root, has
exactly one failure link and that a failure path contains at most k edges.

For each node, we define leaves covered by the node as a set of leaves that can be
reached from the node by following the forward links.

*AC is also used in linear-time implementation of greedy algorithm for the shortest superstring
problem [[Ukk90].

*Some implementation of AC also use a third type of edges, output edges, which we omit in the
algorithm since all our strings have the same length k.
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Chapter 3

Targeted optimization of masked
superstring

In this chapter, we present the target of our masked superstring optimization. We
define the optimal masked superstring according to the objective function ¢(MS) in
the form |S| + ¢ - R and prove that obtaining such an optimal masked superstring is
generally NP-complete in Section

We then propose a heuristic algorithm for single-step masked superstring com-
putation (joint optimization) in Section The details of the implementation are
described in Chapter

3.1 Single-step (joint) optimization

We aim to optimize the space complexity of storing MS, with a mask stored in Elias-
Fano encoding (see Section [2.3.2) which we model in the form of |S| +¢- R for a constant
c. Note that joint optimization of MSis a multi-objective (Pareto) optimization problem,
as paying more attention to optimizing M results in longer (less optimal) S, while for
shorter S, M is usually forced to contain more runs of ones.

To be able to directly compare the effects of both criteria on the resulting space
complexity, we introduce the concept of the run penalty (see Section [3.1.2).

3.1.1 NP-completeness of joint optimization

Theorem 1 (NP-completeness of joint optimization). For any constant c > 0 and any
value of k > 4log, (IK|) + 5, where K is a set of k-mers, computing an optimal MS of K
according to the objective function |S| + ¢ - R is NP-complete.

Proof for even values of k. We reduce the NP-hardness from the NP-hardness of the
problem of the shortest superstring of the ¢-mer set L in the bi-directional model
[SVB23|], where € = k/2. We first transform the £-mer set L into the k-mer set K, solve
the joint optimization problem for K and obtain MS, which we transform into MS; of
L with optimal S;.

We construct K in the following way: For each ¢-mer L, we replace every character
with digram according to the mapping p

A : AC,C : AT,G : GC,T : GT
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We obtain a set of k-mers where all pairs of Q;, Q; have an overlap of even length,
because characters A and G only appear at odd positions and characters C and T at
even positions in k-mers. This also holds for complements of k-mers and therefore
works in the bi-directional model as well. Therefore, no two k-mers have an overlap
of length k — 1. This means that the lowest number of runs of ones in M we can obtain
is |K|.

However, we can also obtain |K| runs by optimally arranging the k-mers (choosing
the optimal permutation). If we used any k-mer not in K or used some k-mer from K
more than once, the number of runs of ones in M would increase and the length of the
resulting S would not decrease. This means that the optimal MS has exactly |K| runs
of ones and the optimality of MS depends only on the optimality of S. Solving the
joint optimization therefore results in an optimal S, which can be directly transformed
into the optimal S; of L using the inverse mapping for each pair of characters in S.

Therefore, the shortest superstring problem for ¢-mers (which is NP-hard for
¢ = k/2 > log, (|L]), see Section can be solved by solving the problem of joint
optimization of the objective function of the form |S| + ¢ - R for k-mers, which means
that joint optimization of such an objective function is also NP-hard for even values
of k.

The solution to the decision version of the problem (whether an MS exists for which
e(MS) < X for a given X). can be verified in polynomial time and with a certificate
of polynomial length. This means that the problem is also in NP and therefore is
NP-complete. []

Modification of the proof for odd values of k. We modify the proof for odd values of k.
First, we choose £ to be (k —5) /4ifk =1 (mod 4) or (k —3) /4ifk =3 (mod 4). The
other values of k are covered by the previous proof.

Using the mapping p, we encode each ¢-mer [ from L into 2¢-mer I’. We then
construct k-mers of K by concatenating [, CCC,!” or I’, CCCCC, I’. This results in k-mers
of length 4¢ + 3 or 4¢ + 5, respectively.

We observe that no two k-mers have an overlap of length > k/2, which also holds
in the bi-directional model. Therefore, no two k-mers have an overlap of length k — 1.
The rest of the proof follows the same as for even values of k.

The joint optimization problem is therefore NP-complete for all values of

t=(k—5)/4>log, (L) = k> 4log, (K|)+5

3.1.2 Run penalty

The run penalty defines the length increase of |S| equivalent to introducing one run of
ones in M, with respect to the resulting space complexity.

We assume that EFE is used to compress M (see Section [2.3.2). We therefore define
the objective function ¢(MS):

Definition 2 (Objective function). The objective function of MS with the superstring of
length |S| and mask M with R runs of ones is:

o(MS) = 2 (|5| IR (1 + log, %))
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Definition 3 (Optimal run penalty). We define the optimal run penalty Py, for k-mer
set K as a ratio of

« the overall space increase by introducing a new run of ones into the mask to
« the overall space increase by extending the superstring by one character

for MS of K which has the minimum value of the p(MS):

IS]
. 2'(1+10g2 E) |S|

where |S| and R are properties of the optimal MS.

This means that introducing a new run to M has the same effect as extending S by
P k-mers which were already used in S (increasing the overall space to store MS by
2P%,,, bits).

In practice, we are not able to estimate Py, in the joint optimization, since the
computation of the optimal MS is NP-complete. Even if we could compute a good
approximation of the optimal MS, we cannot estimate P;;,, before the computation, as
it depends on the structure of the MS computed with respect to the penalty itself.

This limits us to using the approximate run penalty P,,,. We can infer its value
from the optimal penalties for other similar input genomes or try to compute MS with
several values of P,,, to find the best one (see Chapter [5).

Note that the concept of joint optimization implies that the M produced for given
S is optimal in terms of the number of runs of ones (given nonzero run penalty).

3.2 Algorithm for joint optimization

The algorithm uses a global greedy heuristic method. It consists of two main parts:
1. Building the AC of K — building part.
2. Computing MS using the AC — searching part.

In the searching part, we try to greedily connect k-mers into two complementary
Hamiltonian paths, similarly to the global greedy algorithm from [SVB23]. We create
subpaths ending with unconnected k-mers and connect those subpaths until only the
two remain. Each k-mer is connected at most once, using the depth first search (DFS)
in the AC to find another k-mer that is not connected or lies at the start of the subpath.

The maximum distance in AC between the k-mers to connect is limited to k—1+P,,,
— connecting the k mers with a larger distance would increase ¢(MS) more than
connecting two k-mers with zero overlap and inserting a run of zeros of length k — 1.
The algorithm tries to repeatedly connect all unconnected k-mers with an increasing
distance limit, starting from 1.
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3.2.1 Building the Aho-Corasick automaton

We build the AC (see Section[2.4.2) iteratively. In each iteration, we create all nodes
of the same depth (we call the set of these nodes a layer). The layers are added in
descending order by depth, starting with the leaves of depth k, which correspond to
the k-mers of K. In the iteration, we also compute the leaves covered by every node in
the current layer and create all failure links ending in the current layer.

To build a layer of depth d < k, we divide all the nodes of depth d + 1 into groups
with the same prefix of length d. For each group g of nodes, we create a new node n in
the current layer and set leaves covered by n to a union of all sets of leaves covered by
nodes of g.

We also maintain a set F; of suffixes of length d of the leaves. F; represents all
possible extensions of all failure paths in the current layer. For each failure path ¢;,
we keep track of the last node f; that extended ¢; in previous layers. At first, the f; for
each i is set to Q; — the leaf to which the path corresponds. When creating a node n
with the prefix p, we check whether F; contains p. If it does, we add the failure link
from the corresponding node f; to n and update f; to n.

To efficiently build all the layers, we first sort the leaves. This is only needed in
the first layer, as prefixes of sorted leaves are also sorted. To efficiently search in Fy,
we sort it in every iteration.

Note that this process does not create failure links from all the nodes, but only
from those that belong to at least one failure path. This is intentional since we will
only visit the nodes on the failure paths during the search.

3.2.2 Computing the masked superstring

Each leaf in the layer of depth k is equivalent to a k-mer of K. We define a leaf chain c as
a sequence of k-mers, where each pair of k-mers Q;, O;, 1 has an overlap of k — 1. Note
that not all k-mers in ¢ need to also be contained in K. We call k-mers not contained
in K ghost k-mers. During computation, we maintain a set C of chains, starting with
C = K (each chain consisting of a single leaf). We refer to a chain by the index of the
last leaf in the chain (we later explain that every chain must end with a leaf).

Every leaf Q; is called unused if there exists a chain ¢; € C such that the first k-mer
of ¢j is O;. All other leaves are called used.

Similarly, every leaf Q; is called unextended if there exists a chain c; € C such that
the last k-mer of ¢; is Q;. All other leaves are called extended.

The occurrence of a k-mer in a chain can be of two types: scaffold or filler. Scaffold
k-mers are always masked with ones. Filler k-mers can be masked with either one or
zero and do not need to be present in K. At first, there are only scaffold k-mers in C.
All k-mers added later are filler and each of them increases the length of |S| by one.

