Hash tables

Basic idea

The goal: We would like to be able to index arrays by non-integer
keys:

arr [key] = value

(key might not be an integer!)

For example, indexing by strings: museums ["Bham"] = 13.

But arrays are only indexed by integers.

— We need a hash function hash(key) which computes the
index in arr for a given key:

arr [hash(key)] = value

Maybe you have seen the syntax arr["Bham"] in Python, JavaScript,
PHP or other programming languages. Even though it looks like those
languages allow indexing of arrays by strings, internally it is always
implemented by using hash tables.

It is important that every time we compute the index of a key by hash
function, we get the same index.

Example 1: storing student assignments in O(1)
When implementing Canvas, we store assignments of students in a
hash table:

e value s = assignments
e key s = students
e hash(s) = the student ID of student s

Student IDs of the form 2183201, 1526020, ... 7-digit numbers

Allocate an array arr of size 107, then to store an assignment:

arr[hash(s)] = assignment

This is in O(1) but memory inefficient! :-(

Even if we only need to store assignments of 170 students, we still
allocate an array of size 107!

Example 2: hash function based on the size of the array
Allocate an array arr of size 170 and compute hash(s) as

studentID(s) mod 170.

This way hash(s) isoneof 0, 1, 2, .. arr.length-1.
We might introduce hash collisions. That is, we can have

hash(keyl) == hash(key2)

for two different keys/students keyl and key2 .

Collisions will happen even if we double/triple the size of arr .

=—> We need a mechanism for dealing with hash collisions.

Summary + Disclaimer

In summary, a hash table consists of

1. an array arr for storing the values,
2. a hash function hash(key) , and
3. a mechanism for dealing with collisions.

It implements the operations:
set(key, value) , delete(key) , lookupValue(key) .

Disclaimer: We will consider a simplified situation where key s

and value s are the same. For example, an assignment is always:
arr[hash(key)] = key.

And the operations change to: insert(key) , delete(key) , lookup(key) .

Whereas lookupValue(key) returns the value stored on the position
given by key, lookup(key) returns true or false based on
whether key is stored in the hash table.

The reason why we explain the simplified situation is because it is easier
to illustrate the main ideas this way. However, this simplified situation is
also often useful on its own. In Java there is even a class called
HashSet which works exactly this way.

Note: The only difference between the simplified and unsimplified situations is
that, instead of storing the key only, we need to store both the key and the

value.

Two types of solutions of hash collisions

Sticking out strategy Tucked in strategy
o[X] o]
ol e 1[q]

2 2 i .

3 3] '

4 i D[X] 4[D]

5 5

o[AR)
[7

Entries with the same hash(key) are .
]) } If the position is
stored in a linked list. } i
occupied, we try different

“fallback” positions.

The sticking out strategies store an extra data structure on each position
of the hash table. Those could be linked lists, another hash table, or even
something completely different. In the following we only consider one
sticking out strategy called direct chaining, which uses linked lists to
store the values with the same hash(code) .

The main idea behind tucked in strategies is that, in case of collisions, we
find a different position (from a sequence of “fallback* positions) in the
same array. In this module consider the following two tucked in
strategies:

e Linear probing

e Double hashing

Example: Direct chaining (= a sticking out strategy)

Entries: airport codes, e.g. BHX, INN, HKG, IST, ...
Table size: 10

Hash function:

e We treat the codes as a number in base 26
(A=0, B=1, ..., Z=25).
Example: ABC = 02624126+ 2 =28
e The hashcode is computed mod 10

(to make sure that the index is 0,1,2,3, ..., or 9).
Example:

hash(BHX) = 1*26%26 + 7x26 + 23 mod 10 = 1

key \BHX INN HKG IST MEX PRG TPE
hash\ 1 9 8 5 9 8 8

Example: Direct chaining

key ‘BHX INN HKG IST MEX PRG TPE

© 00 N O O b W N +H O

hash \ 1 9 8 5 9 8 8

Lo [o DD o XD oY

Initially: Empty lists on all
K{ positions.

Insert: Add a new node at the
beginning of the list stored on

K‘ position hash(key) .

(If the entry is not already in the list.)

—{ TPE | 1= PRG | &1/ HKG[X]

I EAC S NN

To insert, we always first check if the key which we are inserting is in

the linked list on position hash(key) . If it isn't, we the key at the
beginning of that list.

(We are inserting without duplicates.)

To delete(key) we delete key from the linked list stored on position
hash(key) , if it is there. Similarly, lookup(key) returns
true / false depending on if key is stored in the list on position

hash (key) .

Note: The choice to insert the key at the beginning of the list and not at the
end is not so important. Inserting at the beginning is more common (probably)
because, in practice, the just inserted key is more likely to be accessed soon

again, as opposed to the key at the end of the list.

Example 2: Bad hash function

key \BHX INN HKG IST MEX PRG TPE
hash\ 2 2 2 2 2 2 2

TPE] & —{PRG[&3] MEX] &} isT] 0]
/

[HKG] &= INN | 81— BHX [

The time complexity of insert,
delete and lookup here is O(n)!

