
Sorting

Example

Students Alice Bob Cecil David

DSA Mark 85% 47% 60% 70%

Age 22 21 38 19

Distance 30 miles 120 miles 8 miles 0 miles

We can sort them

• by mark: Bob, Cecil, David, Alice

• by more complicated conditions – e.g. housing score:

Prefer students with age < 20, then those with age < 30.

If in the same age category, compare by distance from home.

Result: David, Bob, Alice, Cecil.

Sorting (students) can be done as long as we can compare, that

is, we can determine whether

X < Y given (students) X and Y . 1

This idea can be applied for any collection of data. It could be a

collection of students, numbers, train companies, ... We can sort any

such collection as long as we can compare any two of its elements.

Moreover, as we saw in the case of students, we might have several ways

of comparing elements of the collection (by mark, age, something more

complicated, ...). Then, to sort the collection we have to choose only one

comparison criterion and use that one only. The sorting criterion will

depend on our application.

Selection Sort

Algorithm:

1. Pick the smallest element

from the second part, and

2. swap it with with the

element on the position

right after the sorted part.

Repeat until the sorted part

extends to the end of the array.

Invariants: We split the array in

two parts such that

• the first part of the array is

sorted, and

• the second part contains

elements ≥ than the

elements in the first part.

≤ ≤

swap

min

2

The first (= the sorted) part is initially empty and the second part

contains all elements. Then, every time we execute step 2. of the

algorithm, the sorted part of the array extends by one and the second

becomes one element shorter.

Note that the elements in the second part are in any order, i.e. they don’t

have to be sorted.

Example of a Selection Sort run

1. 5, 12, 6, 3 , 11, 8, 4

2. 3 12, 6, 5, 11, 8, 4

3. 3, 4 6, 5 , 11, 8, 12

4. 3, 4, 5 6 , 11, 8, 12

5. 3, 4, 5, 6 11, 8 , 12

6. 3, 4, 5, 6, 8 11 , 12

7. 3, 4, 5, 6, 8, 11 12

8. 3, 4, 5, 6, 8, 11, 12

3

Selection Sort (pseudocode)

1 vo id s e l e c t i o n s o r t (i n t [] a r r) {
2 i n t n = a r r . l e n g t h ;

3

4 f o r (i =0; i<n ; i++) {
5 i n t min = i ;

6

7 // Find the sm a l l e s t on p o s i t i o n s i , i +1, . . . , n−1
8 f o r (j=i ; j<n ; j++) {
9 i f (a r r [j] < a r r [min])

10 min = j ;

11 }
12

13 // swap a r r [min] and a r r [i]

14 i n t tmp = a r r [min] ;

15 a r r [min] = a r r [i] ;

16 a r r [i] = tmp ;

17 }
18 } 4

Note that the state of variable i marks the current position of the bar

between the sorted and the unsorted parts of the array. For example, if

i is equal to 3 , then the elements on positions 0 , 1 and 2 form a

sorted sequence and the elements on positions 3 and further are all in

the second (= unsorted) part of the array.

Time Complexity of Selection Sort

We do the following n-times:

1. Pick the smallest

element from the second

part, and

2. swap it with with the

element on the position

right after the sorted

part.

1st iteration traverses n elements,

2nd iteration traverses n − 1,

3rd iteration traverses n − 2,

4th iteration traverses n − 3,

5th iteration traverses n − 4,

...

nth iteration traverses 1 element.

In total, we traverse

n + (n − 1) + (n − 2) + ... + 1 =
n(n + 1)

2
=

1

2
n2 +

1

2
n

elements.

=⇒ The time complexity is O(n2).

Looking up the smallest

element is slow!

5

When finding which element to swap (step 1 of the algorithm), we first

traverse n elements, then n − 1, n − 2 and so on. In other words, the

number of elements we need to traverse through is one element shorter

after every iteration.

Heap Sort

Algorithm:

First, build a (min) heap from the elements in the array.

Then, do the following n-times:

1. Pick the smallest element from the heap, and

2. place it on the position right after the sorted part.

Time Complexity:

• Building the heap is in O(n).

• Deleting the minimum from a heap is in O(log n) – we do this

n-times: O(n log n).

=⇒ The time complexity is O(n log n). 6

We have noticed that the reason why selection sort is slow is because it

takes too long to find the next smallest element in the second part of the

array. Next we describe heap sort which is just an improvement of

selection sort. This algorithm is also gradually extending the first part of

the array as before but instead of storing the remaining elements in the

second half of the array we rather store them in a min heap.

In the previous lecture we discussed (binary) max heaps. Min heaps work

exactly the same way but their first condition is “reversed” (it says that

the priority of every node is lower than that of its children).

Recall that inserting elements into heaps is in O(log n) and delete the

minimum is also in O(log n).

Building the heap can be done iteratively. We can just insert all

elements of the array one by one and that would be in O(n log n), which

is still okay. However, last week we showed an algorithm called heapify

which creates a heap from an array in O(n).

Heap Sort (pseudocode)

1 vo id h e a p s o r t (i n t [] a r r) {
2 MinHeap h = new MinHeap<I n t >() ;

3 h . h e a p i f y (a r r) ;

4

5 f o r (i =0; i<a r r . l e n g t h ; i++) {
6 a r r [i] = h . de l e t eM in () ;

7 }
8 }

7

Theoretically best

Theorem

No deterministic comparison-based sorting algorithm has the Worst

Case time complexity better than O(n log n).

