An Invitation to Game Comonads, day 5, advanced topics: Lovász' counting theorem

Tomáš Jakl & Luca Reggio

12 August 2022

ESSLLI 2022, Galway

Outlook

Summary of previous days

$$\begin{array}{c} {}^{G} \\ () \\ \text{Str}(\sigma) \end{array} \xrightarrow{\mathbf{t}} \text{Str}(\sigma') \xrightarrow{F^{G'}} \text{EM}(G')$$

Game comonads express logical properties of structures:

As well as combinatorial properties:

A satisfies property
$$\Delta$$

(for some $\Delta \subseteq \mathsf{Str}(\sigma)$)

A admits a coalgebra $A \to G(A)$

"To be done"

- 1. Designing more comonads
- 2. Categorifying known results
- 3. Building the abstract theory

Designing more comonads

Logic fragments

- local fragments
- modal μ -calculus
- dependence logic
- rank logics (\Rightarrow algebraic games)

• ...

Combinatorial properties

- local tree-width, local tree-depth
- twin-width
- shrub-depth

```
• ...
```

Categorifying known results

Identify the corresponding categorical notions in

- 1. preservation theorems (van Benthem-Rosen, Rossman, ...) \checkmark
- 2. decomposition methods (FVM theorems) \checkmark
- 3. homomorphism-counting theorems \checkmark
- 4. 0-1 laws ??
- 5. locality methods ??
- 6. Beth definability ??
- 7. ... (follow Libkin's Elements of Finite Model Theory)

- Develop the theory of arboreal categories.
- Study connections with Universal Coalgebra. (coinductive definitions, coinductive proof principle, ...)
- Connection of arboreal categories and categorical logic.

Lovász' homomorphism-counting theorems

Counting fragments

A counting quantifier has the form

 $\exists^{\geq d} x \ \varphi$

and expresses that $A \vDash \exists^{\geq d} x \varphi(x, \overline{b})$ iff for at least d different $a \in A$, $A \vDash \varphi(a, \overline{b})$.

We write

#FO

for the extension of FO with counting quantifiers $\exists^{\geq d}$, for every natural number *d*. Also, write

 $\#FO_k$ and $\#FO^k$

for the quantifier rank k and k-variable fragments of #FO, respectively.

Graded modalities

Graded modality

 $\diamondsuit^d_R \varphi$

expresses that $A, a \models \Diamond_R^d \varphi$ iff there exists at least d different $b \in A$ such that $(a, b) \in R^A$ and $A, b \models \varphi$.

We write

#ML

for the extension of ML with graded modalities \Diamond_R^d .

Also, write

$\#\mathrm{ML}_k$

for the restriction of #ML to formulas of modal depth k.

Theorem (Lovász, 1967) For finite σ -structures A, B,

 $A \cong B \iff |\hom(C, A)| = |\hom(C, B)| \quad \forall \text{ finite } C$

Theorem (Dvořák, 2010) For finite σ -structures A, B,

 $A \equiv^{\# \mathrm{FO}^k} B \iff |\hom(C, A)| = |\hom(C, B)| \quad \forall \text{ finite } C \text{ of } \mathrm{tw} < k$

Theorem (Grohe, 2020) For finite σ -structures A, B,

 $A \equiv^{\# \mathrm{FO}_k} B \iff |\hom(C, A)| = |\hom(C, B)| \quad \forall \text{ finite } C \text{ of } \mathrm{td} \le k$

Theorem (Hella, 1996)

For finite A, B, we have $A \equiv^{\#FO_k} B$ iff Duplicator has a winning strategy in the k-round bijection Ehrenfeucht-Fraissé game:

- In round n, Duplicator chooses a bijection $f: A \rightarrow B$.
- Spoiler chooses a_n in A and Duplicator $b_n = f(a_n)$ in B.
- Duplicator wins round n if {(a_i, b_i) | i ≤ n} is a partial isomorphism.

Remark: If the cardinalities of *A* and *B* differ, Duplicator loses immediately.

Theorem (Hella, 1996)

For finite A, B, we have $A \equiv {}^{\#FO^k} B$ iff Duplicator has a winning strategy in the k-pebble bijection game:

- In round n, Spoiler chooses a pebble p and then Duplicator chooses a bijection f : A → B.
- Spoiler puts pebble p on a_p in A and Duplicator puts pebble p on b_p = f(a_p).
- Duplicator wins round n if {(a_p, b_p) | p ∈ S} is a partial isomorphism, where S is the set of pebbles played so far.

k-round graded bisimulation game

Theorem (Rijke, 2000)

For finite (A, a) and (B, b), we have (A, a) $\equiv^{\#ML_k}$ (B, b) iff Duplicator has a winning strategy in the k-round <u>graded</u> bisimulation game:

• In round n, Spoiler chooses a binary $R \in \sigma$ and then Duplicator chooses a bijection

$$f: \{x \in A \mid (a_{n-1}, x) \in \mathbb{R}^A\} \rightarrow \{y \in B \mid (b_{n-1}, y) \in \mathbb{R}^B\}$$

- Spoiler chooses x in A such that (a_{n−1}, x) ∈ R^A and Duplicator chooses b_n = f(a_n).
- Duplicator wins round n if {(a_i, b_i) | i ≤ n} is a partial isomorphism.