O© 0 N O 61 b W NN+~ O

A good hash function hash (key)
assigns indexes to keys uniformly.

We see that the hash function assigns 2 to all keys. Then, when
inserting a new key we first check if key is stored in the linked list on

position hash(key) = 2. This requires to go through all the elements
already stored in the hash table = O(n) time complexity.

Similarly, delete and lookup are also in O(n).

To tackle this, we require to have a good hash function which uniformly
distributes the keys among positions. In other words, given a random
key , it ought to have the same probability of being stored on every
position.

Remark: Notice that whether a function is good or not also depends on the
distribution of your data/keys. (You don’t want the two most likely keys to
share the same hash key, for example.) When the distribution is not known,

one assumes that all keys are equally likely.

Time Complexity of Direct Chaining, part 1

The load factor of a hash table is the average number of entries
stored on a location:

n = the total number of stored entries
n ~
T
¥ T = the size of the hash table

If we have a good hash function, a location given by hash (key)
has the expected number of entries stored there equal to +.

Unsuccessful lookup of key :

e key is not in the table.

e Location hash(key) stores % entries, on average.
e —> We have to traverse them all.

The load factor represents how full the hash table is. Assuming we have
a good hash function, the load factor 0.25 represents 25% probability of
getting a collision.

A consequence of having a good hash function is that, if the linked list
on position hash(key) , for a randomly selected key , has expected
length .

The word “expected” has a well-defined meaning in probability theory.
Intuitively speaking, it means that the list stored on position
hash(key) might be longer, it might be shorter, but the length of it

will most likely be approximately £ (for a randomly selected key).

Time Complexity of Direct Chaining, part 2

Successful lookup of key :

 Location hash(key) stores + entries, on average.
e The expected position of key the list is in the middle
= we traverse 3(1 + %) many entries, on average.

Assume maximal load factor), thatis, + < A

(For example, in Java A = 0.75)

The average case time complexities:

o unsuccessful lookup: £ < A comparisons — O(1)
o successful lookup: 3(1+ %) < (1 +) comparisons = O(1)

A is a constant number!

10

If ¢ denotes the length of the linked list on position hash(key) , then a
random key stored in this linked list is on average stored in the middle of
this linked list, that is, on position

1
S(1+0).

Next, because we assumed that we have a good hash function, the
expected length of the linked lists on position hash(key) is +. In other

words, it is expected that
é p—

n
T

1 n o
Consequently, a successful lookup traverses, on average, 5(1 + 4) entries

of the linked list stored on position hash (key) .

Time Complexity of Direct Chaining, part 3

The time complexity of insert(key) is the same as unsuccessful
lookup:

e First check if the key is stored in the table.
e If it is not, append key at the beginning of the list on stored
on hash(key) .

Intotal: £ +1<A+1 = O(1).

The time complexity of delete(key) is the same as successful
lookup.

= The time complexities of insert, delete,
lookup are all O(1).

11

To summarise, we made two assumptions:

1. We have a good hash function.

2. We assume maximal load factor.

A consequence of the first assumption is that the expected length of
chains is % and the second one is that % <)\, for some fixed constant
number \.

By assuming those two conditions, we have computed that the operations
of hash tables are all in O(1).

Whether a hash function is good depends on the distribution of the data.
On the other hand, making sure that the load factor is bounded by some
A can be done automatically. We will show how to do this later on. The
consequence of our approach will be that the constant time complexity

will be (only) amortized.

Disadvantages of “sticking out” strategies

1. Typically, there is a lot of hash collisions, therefore a lot of
unused space.

2. Linked lists require a lot of allocations (allocate memory),
which is slow. (Also, for caching reasons.)

We will take a look at two tucked-in strategies which avoid those
problems:

e Linear probing

e Double hashing

12

Linear probing (= a tucked in strategy)

Insertion (initial idea): If the primary position hash(key) is
occupied, search for the first available position to the right of it.

If we reach the end, we wrap around!

Example
0 1 2 3 4 5 6 1
[T Twst] T Teux]pre] |
Inserting on hash(key) = 5 \?j\/

We use mod to compute the “fallback” positions:
hash(key)+1 mod T, hash(key)+2 mod T, hash(key)+3 mod T, ...

13

Linear probing, deletion

Deletion (idea):

1. Find whether the key is stored in the table:
Starting from the primary position hash(key) , go the right, until the
key or an empty position is found.

2. If the key is stored in the table, replace it with a tombstone
(marked as #).

Example

Deleting key = TPE such that hash(key) =

6 7
|MEX IN N| # |TPE|HKG| [PrG[|
? \/v Replace with #

14

Note that in the step 1. we skip over all tombstones.

This means, when initialising an empty hash table we denote all positions
as empty. Then, after a sequence of insertions and deletions some

positions might be denoted as occupied or empty.

Searching:
Starting from the primary position hash(key) , search for the
key to the right. We skip over all tombstones #.

If we reach an empty position, then the key is not in the table.

