
Graphs and graph algorithms



A graph is formed of a (finite) set of vertices/nodes and a set of

edges between them. We distinguish four types of graphs:
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If the graph is undirected, an edge between nodes u and w can be

thought of as having two edges u → w and w → u .



Examples

Undirected unweighted graph:

• vertices = registered people on Facebook

• edges = friendships between people (it is mutual!)

Directed unweighted graph:

• vertices = registered people on Twitter

• edges = who is following who

Undirected weighted graph:

• vertices = train stops/stations

• edges = rail lines connecting train stops together with their

length
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Graph represented as an adjacency matrix

Assume that graph’s vertices are numbered V = {0, 1, 2, ..., n− 1}.
Adjacency matrix G is a two-dimensional array/matrix n × n

described as follows.

Unweighted graphs:

• G[v][w] = 1 if there is an edge going from v to w

• G[v][w] = 0 if there is no such edge

Weighted graphs:

• G[v][w] = weight of the edge going from v to w

• G[v][w] = ∞ if there is no such edge

• G[v][v] = 0

Remark: The graph is undirected if G[v][w] = G[w][v] for all

vertices v and w .
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Example: Adjacency matrix

Unweighted undirected:

0

1

2

G =

0 1 0

1 0 1

0 1 0


For example: G[2][0] = 0 and

G[2][1] = 1 .

Weighted directed:

0

1

2

4

1

3

G =

 0 ∞ ∞
4 0 1

∞ 3 0


For example: G[2][0] = infty

and G[2][1] = 3 .
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Graph represented as adjacency lists

To represent a graph on vertices V = {0, 1, 2, . . . , n − 1} by

adjacency lists we have an array N of n-many linked lists (one list

for every vertex).

Unweighted:

• N[v] is the list of neighbours of v .

( w is a neighbour of v if there is an edge v → w )

Weighted:

• N[v] is the list of neighbours of v together with the weight

of the edge that connects them with v .
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Example: adjacency lists

Unweighted undirected:

A

B

C

N[v] neighbours

A B

B A, C

C B

Weighted directed:

A

B

C

4

1

3

N[v] neighbours & weights

A

B (A, 4), (C,1)

C (B, 3)
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We said that representing a graph by adjacency lists means that we will

have an array N of n-many linked list (where n is the number of

vertices). Then, for example, N[2] stores the address of the head of the

linked list of all neighbours of the 2 nd vertex. If we name our vertices

by letters A , B , C , for example, we need to find a way to assign

indexes of the array N to the letters A , B , C . One way to do this is

to use hash tables.

However, in the example given here, we don’t care how this is done. We

assume that we have lists of neighbours stored in N[A] , N[B] , N[C] .

In the weighted case, N[B] also stores the weights of the edges:

N[B]

A 4 C 1

But instead of drawing this and we just say that N[B] stores the list

(A, 4), (C,1).



Comparison of those two methods

Set n = the number of vertices, m = the total number of edges.

Adjacency matrix Adjacency lists

Checking if

there is an edge

v → w :

Reading G[v][w]

(which is in O(1)).

Checking if w is in

in the list N[v] .

Allocated

space:

n arrays of size n

= O(n × n) space.

n linked lists stor-

ing m edges in total

= O(n + m) space.

Traversing v ’s

neighbours:

Traversing all G[v][0] ,

G[v][1] , .., G[v][n-1] .

= O(n) time.

Traversing only the

linked list N[v] .

In the third case (with adjacency lists) we only traverse the actual neighbours

of v . This is better whenever the graph is sparse (= not dense), that is, if

there are relatively few edges. 7



A graph is sparse if m is approximately equal to n.

An example of a sparse graph would be the graph of Facebook users with

edges representing friendships. Facebook has hundreds of millions of

users but each user has only a few hundreds of friends. In other words,

every vertex of the graph has only a few hundreds of neighbours.

From the table we see that checking whether an edge exists is much

faster for adjacency matrix. On the other hand, if our graph is sparse,

then the allocated space of adjacency lists is much smaller than

adjacency matrix and also traversing neighbours is faster for adjacency

lists than adjacency matrix.