During the computation, several invariants hold for C:

1. Each leaf has exactly one occurrence in C marked as scaffold, all other occur-
rences of the leaf are marked as filler. Therefore, the number of scaffold leaves
in C does not change.

2. All occurrences of non-leaf (ghost) k-mers are marked as filler.

3. Every chain starts and ends with a scaffold leaf.
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4. There can be between 0 and k — 1 + P,,,, filler k-mers between any two scaffold
leaves in the chain.

5. If aleaf Q; is unused, there is exactly one occurrence of Q; in C (which is scaffold,
not filler).

3.2.3 Merging the chains

In the algorithm, we try to merge chains into each other until only one chain remains.
To merge chain ¢; into chain c¢j, we use chain x (possibly empty). We determine the
content of x by searching the AC. As a result, ¢ becomes a concatenation G xCj.

After merging, the leaves of ¢; and ¢; remain marked the same as before. All k-mers
from x are marked as filler. The chain ¢ is removed from C.

We define a penalty of merging as a sum of:
« The length of x (the penalty for an increase in the space required to store S),

« The number of runs of zeros in the mask of x, times P, (the penalty for intro-
ducing new runs of ones in M).

Note that we can always choose x so that the number of runs of zeros is at most one,
for example by masking all k-mers from x with zeros.

3.2.4 Phases of computation

The superstring computation is split into phases. Each phase is defined by the penalty
threshold p; — the maximum penalty that chain merging can introduce. The penalty
threshold starts at 1 and increases by one in each phase.

The merging of two chains with zero overlap of respective unextended and unused
leaves using chain x consisting of k — 1 k-mers results (in the worst case) in an overall
increase of (MS) by a value of k — 1 + P,,,. The value of k — 1 + P, is also the
maximal penalty threshold, since we are always able to merge two chains in this way.
This means that the algorithm will have at most k — 1 + P,,,,, phases.

In each phase, we iterate through all the unextended leaves. For each unextended
leaf Q;, we try to find an unused leaf Q; such that:

« Q; does not belong to the same chain as Q.

« The penalty of merging chain Q; into chain containing Q; does not exceed the
current penalty threshold.

To find a suitable Qj, we use the DFS search from Q;. Each node is visited at most
once during the single DFS search — its next occurrences are skipped. We refer to
adding node n to the DFS stack as extending the search with n. In each visited node,
we consider two sets of nodes to extend the search with:

« The leaves covered by the current internal node (we ignore this option if the
current node itself is a leaf).

o The failure node of the current node.
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We end the search when we find the first unused leaf.

Note that the penalty for every merging in phase i is always p; (the maximum
allowed). If the penalty was smaller, the respective chains would be merged in the
previous phase.

The Figure 3.1/ shows an example of the DFS search.

3.2.5 Time and space complexity

Building the AC requires O (|K]| - k) time.

We first need to sort k-mers from K. This can be achieved in O (|K| - k) time by
using a stable radix sort or in O (|K| - log (|K|)) time by using other sorting algorithms
(note that O (log (IK|)) € O(k), see Section [2.1.1).

In each of k iterations, we create O (|K|) new nodes. We also need to create and
sort F;. This can be achieved in O (|K|) time from F;,; using a stable bucket sort.

Searching requires O (|K 1 k(k+ P,,)) time. In each of the O (k + P,,;,) phases,
we try to extend O (|K|) leaves. Extending a leaf requires us to visit up to O(|K]| - k)
nodes. Note that in practice, most of the leaves are extended in the first phase. However,
the exact ratio depends on the content of K.

Storing the AC requires O (|K| - k) space. Searching only requires additional data
structures with O (|K|) space complexity.
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Figure 3.1 Example of all possible nodes visited during the DFS search for the leaf to extend
the leaf ACA in the AC tree of k-mer set {AAA, AAC, ACA, ACT, CAA, CAC,CTA, CTC} with P,,,, = 1.

Goto links are marked with the solid lines, failure links with the dashed lines. Each
node and edge is marked with red, orange, green or blue color according to the phase it is
used in for the first time, also equal to the minimal penalty threshold required to do so.

In the first phase (red), only node CA is visited with its two leaves.

In the second phase (orange), also the nodes AA and AC are visited by searching
from the red leaves. Their leaves which were not visited yet are also visited.

In the third phase (green), also the node CT with its leaves is visited from leaf ACT
and node A is visited from node CA. Note that visiting node A requires penalty threshold 3,
the sum of 1 for the failure link of ACA and 2 for the failure link of CA, as it might require us
to start a new run.

In the fourth phase (blue), also the node C is visited from the node AC and the root
is visited from the node A (which only increases the penalty by 1, as reaching the node A
already required a run penalty).

Note that we would omit the fourth phase in the actual search, as we are always

able to visit the root (and therefore all the leaves of the tree) in the phase number k + P,,,,
which is equal to 4 in this case.
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Chapter 4

Efficient implementation of
optimization algorithm

In this chapter, we discuss the optimization methods used in the practical implementa-
tion of the algorithm in Chapter 3]

We develop a method for efficient AC tree representation called Cutted-Sorted AC
(CSAC). We further improve it by developing an even more efficient method called
Leaf-Only AC (LOAC) based on tree representation in CSAC. We then use several
heuristics to speed up the search.

4.1 Efficiently representing the tree

4.1.1 Cutted-Sorted Aho-Corasick automaton

This method tries to efficiently store the relevant inner nodes of the AC tree. If there
is not enough memory to store the whole tree, it “cuts” the layers with the smallest
depths. It needs k-mers to be sorted. We sort them as the first step of the algorithm.
The original AC stores data that are not required for our specific use case. In the
implementation, we are able to build and use the tree without using:

« links to the parent nodes,
« failure links of nodes which are not part of a failure path,

« links to child nodes (we only need to get the leaves covered by a node and only
search in direction of failure links).

Therefore, each node is only stored as a pair of numbers:
« index of the first leaf covered by the node,
« index of the failure node of the node.

The leaf nodes store the index of their complement leaf instead of the covered leaf
index.

The tree is stored as a sequence of layers sorted by depth. In each layer, nodes
are sorted lexicographically. This allows us to create the tree in O (|K| - k) time. In
each layer, we traverse all the nodes, and group together those with common prefix
of length one less than current depth (there are always at most four of those nodes;
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thanks to the layers being sorted, they all appear consecutively). We then create a
new node in the current layer, set its first covered leaf, and if it prolongs any failure
path, extend that path by the node. If more failure paths are extended by the same
node, we delete all those paths except the first one.

Possible extensions of failure paths in each layer can be sorted in linear time. This
is possible because the previous set of failure paths was also sorted, and we use stable
sorting into four buckets (based on the new first letters of current suffixes). Initially,
the nodes on the failure paths are the leaves of K, which we sort at the beginning in
O(|K]| - k) time.

Depending of the total number of k-mers, we are able to choose the right data type
to store the indexes, allowing us to use 32-bit integers in case of smaller datasets.

Cutting the tree

As this approach requires O (|K]| - k) space, we are not always able to store the entire
tree (all layers). In that case, we store the layers with higher depths and cut” (ignore)
the ones with lower depths. This results in lower precision and overall worse results
in terms of the space required to store MS, since even low-depth layers are visited
during computation (though not as much as layers with higher depths).

We are able to estimate the total space required to store each layer with a total
number of leaves. However, there are usually fewer nodes in the layers, resulting
in about half of the space being actually used. This can be solved by dynamically
deciding if we should cut the tree after building each layer, depending on the size of
the last layer and the available space.

Pros and cons of CSAC

The main advantage of CSAC is that we precompute everything we would need to
search the tree later. This helps to speed up the operations in the searching part, which
usually takes longer as it has a worse time complexity than the building part.

However, the space requirements of the CSAC are too large, which limits its
practical usage. Tree construction times for larger values of k impact the running
times of the entire algorithm. Also, most parts of the tree (namely the ones with lower
depths) are not used so often in the search.

4.1.2 Leaf-Only Aho-Corasick automaton

To solve CSAC problems, we develop another tree representation method, called LOAC.
In this approach, we consider not to construct the tree at all and use it only implicitly
over the sorted sequence of leaves. The implicit tree is the same as that created in
CSAC (except that no layers need to be cut), which simplifies the analysis.

The key observation is that we can get the sequence of an inner node by knowing
its depth d and any of the leaves Q it covers (it is a simple prefix of length d of Q).

We are also able to find the first leaf covered by a node by binary searching the
sorted leaves, instead of storing the index in the node. This results in a search time
complexity increased by a factor of log (|K]), but in Section we provide a method
that reduces the time to a constant on average.

Also, we do not need to store the index of the next node of the failure path — we
can always find the respective node by checking all suffixes of the current node (from
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the longest one) and trying to find at least one leaf with the corresponding prefix. If
any such leaf exists, the node would have been created in CSAC and put on a failure
path. Otherwise, such a node does not cover any leaves and can be skipped in the
search.