Comonadic formulations

Theorem (Abramsky–Dawar–Wang & Abramsky–Shah) For finite σ -structures A, B,

$$A \equiv^{\# \mathrm{FO}_k} B \iff F^{\mathbb{E}_k}(\mathbf{t}(A)) \cong F^{\mathbb{E}_k}(\mathbf{t}(B))$$
$$A \equiv^{\# \mathrm{FO}^k} B \iff F^{\mathbb{P}_k}(\mathbf{t}(A)) \cong F^{\mathbb{P}_k}(\mathbf{t}(B))$$

For finite pointed σ -structures (A, a) and (B, b) in a modal signature σ ,

$$A \equiv^{\#\mathrm{ML}_k} B \quad \Longleftrightarrow \quad F^{\mathbb{M}_k}(A,a) \cong F^{\mathbb{M}_k}(B,b)$$

(1) Equivalence in $\#\mathscr{L}$ is an isomorphism of cofree coalgebras.

 \Rightarrow Show that isomorphism in **EM**(G) is determined by counting.

(2) Combinatorial property Δ given by coalgebras:

A has property $\Delta \iff \exists$ coalgebra $A \rightarrow G(A)$

 \Rightarrow exploit the interaction between forgetting the coalgebra structure and creating the cofree coalgebra structure.

Adjunctions in Category Theory

Given functors

We say that *L* and *R* are **adjoint**, with *L* to the left and *R* to the right, written $L \dashv R$, if there is a bijection

$$b_{A,B}: \mathscr{C}(L(A),B) \xrightarrow{\cong} \mathscr{D}(A,R(B))$$

for every $A \in \mathscr{D}$ and $B \in \mathscr{C}$, such that

$$b_{A,B'}(L(A) \xrightarrow{h} B \xrightarrow{h'} B') = A \xrightarrow{b_{A,B}(h)} R(B) \xrightarrow{R(h')} R(B')$$
$$b_{A',B}^{-1}(A' \xrightarrow{f'} A \xrightarrow{f} R(B)) = L(A') \xrightarrow{L(f')} L(A) \xrightarrow{b_{A,B}^{-1}(f)} B$$

Example adjunction

For a comonad $(G, \varepsilon, (\cdot)^*)$ on category \mathscr{C} , we have

 $\mathsf{EM}(G)$ $U^{G}\left(\int_{\mathscr{C}} F^{G} \right)$

Where

$$F^{G}: \mathscr{C} \to \mathbf{EM}(G), \qquad A \mapsto (G(A), \delta_{A})$$

and

$$U^{G}: \mathbf{EM}(G) \to \mathscr{C}, \qquad (A, \alpha) \mapsto A$$

These functors are adjoint to each other!

We have $U^{G} \dashv F^{G}$ that is, for $(A, \alpha) \in \mathbf{EM}(G)$ and $B \in \mathscr{C}$,

$$\mathscr{C}(\underbrace{U(A,\alpha)}_{A}, B) \cong \mathsf{EM}(G)((A,\alpha), \underbrace{F(B)}_{(G(B),\delta_{B})})$$

• Given
$$f: A \to B$$
 compute $f^{\#}: (A, \alpha) \to (G(B), \delta_B)$ by setting $G(f) \circ \alpha$.

• Given $g: (A, \alpha) \to (G(B), \delta_B)$, set $g^{\flat}: A \to B$ as $\varepsilon_B \circ g$.

Exercise

Show that $(\cdot)^{\flat}$ and $(\cdot)^{\#}$ are well-defined, inverse to each other and witness that $U^G \dashv F^G$.

A category ${\mathscr C}$ is combinatorial if

$$A \cong B \iff |\mathscr{C}(C,A)| = |\mathscr{C}(C,B)| \quad \forall C \in \mathscr{C}$$

Examples: sets, finite graphs or σ -structures, finite groups, finite Boolean algebras, finite inverse semigroups, ...