Paths and shortest paths

A path from v to z is a sequence of edges

v → w1 → w2 → ... → z

connecting v with z .

The shortest path is the path such that the sum of weights of its

edges is the minimal such. (In unweighted graphs, set weights to 1.)

Example

1. A→ B → E → G

2. A→ C → D → F → G

3. ...

The shortest: A→ B →
D → F → E → G

A

B

C

D

E

F

G
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1

3

6

1

2

7

3
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Dijkstra’s algorithm to find the shortest path from v to z

For each vertex w of the graph, we keep track of the following:

i. d[w] = the shortest distance from v to w so far (initially: ∞)

ii. p[w] = the predecessor on the path from v (initially: w )

iii. f[w] = is computation of d[w] finished? (initially: false )

The algorithm (idea):

1. Set d[v] = 0 .

2. Set w = the yet unfinished vertex with the smallest d[w] .

3. Set f[w] = true (mark w as finished).

4. Update d[u] and p[u] of neighbours of w :

For every neighbour u of w such that d[w] + weight(w,u) < d[u] ,

set d[u] = d[w] + weight(w,u) and p[u] = w .

5. If still f[z] == false , go to step 3.

(Where weight(w,u) is the weight of the edge w → u .) 9



The input of the algorithm is a graph (represented as an adjacency

matrix or adjacency lists) and two vertices v and z . The aim is to find

the shortest path from v to z .

As the algorithm runs it changes the values d[w] , p[w] and f[w] .

Initially d[w] = infinity , p[w] = w and f[w] = false for every

vertex w .

The arrays d and f obey the following invariants:

• d[w] is the length of the shortest path from v to w when using

only the finished vertices (i.e. those w such that f[w] == true ).

• If w is finished then d[w] is the actual length of the shortest path

from v to w .

After the algorithm finishes, we compute the found shortest path by

using the array p . Lastly, weight(w,u) is the weight of the edge

w → u which we obtain the adjacency matrix/lists of the graph.



Example: Execution of Dijkstra’s algorithm
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A B C D E F fi
n

is
h

ed

0,A ∞,B ∞, C ∞,D ∞,E ∞,F

0,A,X 3,A 1,A 7,A ∞,E ∞,F A

0,A,X 2,C 1,A,X 6,C 2,C ∞,F C

0,A,X 2,C,X 1,A,X 6,C 2,C ∞,F B

0,A,X 2,C,X 1,A,X 5,E 2,C,X 8,E E

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,F D

0,A,X 2,C,X 1,A,X 5,E,X 2,C,X 7,F,X F

The shortest path from A to

F is obtained (in the reversed

order) by reading out p[w] ’s,

starting from F:

A→ C → E → D → F .
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Every iteration of the algorithm corresponds to one row in the table and

each such row shows the content of the three arrays d[-] , p[-] and

f[-] . (Check marks denote finished vertices.)

In the graph, the two circles adjacent to a vertex mark the current state

of d[w] and p[w] . They turn blue whenever is the vertex marked as

finished.

For a detailed explanation of Dijkstra’s run see the solution file for

exercises of week 11:

https://canvas.bham.ac.uk/courses/27506/files/5177678?

module_item_id=895128

https://canvas.bham.ac.uk/courses/27506/files/5177678?module_item_id=895128
https://canvas.bham.ac.uk/courses/27506/files/5177678?module_item_id=895128


Dijkstra’s time complexity (adjacency matrix)

n = the number of vertices, m = the total number of edges.

We do the following up to n-times:

2. Find w which is unfinished and with the smallest d[w] .

3. Mark w as finished.

4. Update every neighbour of w .

Representing the graph by an adjacency matrix, means that it

takes O(n) to do step 4.

We can also do step 2. in O(n) by going through all vertices.

=⇒ The time complexity is O(n2).

11



Dijkstra’s time complexity (adjacency lists)

We do the following up to n-times:

2. Find w which is unfinished

and with the smallest d[w] .

3. Mark w as finished.

4. Update every neighbour of w .

With adjacency lists, executions of

step 4. will (in total) update

neighbours of the 1st selected w ,

neighbours of the 2nd selected w ,

neighbours of the 3nd selected w ,

...