Total space complexity

LOAC only stores the sequence of leaves and other constant information about each
leaf. It does not create any layers of nodes. The total space complexity is therefore

O (IK)).

4.2 Speeding up the search

The theoretical time complexity of searching the tree is impractically large. We further
modify the search using several heuristics to improve practical running times.

4.2.1 Reducing the binary search intervals

In practice, binary searching in an array of millions or billions of leaves is slow because
of cache misses. However, using the space O (|K|), we can create an index consisting
of all possible prefixes of length log (|K|). For each prefix, we store the first index of a
leaf with the given prefix. This allows us to skip most of the binary search by only
running it on an interval of the leaves with respective prefixes.

Note that there are O (|K]|) intervals, so there are on average 0 (1) leaves to search
through in each interval. We conjecture that the distribution of k-mers in the intervals
is normal, which means that the chance of searching in the interval with a size larger
than a constant is exponentially low, so the average search time remains constant.

4.2.2 Penalty drop cut-off

Penalty drop §;; of (an already used and extended) leaf Q; during the search to extend
leaf Q; is the difference between the penalty threshold p; in the current iteration and
the amount of penalty that would satisfy if the leaf Q; could be used to extend Q; (the
“remaining” penalty if we were able to extend Q; with Q;.

If there is a leaf Q that could be used to extend Q; with penalty Jj;, this leaf can
also be used to extend Q; with penalty p;.

For each Q;, we store the highest value of penalty drop §; with which the leaf was
used to extend the search so far during the search. We do not extend the search by
any Q; with §; higher than or the same as the remaining penalty.

The idea is that unused leaves are sparse, so if we find the suitable leaf by extending
the search through the current leaf, there is a high chance that searching with the
same or lower allowed penalty drop from the current leaf will not result in any unused
leaf being found. If we do not find any unused leaf this way, it is almost certain that
searching from the current leaf next time would not yield any unused leaf.

This approach slightly reduces precision, as there might be several unused leaves
that could be reached by searching through the same leaf (although they are probably
possible to reach in many other ways).
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However, it massively improves search speed, as during the whole computation,
each §; only increases, and the total number of increases is limited to k + P,,. This
means that every leaf is used to extend the search at most k + P,,, times during the
algorithm.

4.2.3 Skipping more leaves at once

Every leaf might be checked for penalty drop many times, which is inefficient. We
further improve the search by skipping some of the leaves.

For every leaf Q;, we store an skip-to index g; of the next leaf Q; with which we had
extended the search (because J; was high enough) the last time we rejected to extend
the search with Q.

When we reject to extend the search with leaf Q;, we skip directly to g;. If g; is
not suitable to extend the search either, we skip to g, and continue until we find a
suitable leaf or reach the end of the interval. For each of the rejected leaves, we then
update its skip-to index to the index of the first suitable leaf.

If we increase &; of leaf Q;, we reset g; to i + 1.

4.2.4 Other minor optimizations
Choosing the next leaf to extend

We store the unextended leaves in an array. Before searching, we shuffle the array.
This slightly improves the result by prevents us from using only the lexicographically
smaller leaves in the chains and having to use the remaining ones in a less effective
way later.

We try to maximize the number of leaves extended in the first iteration and
minimize the number of chains created in the process. To achieve this, we store
the last used leaf and if it is unextended, we use it as a next leaf we try to extend.
Otherwise, we use the next unextended leaf from the list.

After each iteration, we delete the extended leaves from the list. This allows us to
skip checking large amounts of extended leaves in the next iterations.

Fast access of the most used layer

We further improve the retrieval time for the failure nodes with depth k — 1, by storing
the pre-computed indexes of the first leaves covered by these nodes. The failure nodes
in this layer are used the most, as extending the leaves through the nodes with depth
k — 1 does not create new runs of ones in M.

Depths with no unused leaves

For each leaf, we store the lowest depth for which there are no unused leaves with
the same prefix as the leaf. This is equivalent to the smallest possible depth of the
CSAC node without unused leaves. This prevents us from checking whether any leaf
covered by the node is unused. Instead, we can directly continue the search from the
leaves.
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4.3 Implementation in the bi-directional model

4.3.1 Storing the complements

If we work in the bi-directional model, we store both the k-mer and its reverse comple-
ment as a leaf. When creating the tree, we need to compute the index of complementary
leaf for each leaf in the tree.

This is possible in O (|K| - k) time by pairing the indexes of the leaves with their
complementary k-mers, sorting by the k-mers and assigning the indexes of the com-
plements in order.

4.3.2 Computing the masked superstring with complements

During computation, we treat k-mers and their complements as equivalent. This
means that whenever a leaf Q; is extended by Q; and Q; is marked as used, RC(Q))
is also extended by RC(Q;) and RC(Q;) is marked as used. This creates a pair of
complementary chains for every chain, similarly as in the global greedy algorithm
used in the first step of the two-step optimization.

We also ensure that the leaf we try to use is not a complement of the leaf we try
to extend, as this would create cycles in the chains. We simply skip such a leaf and
continue the search.

Computing in the bi-directional model also implies that if we use an even value of
k, we need to handle k-mers which are their own reverse complements. The practice
that has proven to be the best for us is to keep both k-mer Q; and RC(Q;) (with the
same value) as leaves and to ensure that each of them has the other marked as its
complement. Other mechanisms of the algorithm ensure that no cycles are created
during the searching part.
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Chapter 5

Experiments and results

In this chapter, we present the comparison of the proposed method with the KMER-
CAMEL " | two-step optimization method. We describe the implementation details, the
datasets used for comparison, and the results obtained.

Our target is to experimentally evaluate the best run penalties for our datasets,
infer the dependency of the optimal run penalty on dataset properties, verify that our
implementation yields better results in terms of masked superstring compressibility,
and quantify the improvements.

5.1 Framework used for implementation

We developed the implementation inside KMERCAMEL ¥, an open-source software
tool for the computation and optimization of masked superstrings. KMERCAMELY, | is
available under the MIT license on GitHub (https://github.com/OndrejSladky/
kmercamel)).

KMERCAMEL ¥, is written in C++. k-mers are represented as integers (with each
letter represented by two bits) with a maximum value of k being 127. Although this
may seem like a limitation, the use of k-mer sets with k = 31 is enough for most
practical purposes (see Section[2.1.2). This also allows operations with k-mers to be
fast both theoretically and practically.

Our implementation is available in the GitHub repository (https://github. com/
Jajopi/Plachy-bc-thesis). It is based on KMERCAMEL Y| commit 6bdbe33from
2024-11-03.

From KMERCAMEL ¢, |, we use input processing functions (for reading command
line parameters and input from FASTA files), libraries for efficient representation
of k-mers as large integers, and several basic functions for operations with k-mers
(such as loading the initial k-mer set and turning it into an std: : vector, and efficient
implementations of computing prefixes, suffixes, and complements). We also use script
verify.py to check the correctness of our implementation against algorithms from
KMERCAMELY, |, and makefile tools for building.

'https://github.com/OndrejSladky/kmercamel/commit/6bdbe33
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5.2 Experimental setup

Our implementation of LOAC was compared with the KMERCAMEL ¢ implementation
of the global greedy algorithm followed by the mask optimization algorithm for
minimizing the number of runs (denoted further as GGMO — global greedy + mask
optimization).

We measured the execution time and the maximum memory requirements of the
computation. We also measured the length (|S]) of the resulting superstring and the
number of runs of ones (R) in the resulting mask. For each set of parameters, we
computed the objective function ¢(MS) of length and number of runs (see Definition|2).

We also compressed the resulting MS with five commonly used file compression
tools: gzip (1.12), bzip2 (1.0.8), xz (5.4.1), 1rzip (0.651), and zstd (1.5.4). For each
tool, we used the highest possible compression level. We measured the sizes of the
resulting files in bytes.

We performed two types of measurements:

« Searching for the optimal run penalty — we computed MS with all run penalty
values between 0 and k for k € {23, 31} for several datasets. For each dataset and
k, we determined the best run penalty.

« Testing the algorithm for different values of k — we computed MS for values of
k € {23,31, 45,63, 95, 127}. For larger datasets, large values of k were omitted, as
computation would require an impractical amount of time. For datasets created
with reads of a specific length, it was also not possible to use k greater than the
length of the unitigs obtained from the reads.

5.2.1 Technical specifications

The benchmarks were performed on an AMD EPYC 7302 (3 GHz) server with 251 GB
of RAM and SSD storage, using a single core for each program.

The running time of the program and the memory requirementswere measured
using the standard UNIX utility GNU Time (version 1.9).

5.2.2 Commands used
GGMO

For two-step optimization (from [SVB23]]), the implementation of the global greedy
algorithm from KMERCAMEL | was first used with the command:
./kmercamel -p <input> -k <k> [-c].

The [-c] argument was used for the computation with complements.

The resulting masked superstring was then used as an input for the mask opti-
mization algorithm from KMERCAMEL Y, with the command:
./kmercamel optimize -a runs -p <input> -k <k> [-c].