Abstract Lovász' theorem, first steps

Lemma

For a comonad G on a category \mathscr{C} , if $\mathbf{EM}(G)$ is combinatorial then

$$F^{G}(A)\cong F^{G}(B)\iff |\mathscr{C}(C,A)|=|\mathscr{C}(C,B)|\quad \forall C\in \Delta_{G}$$

where Δ_G consists of all C in \mathscr{C} which admit a G-coalgebra. **Proof.**

$$F^{G}(A) \cong F^{G}(B) \iff |\mathbf{EM}(G)(X, F^{G}(A))| = |\mathbf{EM}(G)(X, F^{G}(B))|$$

$$\forall X \in \mathbf{EM}(G)$$

$$\iff |\mathscr{C}(U^{G}(X), A)| = |\mathscr{C}(U^{G}(X), B)|$$

$$\forall X \in \mathbf{EM}(G)$$

$$\iff |\mathscr{C}(C, A)| = |\mathscr{C}(C, B)| \quad \forall C \in \Delta_{G} \qquad \Box$$

Theorem (Dawar–Jakl–Reggio, 2021)

If a category is locally finite, has a proper factorisation system and pushouts, then it is combinatorial.

Proof hint: Use the inclusion-exclusion principle!

Remark: [Pultr, 1973] and [Reggio, 2021] replace pushouts with stronger requirements on the factorisation systems.

Theorem (Dawar–Jakl–Reggio, 2021) For any comonad G over $Str(\sigma)$, the category $EM_{fin}(G)$ of finite coalgebras is combinatorial.

Proof hint: Use the fact that U^G (is comonadic and therefore) creates and preserves colimits and preserves epimorphisms.

Grohe's theorem for $\#FO_k$ without equality

Observe that \mathbb{E}_k restricts to a comonad on $\operatorname{Str}_{fin}(\sigma)$ \Rightarrow the adjunction $U^{\mathbb{E}_k} \dashv F^{\mathbb{E}_k}$ restricts to $\operatorname{Str}_{fin}(\sigma) \leftrightarrows \operatorname{EM}_{fin}(\mathbb{E}_k)$

Proposition

For finite σ -structures A, B,

$$F^{\mathbb{E}_k}(A) \cong F^{\mathbb{E}_k}(B) \iff |\hom(C,A)| = |\hom(C,B)|$$

for every finite C of $\operatorname{td} \leq k$.

For $A \equiv {}^{\#FO_k} B$ we need $F^{\mathbb{E}_k}(\mathbf{t}(A)) \cong F^{\mathbb{E}_k}(\mathbf{t}(B))$! Also, this proves equality elimination for $\#FO_k$! Previous proposition also holds for σ^{I} -structures!

$$\mathbf{Str}(\sigma) \xrightarrow{\mathbf{t}} \mathbf{Str}(\sigma') \xrightarrow{\mathbf{F}^{\mathbb{E}'_k}} \mathbf{EM}(\mathbb{E}'_k)$$

Moreover, t has a left adjoint:

$$\mathbf{q} \colon \mathbf{Str}(\sigma') \to \mathbf{Str}(\sigma), \qquad A \mapsto A/I$$

Lemma (Combinatorial lemma)

The adjunction

 $\mathbf{Str}(\sigma') \\
\mathbf{q}\left(\dashv \mathbf{\tilde{f}} \right) \\
\mathbf{Str}(\sigma)$

restricts to an adjunction between finite σ -structures of $td \le k$ and finite σ^{I} -structures of $td \le k$.

Grohe's theorem

Theorem

For finite σ -structures A, B,

 $A \equiv^{\# \mathrm{FO}_k} B \iff |\hom(C, A)| = |\hom(C, B)| \quad \forall \text{ finite } C \text{ of } \mathrm{td} \le k$

Proof.

 $\begin{aligned} |\hom(C,A)| &= |\hom(C,B)| \\ & \text{for every finite } \sigma\text{-structure } C \text{ of } \mathrm{td} \leq k \\ & \iff (\text{from the Combinatorial lemma}) \\ |\hom(D, \mathbf{t}(A))| &= |\hom(D, \mathbf{t}(B))| \\ & \text{for every finite } \sigma^{I}\text{-structure } D \text{ of } \mathrm{td} \leq k \\ & \iff \\ F^{\mathbb{E}_{k}}(\mathbf{t}(A)) \cong F^{\mathbb{E}_{k}}(\mathbf{t}(B)) \iff A \equiv ^{\#\mathrm{FO}_{k}} B \end{aligned}$

Adaptations

A minor adaptation needed for \mathbb{P}_k , it <u>does not</u> restrict to

```
\operatorname{Str}_{\operatorname{fin}}(\sigma) \to \operatorname{Str}_{\operatorname{fin}}(\sigma).
```

Combinatorial lemma quite involved.

 \Rightarrow Dvořák's theorem.

The abstract result yields new theorems:

- for \mathbb{M}_k (no equality \Rightarrow no combinatorial lemma needed),
- for the $\#FO_k \cap \#FO^n$ fragment,
- for the restricted conjunction fragments and path-width.