Proof:

(1) For a sequence 〈x1, x2, ..., xn〉 on input, there is

n! = n × (n − 1)× (n − 2)× · · · × 1

many different ways to rearrange it.

The task of any sorting algorithm is to determine which of the

many ways of rearranging leads to a sorted sequence.

8

The number n! is called the nth factorial. It represents in how many

different ways we can rearrange n elements in sequence. For example for

n = 3 we have six different rearrangements:

(i) 1, 2, 3

(ii) 2, 1, 3

(iii) 3, 1, 2

(iv) 1, 3, 2

(v) 2, 3, 1

(vi) 3, 2, 1

It is important to realise that n! grows really fast. See its values for the

first 9 elements:

n 1 2 3 4 5 6 7 8 9

n! 1 2 6 24 120 720 5040 40320 362880

(2) By comparing, e.g., x2 and x7, we eliminate many possibilities:

Compare x2 and x7

Possible orderings:

x1, x2, ..., x5, x6, x7, ..., xn
x1, x2, ..., x5, x7, x6, ..., xn
x1, x2, ..., x7, x5, x6, ..., xn
...

x2, x1, ..., x5, x6, x7, ..., xn
x2, x1, ..., x5, x7, x6, ..., xn
x2, x1, ..., x7, x5, x6, ..., xn
...

x2 ≤ x7

Possible orderings:

x1, x7, ..., x5, x6, x2, ..., xn
x1, x7, ..., x5, x2, x6, ..., xn
x1, x7, ..., x2, x5, x6, ..., xn
...

x7, x1, ..., x5, x6, x2, ..., xn
x7, x1, ..., x5, x2, x6, ..., xn
x7, x1, ..., x2, x5, x6, ..., xn
...

x2 > x7

How many times do we need to compare to distinguish between

the n!-many different possibilities?
9

If we compare x2 with x7 and obtain that x2 ≤ x7, that means that

reorderings which have x2 before x7 are possible candidates, such as:

x1, x2, ..., x5, x6, x7, ..., xn

whereas those where x7 precedes x2 are illegal (and become

“eliminated”), such as:

x1, x7, ..., x2, x5, x6, ..., xn.

Any algorithm which is sorting the sequence has to eventually eliminate

all but the only one legal reordering. Any time it compares two elements

it eliminates some possibilities until, eventually, it is left with only one.

Even if the algorithm could keep track of all still not eliminated

reorderings, how many times does it have to compare?

Remark: Since we are interested in the Worst Case complexity we can

assume that no two elements in the sequence are equal. (Then only one

reordering is legal.)

(3) This is determined by the decision tree of the algorithm (every

node corresponds to one comparison):

≤ >

≤

≤ >

>

≤

≤ >

≤

≤ >

>

>

...
...

...
...

...
...

...
...

Every comparison eliminates some possibilities. In the leaves we

are left with only one of the n!-many options.

The height of the tree is the lower bound on the number of

comparisons! 10

(4) In the best possible case, the decision tree is perfectly

balanced. Then its height is O(log(n!)). But how big is log(n!)?

We have a “sandwich” of inequalities:

nn ≤ (n!)2

⇓

n log n ≤ log(n!)2 = 2 log(n!)

n! ≤ nn

⇓

log(n!) ≤ log(nn) = n log n

Therefore, O(log(n!)) = O(n log n).

11

Even though we can’t compute log(n!) we can estimate it from the top

and from the bottom (i.e. we have a sandwich).

To show nn ≤ (n!)2 observe that

(n!)2 = n ×(n − 1) ×(n − 2) × . . . ×1

× 1 ×2 ×3 × . . . ×n

Consequently, in order to have nn ≤ (n!)2 it is enough to show that

(n − k)(k + 1) ≥ n (for every k between 0 and n − 1) and the latter

inequality is equivalent to

(n − k)(k + 1)− n ≥ 0

(by subtracting n from both sides). Moreover, (n− k)(k + 1)− n is equal

to

kn − k(k + 1) = k[n − (k + 1)]

which is always ≥ 0 since 0 ≤ k ≤ n − 1.

Summary

Selection Sort Heap Sort

Time Complexity O(n2) O(n log n)

Space Complexity O(1) O(1)

Stable? No No

(The Average Case and Worst Case complexities are the same.)

Stability means that the order of the elements with the same key

is preserved.

For example, selection sort, for 〈(2,A), (2,B), (1,C)〉, outputs

〈(1,C), (2,B), (2,A)〉 .

12

Bonus: In-place Heap Sort

With a little bit of extra effort, we can sort the array with no extra

memory allocated (that is, in-place).

Invariants: We split the array in two parts such that

• the first part of the array is sorted,

• the second part contains elements which ≥ than elements in

the first part and
• is organised as a min heap, stored in the reversed order, that

is,
1. the root is on position n − 1,

2. its children are on positions n − 3 and n − 2,

3. their children are on positions n − 7, n − 6, n − 5, and n − 4,

4. ...

≤ ≤
Root

Heap
13

Recall that deleteMin is done as follows:

1. Remember the value of the root node.

2. Move the last node on the last level to be the new root.

3. Bubble the new root down.

So after deleteMin is the position where we used to store the last node

on the last level unused. Therefore, we can store there the value that we

obtain in the first step (as described above). After we do that the first

(= ordered) part of the array extends by one element.

	Sorting