?Total number of CPU-seconds that the process spent in user mode.
SMaximum resident set size of the process during its lifetime, in Kbytes.
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LOAC

For joint optimization, our implementation of LOAC was used with the command:
./kmercamel -a loac -p <input> -k <k> [-c] [--run-penalty <rp>].
The [-c] argument was used for the computation with complements.

5.2.3 Datasets

The whole genomes of commonly used model organisms were downloaded in FASTA
format from NCBI datasets:

S. cerevisiae (baker’s yeast) ﬁwith genome size of = 1.2 - 107 bp.
A. thaliana (small plant)ﬂwith genome size of = 1.2 - 10 bp.
D. melanogaster (fruit fly) E|With genome size of = 1.4 - 102 bp.

C. elegans (nematode worm) ﬂwith genome size of = 10% bp.

Pangenome datasets were downloaded from Genomic datasets used for evaluation
of k-mer representations and indexes [VBS25] Iﬂ The respective sources are listed below:

5.3

The N. gonorrhoeae (bacteria) pangenome of size = 4 - 10’ bp was downloaded
from RASE DB N. gonorrhoeaeﬂ

The S. pneumoniae (bacteria) pangenome of size = 8 - 10’ bp was downloaded
from RASE DB S. pneumoniae

The SARS-COV-2 (coronavirus) pangenome sc2-pg of size = 4.3 - 108 bp was
downloaded from GISAID E (version 2023/01/23).

The metagenomic sample SRS063932 (Illumina raw reads) of the human micro-
biome with accession SRX023459 of size =~ 8.8 - 10® bp was downloaded from
the NIH Human Microbiome Project H

The E. coli (bacteria) pangenome of size = 5.5 - 10° bp was obtained from the
Phylogenetically compressed 661k collection High-quality filtering was applied.

Results and discussion

The results presented are shown in Appendix [A] (tables) and Appendix [B|(plots). The
exact data from all measurements performed are stored in the GitHub repository in
files results.txt and results-penalty.txt.

‘https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000146045.2/
Shttps://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001735.4/
Shttps://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001215.4/
"https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000002985.6/
®https://zenodo.org/records/14722244
*https://github.com/karel-brinda/rase-db-ngonorrhoeae-gisp
Yhttps://github.com/c2-d2/rase-db-spneumoniae-sparc/
Uhttps://gisaid.org/

https://www.hmpdacc.org/hmp/HMASM/
Bhttps://doi.org/10.5281/zenodo. 4602622
Yhttps://github.com/Jajopi/Plachy-bc-thesis
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5.3.1 Searching for the optimal run penalty

To determine the optimal run penalty (see Definition [3), we would need to compute
the optimal MS, which is NP-complete. We therefore hypothesize that the results of
LOAC are a good approximation of the optimal results for all values of run penalty
used. This allows us to approximate the optimal run penalty as the one with which
LOAC performs the best (according to p(MS), see Definition [2).

From our measurements, we conclude that for k = 31, the optimal run penalty for
genomes is = 12, while the optimal run penalty for pangenomes is = 7.

For k = 23, the optimal run penalty for genomes is = 11, while the optimal run
penalty for pangenomes is also = 7. The difference is probably due to the fact that for
pangenomes, the optimal MS contains a larger number of runs, resulting in a lower

value of % in the formula for p(MS).

Genomes

The value of 12 is optimal for k = 31 and genomes of size = 10% base pairs, such as A.
thaliana in Figure C. elegans in Figure B.3|or D. melanogaster in Figure

For smaller genomes (such as S. cerevisiae in Figure or S. pneumoniae that we
did not include in the displayed data), this value is slightly higher (= 13).

For larger genomes, such as the human or mouse genomes, further measurement
would be needed to observe whether the optimal penalty decreases or increases with
increasing genome size.

For k = 23, the optimal run penalty was lower by 1 for each dataset. The differences
in the values of p(MS) when using run penalties 11 and 12 are so small that we can
ignore this difference and use 12 even for k = 23.

Pangenomes

For pangenomes (see Figure [B.5] Figure B.6] Figure B.7] Figure B.8] and Figure B.9), the

size range is much larger (from = 107 to = 10° base pairs); therefore, we can conclude
that the values of = 7 for both k = 31 and k = 23 are good approximations of P}, for
pangenomes.

We also conclude that the difference between the optimal penalty for genomes
and pangenomes is related to the different structure of their respective de Bruijn
graphs, with the graphs of pangenomes having higher average degrees of nodes. More
research with pangenomes differing in the average degree of nodes would be needed
to further investigate the dependence.

Relation to two-step optimization and matchtigs

The results of GGMO are closest to the results of LOAC with run penalty 0. However,
when computing the MS with LOAC with run penalty 0, the resulting mask is not
optimal and has to be optimized as in the two-step optimization.

The run penalty k — 1 corresponds to matchtigs, where each run of zeros has a
length of k — 1. Although LOAC does not compute the optimal matchtigs, we expect
the results to be very close. As GGMO gives better results than matchtigs in terms of
|S| (according to [[SVB23]), we conclude that the results of the computation with LOAC
are better in terms of compressibility than both the masked superstring computed
using a two-step computation and matchtigs.
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5.3.2 Testing the algorithm for different values of k

The LOAC was run with optimal run penalty for each dataset, as it was determined in
the previous search.

For higher values of k, the de Bruijn graphs of the genomes have lower average
degrees of nodes; therefore, the difference between the results of LOAC and GGMO
decreases with increasing k.

Genomes

The improvement of LOAC against GGMO for genomes is very low (as genomes are
much easier to compress effectively even using simple techniques such as unitigs)
and is therefore not of particular interest. As we can see in Table the actual
improvements for our datasets were between 0.1% and 0.3%.

However, when comparing the practical compressibility of our datasets, the im-
provements were better, between 0.5% and 1.2% for k = 23.

The number of runs of ones in the resulting MS computed using LOAC was about
30% smaller for all datasets.

For genomes, LOAC was faster; in most cases, it took only between 40% and 60%
the time required for GGMO. The details are in Table

For some datasets, LOAC used = 15% less memory, but for C. elegans and k = 63,

it used 20% more. See Figure B.10 Figure B.11] Figure B.12| and Figure for higher

values of k.

Pangenomes

The improvements for pangenomes were better than for genomes. For k = 23, the
improvements of LOAC were 4% for SARS-COV-2 pangenome and between 0.4% and
0.7% for other datasets. For k = 31, they were 3% for SARS-COV-2 pangenome and
between 0.25% and 0.35% for other datasets (see Table[A.3).

The improvements in practical compressibility were even better, about 5.5% for
SARS-COV-2 pangenome, 0.5% for the human microbiome metagenome, and between
1.7% and 3% for other pangenomes.

Unlike genome datasets, LOAC was between 1.5 and 5.5 times slower for
pangenome datasets (see Table [A.4). With increasing k, the relative speed was
even worse. See Figure Figure Figure Figure and Figure for
higher values of k.

The number of runs of ones in the resulting MS computed using LOAC was about
10% smaller for all datasets, except for SARS-COV-2 pangenome dataset, where the
resulting mask had only about 50% of runs of ones compared to the one computed
with GGMO.
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Conclusion

In this thesis, we have developed a new method for the joint optimization of masked
superstrings representing k-mer sets.

In Chapter 3} we have proven that the optimization of masked superstrings with
an objective of the form |S| + ¢ - R is NP-complete for sufficiently large values of k. We
have proposed an objective function ¢(MS) of this form to model the space complexity
of masked superstrings stored in the Elias-Fano encoding.

We have then proposed an efficient greedy-based heuristic algorithm for the joint
optimization of masked superstrings considering ¢(MS) and implemented it within
the framework KMERCAMEL Y. We call the implementation Leaf-Only Aho-Corasick
automaton or LOAC (see Chapter [4).

In Chapter 5| we searched for the optimal value of the run penalty, the parametriza-
tion of LOAC which allows us to interpolate between the results of the two-step
optimization of the masked superstring and the computation of the matchtigs. We
conclude that the optimal value for k-mers of lengths 23 and 31 for genomes is = 12
and for pangenomes = 7, suggesting that neither matchtigs nor the results of the
two-step optimization are an optimal representation of k-mer sets.

We have evaluated the performance of LOAC against the two-step optimization
method from KMERCAMEL Y, . The theoretical quadratic time complexity of LOAC
prevents its usage for larger pangenomes or higher values of k, but for datasets with
hundreds of thousands of k-mers, we were able to reach comparable running times
and even outperform current two-step methods on genome datasets. The memory
usage of LOAC was comparable to two-step methods.

The results of masked superstring compressibility show that, for genomes, our
implementation was about 0.1% better considering the theoretical objective function,
but about 0.5% better in practice (when compressed with xz). For pangenomes, LOAC
practically performed 1.7% to 3% better for most of the datasets (except for the human
microbiome metagenome, where the improvement was only 0.5%). For SARS-COV-2
pangenome dataset, LOAC was about 5.5% better for k = 31 and even 6.5% better for
k = 23.