Over all iterations combined we

update m-many times! ⇒ O(m)

Speeding up steps 2. and 4.:

Use min-priority queue! The priority of u is d[u] .

• We call deleteMin once per iteration, i.e. up to n-times.

• Whenever d[u] changes, we update the priority of u .

=⇒ The total time complexity

O(n×“cost of deleteMin” + m×“cost of update”) 12



What omitted in the analysis is the time complexity of initialising the

heap. This is usually done by heapify and its time complexity was

always O(n) for all heaps we had. Alternatively, we can do insert

n-times which will result in the time complexity O(n log n) or O(n)

depending on the heap that we are using. Either way, the initialisation

will not play any role in the total time complexity.



Dijkstra’s time complexity – comparison

Adjacency matrices
Adjacency lists

Binary Heaps Fibonacci Heaps

O(n2) O((n + m) log n) O((n log n) + m)

Min-priority queues:

• Binary heaps: both update and deleteMin are in O(log n).

• Fibonacci heaps: update is in O(1) and deleteMin is in

O(log n) (both amortized).

Remark: Dijkstra’s algorithm works only if all weights are ≥ 0.
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Remark: If the graph is dense, that is if the number of edges is

approximately n2, then using adjacency lists together with binary heaps

has the time complexity O((n + n2) log n) = O(n2 log n) which is slower

than just using adjacency matrices. This problem disappears when using

Fibonacci heaps where, for dense graphs, we the time complexity

becomes O(n log n + n2) = O(n2).

On the other hand, if the graph is not dense, using adjacency lists with

binary heaps or Fibonacci heaps is faster than using adjacency matrices.



Dijkstra’s algorithm (pseudocode with adjacency matrix)

1 d i j k s t r a w i t h m a t r i x ( i n t [ ] [ ] G , i n t v , i n t z ) {
2 n = G . l e n g t h ;

3 d = new i n t [ n ] ; p = new i n t [ n ] ; f = new b o o l [ n ] ;

4

5 f o r ( i n t w=0; w<n ; w++) {
6 d [w] = i n f t y ; p [w] = w; f [w] = f a l s e ;

7 }
8 d [ v ] = 0 ;

9

10 whi le ( t rue ) {
11 w = m i n u n f i n i s h e d ( d , f ) ;

12 i f (w == −1) break ;

13

14 f o r ( i n t u=0; u<n ; u++) update (w, u , d , p ) ;

15 f [w] = t rue ;

16 }
17 // Compute output i n a r e q u i r e d form :

18 r e t u r n c o m p u t e r e s u l t ( v , z , G , d , p ) ;

19 }
14



1 i n t m i n u n f i n i s h e d ( i n t [ ] d , b o o l [ ] f ) {
2 i n t min = +i n f t y ;

3 i n t i d x = −1;

4

5 f o r ( i n t i =0; i<d . l e n g t h ; i ++) {
6 i f ( f [ i ] == f a l s e && d [ i ] < min ) {
7 i d x = i ;

8 min = d [ i ]

9 }
10 }
11

12 r e t u r n i d x ;

13 }

1 vo id update (w, u , G, d , p ) {
2 i f ( d [w] + G [w ] [ u ] < d [ u ] ) {
3 d [ u ] = d [w] + G [w ] [ u ] ;

4 p [ u ] = w;

5 }
6 }
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Dijkstra’s algorithm (pseudocode with adjacency lists)

1 d i j k s t r a w i t h l i s t s ( L i s t<Edge> [ ] N, i n t v , i n t z ) {
2 n = G. l e n g t h ;
3 d = new i n t [ n ] ; p = new i n t [ n ] ;
4 Q = new MinPr i o r i t yQueue ( ) ;
5

6 f o r ( i n t w=0; w<n ; w++) {
7 d [w] = i n f t y ; p [w] = w;
8 Q. add (w, d [w ] ) ;
9 }