Inserting (more accurately):
First check if key is stored in the table, and if it is not and its the

primary position hash(key) is occupied by a different key, search
for the first empty or tombstone position to the right of it.

Store the key there.

Remark
Every positions is either empty, or it stores a tombstone or a key.
Moreover, initially are all positions marked as empty.

15

Example: Linear probing

key |[A B C D E F

01 2 3 456 7

[8lc]p]

hash [0 4 5 6 5 4 (Al |

012 3 45 6 7

1. insert(E) |A| | | |B|C|D|E|

\W AW

2. insert (F) |A Fl | |B|C|D|E|

\A A \ A \ A

3. delete(D) |A|F| | |B|C|#IE|

4. delete(E) |A|F| | |B|C|#I#|

oA \ A

5. insert(E) |A|F| | |B|C|E|#|
\A

(first we checked that E is not stored, we searched until position 2)

16

The time complexity and disadvantages

insert, search and delete have the time complexity O(1).
(This is much more difficult to calculate.)

However, we often see clustering:
Inserting TPE

| [INN [MEX] TPE|PRG|HKG] | |

- /
~

Creates a cluster

Clusters are more likely to get bigger and bigger, even if the load
factor is small. To make clustering less likely, use double hashing.

17

Double hashing
Use primary and secondary hash functions hashil(key) and
hash2(key) , respectively.

Insertion: We try the primary position hashil(key) first and, if
it fails, we try fallback positions:

1. hashl(key) + 1xhash2(key) mod T I
is the
2. hashil(key) + 2%hash2(key) mod T .
table size
3. hashl(key) + 3%hash2(key) mod T
4

(until we find an available space)

?

Example

If key = TPE, 1 2 3 4 6 7
hasht(key) = 2, [PRG] [|INN] # | [Hkc] [mEX]

hash2(key) = 3:

Double hashing is an improvement of linear probing. The only difference
is that every key has a different sequence of “fallback” positions given
by the secondary hash function.

Except for how we calculate the fallback positions, all the operations
(insert , delete and lookup) work the same way; we use
tombstones to mark deleted keys, when looking up we skip over those
tombstones etc.

Linear probing's fallback positions are:
hash(key) + 1 mod T for i = 1, 2, 3,
whereas double hashing's fallback positions are:

hashl(key) + ix*hash2(key) mod T for i = 1, 2, 3,

Avoiding short cycles

We can have short cycles!

Consider inserting a key such that hashil(key) = 2 and
hash2(key) = 4:

?
0 1 3 4 5 7
[PRG | [INN | | | [HKG] |
?

The table size T and hash2(key) have to be coprime!

Two solutions:

(a) T is a prime number.

(b) T =2% and hash2(key) is always an odd number. (preferred)

19

Maths break:

e Two numbers a and b are said to be coprime if no number, other
than 1, divides both a and b

e Prime numbers are the numbers which are divisible only by 1 and
themselves.

What to do if the table is full?

We say that a hash table is full if the load factor is more than the

maximal load factor, that is,

n
=> A\
7_>

Rehashing (idea): If the table becomes full after an insertion,
allocate a new twice as big table and insert all elements from
the old table into it.

Consequences for insert :

e the Worst Case time complexity is O(n) (when rehashing) but
e the amortized time complexity is O(1)!

(Rehashing can be used for direct chaining, linear probing, or double hashing
and always leads to constant amortized time complexities.)

20

This combines well with our extra assumption that T = 2% in order to

avoid short cycles (from slide 19). If we start from an empty hash table
of such size (for example, we initially have T = 23 = 8), then doubling
the size always ensures that T = 2k for some (natural) number k.

Remark: If we double the size of the hash table, we also need to change the
(primary) hash function to make sure that it is good again. In practice,
hash(key) is usually compute as

bigHash(key) mod T (where bigHash computes a “big” hashcode).

Then, after doubling the size of our hash table we only modify hash(key) as
follows

bigHash(key) mod 2x*T .

Summary

Hash tables consist of an array arr, a primary hash function
hashl(key) (and secondary hash function hash2(key) .)

All operations are in O(1) (amortized time) if

1. hashl (and hash2) computes indexes uniformly,
2. we rehash whenever the table becomes full,
3. (T = 2k for some k, and hash2 gives odd numbers).

Comparison with trees
AVL Trees require keys to be comparable and the operations are in
O(log n), best, worst and average case.

Hash tables, on the other hand, require good hash functions.

Then, operations are in O(1) amortized time complexity.

21

We see that no matter whether we use direct chaining, linear probing or
double hashing to deal with collisions, either way, all operations will be in
the constant amortized time complexity. The only reason why double
hashing is the best is that the constant, which is hidden by the big-O is
the best in case of double hashing. (Because allocate memory usually
has a large constant.)

Remark: It is desirable to keep track of how many tombstones are there in the
hash table. If this number exceeds some threshold, we also rehash but without
doubling the size. (If it was too many tombstones, we might even decrease the
size of the hash table by one half.) As a consequence also delete is also

O(1) amortized time complexity.

	Hash tables