We were also able to decrease the number of runs of ones in the mask by about
30% for genomes and about 10% for pangenomes (except for SARS-COV-2 pangenome
dataset, where the resulting mask had about 50% of runs of ones).
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We suggest several possible ways in which future research might continue:

+ The main goal is to to develop asymptotically faster and more efficient algorithms
for the joint optimization of masked superstrings. Theoretical time complexity
can be improved using advanced data structures or preforming an informed
search in the AC. Improving practical running-time and memory requirements
is also possible by further optimizing the code or introducing parallelization.

« Although our results show that the optimal value of the run penalty parameter
is the same for many distinct datasets, more datasets should be analyzed, for
example, larger genomes and pangenomes. Inspecting the relation between the
optimal run penalty for a given dataset and its properties, such as the average
degree in the de Bruijn graph, can also lead to interesting results with a pos-
sibility for improvement in the masked superstring computation. Computing
or predicting the optimal run penalty for a given dataset before the computa-
tion of masked superstring (or integrating the decision of run penalty into the
optimization algorithm) can simplify the process and lead to better results.

« We only considered one objective function that we used to model the space
complexity of masked superstrings. However, different objective functions
can be used to model the practical compressibility of masked superstrings.
Developing algorithms for joint optimization of masked superstrings according
to those functions might lead to better practical results. Focusing on functions for
which the optimal masked superstring can be constructed in linear or polynomial
time, instead of NP-hard objectives, can lead to even faster practical algorithms.

In conclusion, we consider joint optimization of masked superstrings a promising
method of masked superstring construction, with a great number of possible applica-
tions for genomic data compression and efficient k-mer-based index construction. We
look forward to further studying the interesting topic of masked superstrings.

42



Bibliography

[Abo+15]

[ACT75]

[Alt+90]

[Ama+20]

[Bai+19]

[BBK21]

[BBS18]

[BM13]

[Bfi+20]

[B¥i+25]

Ryan P Abo, Matthew Ducar, Elizabeth P Garcia, Aaron R Thorner, Vanesa
Rojas-Rudilla, Ling Lin, Lynette M Sholl, William C Hahn, Matthew Mey-
erson, Neal I Lindeman, et al. “BreaKmer: detection of structural variation
in targeted massively parallel sequencing data using kmers”. In: Nucleic
acids research 43.3 (2015), e19—e19.

Alfred V. Aho and Margaret J. Corasick. “Efficient string matching: an aid
to bibliographic search” In: Commun. ACM 18.6 (June 1975), pp. 333-340.
IssN: 0001-0782. por: 10 . 1145/360825 . 360855. URL: https://doi.
org/10.1145/360825.360855.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and
David J Lipman. “Basic local alignment search tool”. In: Journal of molec-
ular biology 215.3 (1990), pp. 403-410.

Shanika L Amarasinghe, Shian Su, Xueyi Dong, Luke Zappia, Matthew E
Ritchie, and Quentin Gouil. “Opportunities and challenges in long-read
sequencing data analysis”. In: Genome biology 21.1 (2020), p. 30.

Amanda Baizan-Edge, Peter Cock, Stuart MacFarlane, Wendy McGavin,
Lesley Torrance, and Susan Jones. “Kodoja: A workflow for virus detection
in plants using k-mer analysis of RNA-sequencing data”. In: Journal of
General Virology 100.3 (2019), pp. 533-542.

Karel Bfinda, Michael Baym, and Gregory Kucherov. “Simplitigs as an
efficient and scalable representation of de Bruijn graphs”. In: Genome
biology 22 (2021), pp. 1-24.

Florian P Breitwieser, Daniel N Baker, and Steven L Salzberg. “Krake-
nUniq: confident and fast metagenomics classification using unique k-mer
counts”. In: Genome biology 19 (2018), pp. 1-10.

James K Bonfield and Matthew V Mahoney. “Compression of FASTQ and
SAM format sequencing data”. In: PloS one 8.3 (2013), €59190.

Karel Bfinda, Alanna Callendrello, Kevin C Ma, Derek R MacFadden, The-
moula Charalampous, Robyn S Lee, Lauren Cowley, Crista B Wadsworth,
Yonatan H Grad, Gregory Kucherov, et al. “Rapid inference of antibiotic
resistance and susceptibility by genomic neighbour typing”. In: Nature
microbiology 5.3 (2020), pp. 455-464.

Karel Bfinda, Leandro Lima, Simone Pignotti, Natalia Quinones-Olvera,
Kamil Salikhov, Rayan Chikhi, Gregory Kucherov, Zamin Igbal, and
Michael Baym. “Efficient and robust search of microbial genomes via
phylogenetic compression”. In: Nature Methods 22.4 (2025), pp. 692—-697.

43


https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855

[B¥i16]

[Chi+14]

[CLM16]

[Cor+25]

[CPT11]

[CR20]

[Cri58]

[CT23]

[DG13]

[DJ22]

[Erl89]

[Fer+24]

[Fle+13]

[GJ02]

Karel Bfinda. “Novel computational techniques for mapping and clas-
sification of Next-Generation Sequencing data”. PhD thesis. Université
Paris-Est, Nov. 2016. por: 10 . 5281 / zenodo . 10456317, URL: https :
//doi.org/10.5281/zenodo.1045317.

Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and
Paul Medvedev. “On the representation of de Bruijn graphs”. In: Interna-
tional conference on Research in computational molecular biology. Springer.
2014, pp. 35-55.

Rayan Chikhi, Antoine Limasset, and Paul Medvedev. “Compacting de
Bruijn graphs from sequencing data quickly and in low memory”. In:
Bioinformatics 32.12 (June 2016), pp. i201-i208. 1ssN: 1367-4803. por: 10|
1093/bioinformatics/btw279. URL: https://doi.org/10.1093/
bioinformatics/btw279.

Molitor Corentin, Labidi Timothy, Rimbert Antoine, Cariou Bertrand,
Di Filippo Mathilde, and Bardel Claire. “KILDA: identifying KIV-2 repeats
from kmers”. In: bioRxiv (2025), pp. 2025-01.

Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. “How to apply
de Bruijn graphs to genome assembly”. In: Nature biotechnology 29.11
(2011), pp. 987-991.

Bastien Cazaux and Eric Rivals. “Hierarchical Overlap Graph”. In: In-
formation Processing Letters 155 (2020), p. 105862. 1ssN: 0020-0190. DOTI:
https://doi.org/10.1016/j.ipl.2019.1056862. URL: https://www.
sciencedirect.com/science/article/pii/S0020019019301450.

Francis H Crick. “On protein synthesis”. In: Symp Soc Exp Biol. Vol. 12.
138-63. 1958, p. 8.

Andrea Cracco and Alexandru I Tomescu. “Extremely fast construction
and querying of compacted and colored de Bruijn graphs with GGCAT”.
In: Genome Research 33.7 (2023), pp. 1198-1207.

Sebastian Deorowicz and Szymon Grabowski. “Data compression for
sequencing data”. In: Algorithms for Molecular Biology 8 (2013), pp. 1-13.

Keith Dufault-Thompson and Xiaofang Jiang. “Applications of de Bruijn
graphs in microbiome research”. In: Imeta 1.1 (2022), e4.

Henry A Erlich. “Polymerase chain reaction”. In: Journal of clinical im-
munology 9.6 (1989), pp. 437-447.

Pol Fernandez, Rémy Amice, David Bruy, Maarten JM Christenhusz, Ilia
J Leitch, Andrew L Leitch, Lisa Pokorny, Oriane Hidalgo, and Jaume
Pellicer. “A 160 Gbp fork fern genome shatters size record for eukaryotes”.
In: Iscience 27.6 (2024).

Christopher Fletez-Brant, Dongwon Lee, Andrew S McCallion, and
Michael A Beer. “kmer-SVM: a web server for identifying predictive
regulatory sequence features in genomic data sets”. In: Nucleic acids
research 41.W1 (2013), W544-W556.

Michael R Garey and David S Johnson. Computers and intractability.
Vol. 29. wh freeman New York, 2002.

44


https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/https://doi.org/10.1016/j.ipl.2019.105862
https://www.sciencedirect.com/science/article/pii/S0020019019301450
https://www.sciencedirect.com/science/article/pii/S0020019019301450

[GMM16]

[Goo+15]

[Her+19]

[Hu+21]

[HZB24]

[Kar+24]

[KD15]

[KDP25]

[KMO95]

[Lee+16]

[Liu+12]

[LZL19]

Sara Goodwin, John D McPherson, and W Richard McCombie. “Coming
of age: ten years of next-generation sequencing technologies”. In: Nature
reviews genetics 17.6 (2016), pp. 333-351.

Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Desh-
pande, Michael C Schatz, and W Richard McCombie. “Oxford Nanopore
sequencing, hybrid error correction, and de novo assembly of a eukaryotic
genome”. In: Genome research 25.11 (2015), pp. 1750-1756.