10 d [ v ] = 0 ;
11 Q. update ( v , 0 ) ;
12

13 w h i l e (Q. notEmpty ( ) ) {
14 w = Q. de l e t eMin ( )
15

16 f o r ( Edge e : N[w ] ) { // i t e r a t e ove r edges to ne i ghbou r s
17 u = e . t a r g e t ;
18 i f ( d [w] + e . we ight < d [ u ] ) { // shou ld we update ?
19 d [ u ] = d [w] + e . we ight ;
20 p [ u ] = w;
21 Q. update (u , d [ u ] ) ;
22 }
23 }
24 }
25

26 r e t u r n c ompu t e r e s u l t ( v , z , G, d , p ) ;
27 }

1 c l a s s Edge {
2 // t a r g e t node

3 i n t t a r g e t ;

4

5 i n t w e i g h t ;

6 }
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The initialisation happens on lines 6–9.

Lines 10–11 make sure that the first selected w will be v .

We use the class Edge to store neighbours together with the weight of

the edge that connects them. For example, if the vertex A has

neighbours B, C and D with the edge A→ B of weight 3, A→ C of

weight 1, and A→ D of weight 8, then we will have that the linked list

N[v] stores Edge(B, 3) , Edge(C, 1) and Edge(D, 8) .



Minimal spanning tree

Assumption: Consider only undirected and connected graphs!

A spanning tree is a minimal possible selection of edges which

connects all vertices. (That is, a spanning tree does not contain any cycles.)

Minimum spanning tree is a spanning tree such that the sum of

weights of its edges is the minimal such.

Example
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A is not connected.
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Not a spanning tree.

Any of the edges CV,

CD, BD could be re-

moved.
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Minimum

spanning tree!

Such that there is a path between any two vertices.
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Example: Execution of Jarńık-Prim algorithm

Idea: Iteratively extend the tree with an edge which has the

smallest weight and which connects a yet unconnected node.

Example
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any node,

e.g. B.

A

B

C

D E

1

3

2

2

4 5

4
A

B

C

D E

1

3

2

2

4 5

4

A

B

C

D E

1

3

2

2

4 5

4
The minimal spanning

tree consists of edges:

AB, BC, AE, ED.
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Jarńık-Prim algorithm for finding the minimal spanning tree

For each vertex w of the graph, we keep track of the following:

i. d[w] = the current distance from the tree (initially: ∞)

ii. p[w] = the vertex which connects to the tree (initially: w )

iii. f[w] = has w been added to the tree? (initially: false )

The algorithm (idea):

1. Set d[0] = 0 . (vertex 0 could be replaced by any other vertex)

2. Set w = the yet unfinished node with the smallest d[w] .

3. Set f[w] = true (mark w as finished).

4. Update d[u] and p[u] of neighbours of w :

For every neighbour u of w such that weight(w,u) < d[u] , set

d[u] = weight(w,u) and p[u] = w .

5. If there are still some nodes unfinished, go to step 3.

(Where weight(w,u) is the weight of the edge w → u .) 19



Jarńık-Prim’s algorithm works similarly to Dijkstra’s algorithm. The differences

are marked by red. Altough the principle is similar, the interpretation of the

execution and the result is different. The main idea of Jarńık-Prim is that we

are building a “spanning tree” iteratively, in steps.

The following invariants hold for Jarńık-Prim:

1. The vertices marked as finished are connected/added to the tree.

2. For those vertices which are not connected yet, d[w] denotes the

smallest weight of an edge that connects w to the tree.

3. p[w] denotes the vertex of the tree such that the edge between w and

p[w] is the edge with weight d[w] .

In step 1. we pick an arbitrary vertex (stored on 0th position) and mark its

distance as 0. As a consequence, we start building tree from this vertex.

After the algorithm finishes, i.e. all vertices are marked finished, we can read

out the spanning tree from the array p[-] . To obtain the minimum spanning

tree, for every vertex w (except for w == 0 ), add the edge w — p[w] .



Jarńık-Prim’s time complexity

The time complexity is the same as for Dijkstra’s algorithm!

Adjacency matrices
Adjacency lists

Binary Heaps Fibonacci Heaps

O(n2) O((n + m) log n) O((n log n) + m)

Remark: Unlike Dijkstra’s algorithm, Jarńık-Prim’s algorithm would also work

for graphs with edges that have negative weights.
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