Mikel Hernaez, Dmitri Pavlichin, Tsachy Weissman, and Idoia Ochoa.
“Genomic data compression”. In: Annual Review of Biomedical Data Science
2.1 (2019), pp. 19-37.

Taishan Hu, Nilesh Chitnis, Dimitri Monos, and Anh Dinh. “Next-
generation sequencing technologies: An overview”. In: Human immunol-
ogy 82.11 (2021), pp. 801-811.

Shien Huang, Hang Zhang, and Ergude Bao. “A Comprehensive Review of
the de Bruijn Graph and Its Interdisciplinary Applications in Computing”.
In: Engineered Science 28 (2024), p. 1061. 1SsN: 2576-9898. por: 10.30919/
es1061. urL: http://dx.doi.org/10.30919/es1061.

Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann,
Christopher Barber, Gunnar Rétsch, and André Kahles. “Indexing all life’s
known biological sequences”. In: BioRxiv (2024).

Jolanta Kawulok and Sebastian Deorowicz. “CoMeta: classification of
metagenomes using k-mers”. In: PloS one 10.4 (2015), e0121453.

Jamshed Khan, Laxman Dhulipala, and Rob Patro. “Fast and Scalable
Parallel External-Memory Construction of Colored Compacted de Bruijn
Graphs with Cuttlefish 3”. In: bioRxiv (2025). po1: 10.1101/2025.02.02.
636161. eprint: https://www.biorxiv.org/content/early/2025/
02/06/2025.02.02.636161.full.pdf. URL: https://www.biorxiv.
org/content/early/2025/02/06/2025.02.02.636161.

John D Kececioglu and Eugene W Myers. “Combinatorial algorithms for
DNA sequence assembly”. In: Algorithmica 13.1 (1995), pp. 7-51.

Hayan Lee, James Gurtowski, Shinjae Yoo, Maria Nattestad, Shoshana
Marcus, Sara Goodwin, W. Richard McCombie, and Michael C. Schatz.
“Third-generation sequencing and the future of genomics”. In: bioRxiv
(2016). por: 10.1101/048603. eprint: https://www.biorxiv. org/
content/early/2016/04/13/048603.full.pdf. URL: https://www.
biorxiv.org/content/early/2016/04/13/048603.

Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin,
Lihua Lu, and Maggie Law. “Comparison of next-generation sequencing
systems”. In: BioMed research international 2012.1 (2012), p. 251364.

Yuansheng Liu, Leo Yu Zhang, and Jinyan Li. “Fast detection of maximal
exact matches via fixed sampling of query K-mers and Bloom filtering of
index K-mers”. In: Bioinformatics 35.22 (2019), pp. 4560-4567.

45


https://doi.org/10.30919/es1061
https://doi.org/10.30919/es1061
http://dx.doi.org/10.30919/es1061
https://doi.org/10.1101/2025.02.02.636161
https://doi.org/10.1101/2025.02.02.636161
https://www.biorxiv.org/content/early/2025/02/06/2025.02.02.636161.full.pdf
https://www.biorxiv.org/content/early/2025/02/06/2025.02.02.636161.full.pdf
https://www.biorxiv.org/content/early/2025/02/06/2025.02.02.636161
https://www.biorxiv.org/content/early/2025/02/06/2025.02.02.636161
https://doi.org/10.1101/048603
https://www.biorxiv.org/content/early/2016/04/13/048603.full.pdf
https://www.biorxiv.org/content/early/2016/04/13/048603.full.pdf
https://www.biorxiv.org/content/early/2016/04/13/048603
https://www.biorxiv.org/content/early/2016/04/13/048603

[Mar+21]

[McN+11]

[Moe+24]

[Par+21]

[PFL10]

[PV17]

[RA15]

[Ren+17]

[RG19]

[Riz+19]

Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedeyv,
Mikaél Salson, and Rayan Chikhi. “Data structures based on k-mers for
querying large collections of sequencing data sets”. In: Genome research
31.1 (2021), pp. 1-12.

Nicole McNeil Ford, Cristina Montagna, Michael Difilippantonio, and
T Ried. “Comparative cancer cytogenetics”. In: Atlas of Genetics and Cyto-
genetics in Oncology and Haematology (Feb. 2011). por: 10.4267/2042/

Camille Moeckel, Manvita Mareboina, Maxwell A. Konnaris, Candace
SY. Chan, loannis Mouratidis, Austin Montgomery, Nikol Chantzi, Geor-
gios A. Pavlopoulos, and Ilias Georgakopoulos-Soares. “A survey of k-
mer methods and applications in bioinformatics”. In: Computational and
Structural Biotechnology Journal 23 (2024), pp. 2289-2303. 1ssN: 2001-
0370. por: https://doi.org/10.1016/j.csbj.2024.05. 025!
URL: https://www.sciencedirect . com/science/article/pii/
S2001037024001703.

Sangsoo Park, Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric
Rivals. “A linear time algorithm for constructing hierarchical overlap
graphs”. In: arxiv preprint arxiv:2102.12824 (2021).

JAUME PELLICER, MICHAEL F. FAY, and ILIA J. LEITCH. “The largest
eukaryotic genome of them all?” In: Botanical Journal of the Linnean
Society 164.1 (Sept. 2010), pp. 10—-15. 1sSN: 0024-4074. po1: 10.1111/75 |
1095-8339.2010.01072 . %. URL: https://doi.org/10.1111/7j.
1095=-8339.2010.01072_x.

Giulio Ermanno Pibiri and Rossano Venturini. “Dynamic elias-fano repre-
sentation”. In: 28th Annual symposium on combinatorial pattern matching
(CPM 2017). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik. 2017,
pp- 30-1.

Anthony Rhoads and Kin Fai Au. “PacBio Sequencing and its Applica-
tions”. In: Genomics, Proteomics & Bioinformatics 13.5 (Nov. 2015), pp. 278-
289. 1sSN: 1672-0229. por: 10.1016/j.gpb.2015.08.002. URL: https:
//doi.org/10.1016/7.gpb.2015.08.002.

Jie Ren, Nathan A Ahlgren, Yang Young Lu, Jed A Fuhrman, and Fengzhu
Sun. “VirFinder: a novel k-mer based tool for identifying viral sequences
from assembled metagenomic data”. In: Microbiome 5 (2017), pp. 1-20.

Edward S Rice and Richard E Green. “New approaches for genome assem-
bly and scaffolding”. In: Annual review of animal biosciences 7.1 (2019),
pp- 17-40.

Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco
Previtali, Gianluca Della Vedova, and Paola Bonizzoni. “Overlap graphs
and de Bruijn graphs: data structures for de novo genome assembly in
the big data era”. In: Quantitative Biology 7 (2019), pp. 278-292.

46


https://doi.org/10.4267/2042/38033
https://doi.org/10.4267/2042/38033
https://doi.org/https://doi.org/10.1016/j.csbj.2024.05.025
https://www.sciencedirect.com/science/article/pii/S2001037024001703
https://www.sciencedirect.com/science/article/pii/S2001037024001703
https://doi.org/10.1111/j.1095-8339.2010.01072.x
https://doi.org/10.1111/j.1095-8339.2010.01072.x
https://doi.org/10.1111/j.1095-8339.2010.01072.x
https://doi.org/10.1111/j.1095-8339.2010.01072.x
https://doi.org/10.1016/j.gpb.2015.08.002
https://doi.org/10.1016/j.gpb.2015.08.002
https://doi.org/10.1016/j.gpb.2015.08.002

[RM21]

[SA23]

[Sch+23]

[SGA18]

[Sim+16]

[Sla24]

[SNH98]

[Ste+15]

[STK10]

[SVB23]

[SVB24]

Amatur Rahman and Paul Medevedev. “Representation of k-Mer Sets
Using Spectrum-Preserving String Sets”. In: Journal of Computational
Biology 28.4 (2021). PMID: 33290137, pp. 381-394. por: [10 . 1089/ cmb |
2020.0431. urL: https://doi.org/10.1089/cmb.2020.0431.

Sebastian Schmidt and Jarno N Alanko. “Eulertigs: minimum plain text
representation of k-mer sets without repetitions in linear time”. In: Algo-
rithms for Molecular Biology 18.1 (2023), p. 5.

Sebastian Schmidt, Shahbaz Khan, Jarno N Alanko, Giulio E Pibiri, and
Alexandru I Tomescu. “Matchtigs: minimum plain text representation of
k-mer sets”. In: Genome Biology 24.1 (2023), p. 136.

Barton E Slatko, Andrew F Gardner, and Frederick M Ausubel. “Overview
of next-generation sequencing technologies™ In: Current protocols in
molecular biology 122.1 (2018), e59.

Jared T Simpson, Rachael Workman, P. C. Zuzarte, Matei David, L. J.
Dursi, and Winston Timp. “Detecting DNA Methylation using the Oxford
Nanopore Technologies MinION sequencer”. In: bioRxiv (2016). poI1: |10.
1101/047142. eprint: https://www.biorxiv.org/content/early/
2016/04/04/047142.full . pdf. URL: https://www.biorxiv.org/
content/early/2016/04/04/047142.

Ondrej Sladky. Masked Superstrings for Efficient k-Mer Set Representation
and Indexing. May 2024. po1: |10.5281/zenodo. 11076871, URL: https:
//doi.org/10.5281/zenodo.11076871.

Martin N. Szmulewicz, Gabriel E. Novick, and Rene J. Herrera. “Effects of
Alu insertions on gene function”. In: ELECTROPHORESIS 19.8-9 (1998),
pp- 1260-1264. por: https://doi.org/10.1002/elps.1150190806.
URL: https : / / analyticalsciencejournals . onlinelibrary .
wiley.com/doi/abs/10.1002/elps.1150190806.

Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell,
Chengxiang Zhai, Miles ]. Efron, Ravishankar Iyer, Michael C. Schatz,
Saurabh Sinha, and Gene E. Robinson. “Big Data: Astronomical or Ge-
nomical?” In: PLOS Biology 13.7 (July 2015), pp. 1-11. por: 10. 1371/
journal.pbio.1002195. URL: https://doi.org/10.1371/journal.
pbio.1002190.

Eric E. Schadt, Steve Turner, and Andrew Kasarskis. “A window into third-
generation sequencing”. In: Human Molecular Genetics 19.R2 (Sept. 2010),
R227-R240. 1sSN: 0964-6906. pot:[10. 1093/hmg/ddq4 16. eprint: https
//academic.oup.com/hmg/article-pdf/19/R2/R227/1798881/
ddq416.pdf. urL: https://doi.org/10.1093/hmg/ddq416.

Ondrej Sladky, Pavel Vesely, and Karel Bfinda. “Masked superstrings as a
unified framework for textual k-mer set representations”. In: bioRxiv
(2023). por: (10 . 1101 /2023 . 02 . 01 . 526717. URL: https : / / www .
biorxiv.org/content/early/2023/02/03/2023.02.01.526717.

Ondfej Sladky, Pavel Vesely, and Karel Bfinda. “FroM Superstring to Index-
ing: a space-eflicient index for unconstrained k-mer sets using the Masked
Burrows-Wheeler Transform (MBWT)”. In: bioRxiv (2024), pp. 2024-10.

47


https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1101/047142
https://doi.org/10.1101/047142
https://www.biorxiv.org/content/early/2016/04/04/047142.full.pdf
https://www.biorxiv.org/content/early/2016/04/04/047142.full.pdf
https://www.biorxiv.org/content/early/2016/04/04/047142
https://www.biorxiv.org/content/early/2016/04/04/047142
https://doi.org/10.5281/zenodo.11076871
https://doi.org/10.5281/zenodo.11076871
https://doi.org/10.5281/zenodo.11076871
https://doi.org/https://doi.org/10.1002/elps.1150190806
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/elps.1150190806
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/elps.1150190806
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1093/hmg/ddq416
https://academic.oup.com/hmg/article-pdf/19/R2/R227/1798881/ddq416.pdf
https://academic.oup.com/hmg/article-pdf/19/R2/R227/1798881/ddq416.pdf
https://academic.oup.com/hmg/article-pdf/19/R2/R227/1798881/ddq416.pdf
https://doi.org/10.1093/hmg/ddq416
https://doi.org/10.1101/2023.02.01.526717
https://www.biorxiv.org/content/early/2023/02/03/2023.02.01.526717
https://www.biorxiv.org/content/early/2023/02/03/2023.02.01.526717

[SVB25]

[Tal+24]

[UKkk90]

[Val+13]

[VBS25]

[Vig13]

[WS14]

[Zhu+15]

Ondfej Sladky, Pavel Vesely, and Karel Bfinda. “Towards Efficient k-Mer
Set Operations via Function-Assigned Masked Superstrings”. In: bioRxiv
(2025). por: |10 . 1101 /2024 . 03 . 06 . 583483. URL: https : / / www .
biorxiv.org/content/early/2025/02/22/2024.03.06.5383483.

Saumya Talera, Parth Bansal, Shabnam Khan, and Shahbaz Khan. “Prac-
tical algorithms for Hierarchical overlap graphs”. In: arxiv preprint
arxiv:2402.13920 (2024).

Esko Ukkonen. “A linear-time algorithm for finding approximate shortest
common superstrings”. In: Algorithmica 5.1 (1990), pp. 313-323.

C Alexander Valencia, M Ali Pervaiz, Ammar Husami, Yaping Qian, Kejian
Zhang, C Alexander Valencia, M Ali Pervaiz, Ammar Husami, Yaping Qian,
and Kejian Zhang. “Sanger sequencing principles, history, and landmarks”.
In: Next Generation Sequencing Technologies in Medical Genetics (2013),
pp- 3—-11.

Pavel Vesely, Karel Bfinda, and Ondfej Sladky. Genomic datasets used for
evalution of k-mer representations and indexes. Zenodo, Jan. 2025. DOI:
10 . 5281/ zenodo . 14722244, URL: https://doi . org/10.5281/
zenodo 14792744,

Sebastiano Vigna. “Quasi-succinct indices”. In: Proceedings of the sixth
ACM international conference on Web search and data mining. 2013, pp. 83—
92.

Derrick E Wood and Steven L Salzberg. “Kraken: ultrafast metagenomic
sequence classification using exact alignments”. In: Genome biology 15
(2014), pp. 1-12.

Zexuan Zhu, Yongpeng Zhang, Zhen Ji, Shan He, and Xiao Yang. “High-
throughput DNA sequence data compression”. In: Briefings in bioinfor-
matics 16.1 (2015), pp. 1-15.

48


https://doi.org/10.1101/2024.03.06.583483
https://www.biorxiv.org/content/early/2025/02/22/2024.03.06.583483
https://www.biorxiv.org/content/early/2025/02/22/2024.03.06.583483
https://doi.org/10.5281/zenodo.14722244
https://doi.org/10.5281/zenodo.14722244
https://doi.org/10.5281/zenodo.14722244

Appendix A

Attachments — tables

Table Table Table and Table[A.4] display the results of the computation
with LOAC and GGMO and the resources used for the computation for the respective

datasets and values of k.

Every second row in column Dataset is omitted for readability, but the row repre-
sents the results for the same dataset as the row above.

The number in parentheses next to LOAC in column Method is the value of the
run penalty used for the computation. The column |S| displays the length of the
resulting masked superstring. The column R displays the number of runs of ones in
its respective mask.

The column Objective shows the ratio of the objective function of the resulting
MS computed with LOAC and GGMO. The value is therefore omitted in the lines with
GGMO.

The column Compressed shows the ratio of the file size of the resulting MS com-
puted with LOAC and GGMO and compressed with the xz tool. The value is there-
fore omitted in the lines with GGMO. xz was chosen as it gives the best results for
pangenomes (see the discussion in Appendix B.2).

The columns Relative time and Relative memory display the ratio of computational
resources used for the computation of masked superstrings with LOAC and GGMO.
The value is therefore omitted in the lines with GGMO.
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Dataset Method N R Objective Compressed

k=23

S. cerevisiae LOAC (13) 11584512 1923 0.999346 0.995386
GGMO 11580327 2922

A. thaliana LOAC (12) 112216529 61030 0.997174 0.988857
GGMO 111999245 115370

C. elegans LOAC (12) 94020979 42921 0.997191 0.993065
GGMO 93881137 83044

D. melanogaster LOAC (12) 122300362 48838 0.997610 0.994190
GGMO 122153486 91507

k=31

S. cerevisiae LOAC (13) 11627676 1486 0.999727 0.998872
GGMO 11625770 1899

A. thaliana LOAC (12) 114037702 37574 0.998908 0.993524
GGMO 113949518 57337

C. elegans LOAC (12) 95435532 28203 0.998964 0.995577
GGMO 95381939 42144

D. melanogaster LOAC (12) 124074400 38215  0.999212 0.996181
GGMO 124009310 53106

k=063

S. cerevisiae LOAC (13) 11716966 692 0.999956 0.998710
GGMO 11716482 766

A. thaliana LOAC (12) 116729307 10563 0.999823 0.998773
GGMO 116719560 12931

C. elegans LOAC (12) 97600883 10324 0.999816 0.999907
GGMO 97594081 12289

D. melanogaster LOAC (12) 127974579 22483 0.999810 0.999189

GGMO 127959959 25754

Table A.1 The values of |S| and R when using LOAC and GGMO, relative value of p(MS) for
LOAC compared to GGMO and relative improvement of size of the resulting file compressed
with several tools for LOAC compared to GGMO for several datasets with the respective run
penalties. See Appendixfor details.
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Dataset Method Time Relative time  Memory Relative memory

k=23

S. cerevisiae LOAC 18 0.486486 1207544 1.058918
GGMO 37 1140356

A. thaliana LOAC 249 0.651832 11038640 0.822168
GGMO 382 13426260

C. elegans LOAC 236 0.771242 9322680 1.024791
GGMO 306 9097152

D. melanogaster LOAC 253 0.532632 12109044 0.858869
GGMO 475 14098828

k=31

S. cerevisiae LOAC 16 0.355556 1206536 1.056485
GGMO 45 1142028

A. thaliana LOAC 232 0.486373 11267528 0.830820
GGMO 477 13561940

C. elegans LOAC 204 0.503704 9505204 1.032748
GGMO 405 9203796

D. melanogaster LOAC 256 0.506931 12284252 0.864211
GGMO 505 14214412

k=163

S. cerevisiae LOAC 24 0.380952 1708468 1.211903
GGMO 63 1409740

A. thaliana LOAC 341 0.485755 16501056 0.918193
GGMO 702 17971220

C. elegans LOAC 319 0.527273 13837384 1.208069
GGMO 605 11454136

D. melanogaster LOAC 493 0.610905 17974848 0.964258
GGMO 807 18641124

Table A.2

The computation time and maximal memory used during the computation using LOAC and
GGMO, and relative values of time and memory used for LOAC compared to GGMO for
several datasets with the respective run penalties. See Appendixfor details.
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Dataset Method N R Objective Compressed

k=23

N. gonorrheae LOAC (7) 4367760 36547 0.996386 0.978657
GGMO 4354278 41346

S. pneumoniae LOAC (7) 9936107 81193 0.994681 0.964713
GGMO 9893344 96905

Sars-cov-2 LOAC (8) 12016468 132930 0.960956 0.936081
GGMO 11749233 280651

Human microbiome LOAC (7) 410228894 4447511 0.996634 0.990488
GGMO 408999424 4904713

E. coli LOAC (7) 441825210 3692862 0.993190 0.961811
GGMO 439532030 4574985

k=31

N. gonorrheae LOAC (7) 5200341 34615 0.997626 0.983853
GGMO 5191039 37956

S. pneumoniae LOAC (7) 11997642 72775 0.996825 0.971492
GGMO 11969896 82761

Sars-cov-2 LOAC (8) 17412395 148659 0.970118 0.945147
GGMO 17160887 289435

Human microbiome LOAC (7) 445667523 4882757 0.998751 0.995327
GGMO 445120323 5074697

E. coli LOAC (7) 557692109 3523947 0.996446 0.972309
GGMO 556326586 4037550

k=163

N. gonorrheae LOAC (7) 8638894 32417 0.999074 0.987941
GGMO 8634634 34075

S. pneumoniae LOAC (7) 19271279 59958 0.999053 0.985642
GGMO 19261049 63667

Sars-cov-2 LOAC (8) 43559589 195886  0.985000 0.968601

GGMO 43329732 328561

Table A.3 The values of |S| and R when using LOAC and GGMO, relative value of (MS) for
LOAC compared to GGMO and relative improvement of size of the resulting file compressed
with several tools for LOAC compared to GGMO for several datasets with the respective run
penalties. See Appendixfor details.
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Dataset Method  Time Relative time Memory Relative memory

k=23

N. gonorrheae LOAC 18 1.200000 383856 0.864650
GGMO 15 443944

S. pneumoniae LOAC 42 1.105263 837044 0.883241
GGMO 38 947696

Sars-cov-2 LOAC 72 1.756098 956476 0.875955
GGMO 41 1091924

Human microbiome LOAC 4065 2.567909 35791164 1.005203
GGMO 1583 35605912

E. coli LOAC 15436 8.254545 37786980 1.017919
GGMO 1870 37121796

k=31

N. gonorrheae LOAC 28 1.473684 433280 0.902764
GGMO 19 479948

S. pneumoniae LOAC 71 1.365385 1023144 0.938485
GGMO 52 1090208

Sars-cov-2 LOAC 160 2.388060 1330012 1.065394
GGMO 67 1248376

Human microbiome LOAC 5398 2.763953 35936752 1.003942
GGMO 1953 35795656

E. coli LOAC 15029 5.487039 45788092 0.825558
GGMO 2739 55463192

k=63

N. gonorrheae LOAC 231 4.714286 901404 1.192087
GGMO 49 756156

S. pneumoniae LOAC 415 3.516949 2127404 0.920717
GGMO 118 2310596

Sars-cov-2 LOAC 1772 7.003953 4340844 0.922072
GGMO 253 4707704

Table A.4

The computation time and maximal memory used during the computation using LOAC and
GGMO, and relative values of time and memory used for LOAC compared to GGMO for
several datasets with the respective run penalties. See Appendixfor details.
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Appendix B

Attachments — plots

B.1 Searching for the optimal run penalty

Figure Figure Figure Figure Figure Figure Figure Fig-
ure and Figure [B.9|display the results of searching for the optimal run penalty for
the respective datasets.

The X-axis displays different values of the run penalty used as input parameter
for LOAC ﬂ The orange points correspond to the results of the computation with the
respective run penalties. The blue horizontal line displays the results for GGMO. Note
that only one measurement was made, since GGMO does not use the run penalty.

In the upper half of each figure, the results for k = 23 are shown. In the lower half,
the results for k = 31 are shown.

Objective displays the value of the objective function (see Definition |2) on the left
side of the plot and the relative value of the objective function (compared to the value
of GGMO) on the right side.

"For measurements with a run penalty 0, the resulting M from LOAC is not optimal with respect to
the resulting S, as the computation is equivalent to the first step of the two-step optimization instead of
single-step optimization. Therefore, we used the mask optimization from KMERCAMEL ¢ . For other
values of the run penalty, the resulting mask is optimal, and no other optimization was required.
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Figure B.9 The dependence of |S|, R and relative values of ¢(MS) on the run penalty parameter used in LOAC for E. coli pangenome,
compared to results of GGMO. Optimal run penalty for k = 23 :
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B.2 Testing the algorithm for different values of k

The X-axis displays values of k used as input parameters for LOAC and GGMO.

The Relative objective plots show the ratio of the value of the resulting objective
function for LOAC and for GGMO.

The Relative compressed size plots show the compressed file size ratios of the out-
puts of LOAC and GGMO after compression with the respective tool and parameters.

The relative performance of the compression tools is not shown in the plot. For
pangenomes, xz performed the best, sometimes being about half the resulting file
size of gzip and bzip2, and was therefore chosen to represent the compressibility
improvement. zstd was comparable to xz. lrzip performed better than xz for
genomes and human microbiome metagenome, but much worse for pangenomes.
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Figure B.10 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of p(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset S. cerevisiae, run penalty P,,, = 13. See Appendixfor details.
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Figure B.11 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of ¢(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset A. thaliana, run penalty P, = 12. See Appendixfor details.
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Figure B.12 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of p(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset C. elegans, run penalty P, = 12. See Appendix[B.2|for details.
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Figure B.13 The dependence of |S], R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of ¢(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset D. melanogaster, run penalty P,,, = 12. See Appendixfor details.
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Figure B.14 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of p(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset N. gonorrheae pangenome, run penalty P,,, = 7. See Appendixfor details.
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Figure B.15 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of ¢(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset S. pneumoniae pangenome, run penalty P,,, = 7. See Appendixfor details.



CL

1e8 Length of superstring

Number of runs of ones

Time [seconds]

1.2 40000 A
—e— GGMO 400000 4 —e— GGMO
—o— LOAC —o— LOAC
35000 A
104 350000
30000 A
300000 A
0.8 - ]
250000 A 25000
0.6 1 200000 - 20000 1
150000 A 15000 1
0.4 A
100000 A 10000 ~
0.2 - 50000 - 5000 A
T T T T T T O T T T T T T = T
k= 23 31 47 63 95 127 k= 23 31 47 63 95 127 k= 23 31 47 63 95 127
1e7 Memory [kB] Relative objective Relative compressed size
—o— GGMO 1.0004 o—r0on—-0i—-o0—"———-"7-06—-"-"-"-+-—"-259 1.004 o—0o—0iio—o0—"—----7-O————0
175 —* LOAC
0.995 - 0.99
1.50 A
0.990 -
0.98 A
1.251 0.985 -
0.97 1
1.00 7 0980 -
0.75 1 0.975 - 0.96 -
0.50 A 0.970 A 0.95 —o— gzip -9
—e— bzip2 -9
0.25 1 0.965 - o xz9
: —e— GGMO 0.94 A —e— lIrzip --zpaq -L9
—o— LOAC —o— zstd -22
0.00 0.960 -
k= 23 31 47 63 95 127 k= 23 31 47 63 95 127 k= 23 31 47 63 95 127

Figure B.16 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of p(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset SARS-COV-2 pangenome, run penalty P,,, = 8. See Appendixfor details.
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Figure B.17 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of ¢(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset Human microbiome pangenome, run penalty P, = 7. See Appendix [B.2|for details.
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Figure B.18 The dependence of |S|, R, computation time and maximal memory used on the value of k for LOAC and GGMO, relative value of p(MS)
for LOAC compared to GGMO and relative improvement of size of the resulting file compressed with several tools for LOAC compared to GGMO.
For dataset E. coli pangenome, run penalty P,,, = 7. See Appendixfor details.
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