
AVL Trees

Balancedness of trees matters

1

2

3

4

5

6

7

vs.

4

2

1 3

6

5 7

Can we assume extra conditions to make sure that the height of

the tree is under control?

1

AVL Tree

The imbalance at a node is

the height of

its left subtree
−

the height of

its right subtree

Examples:

• The imbalance at a leaf node is 0− 0 = 0.

• The imbalance of the root of is 0− 1 = −1.

• The imbalance of the root of is 2− 2 = 0.

Definition

A binary tree is said to be AVL when the imbalance at each node

is either 1, 0 or −1.
2

Perfect Binary Tree = Maximal AVL tree of a given height

Assume that the tree is perfectly balanced, that is, the balance of

each node is 0. How many nodes does the tree have?

1 node

2 nodes

4 nodes

8 nodes

each level has

twice as many

nodes as the

previous level

If the tree has height h, then the number of nodes is

1 + 2 + 4 + 8 + · · ·+ 2h−1 = 2h − 1

3

Another way of saying that the tree is perfectly balanced is that

1. every node, except for leafs, has exactly two children and

2. all leafs are on the same level.

By the way, the formula which calculates the number of nodes could be

also written as

20 + 21 + 22 + 23 + · · ·+ 2h−1

Fibonacci trees = Minimal AVL trees of a given height

How many nodes does the tree have if the imbalance of each

(non-leaf) node is either 1 or -1?

• If the height is 2 – two options: or =⇒ size is 2

• If the height is 3:

=⇒ size is always 4

• In general, we obtain the

Fibonacci tree of height

h+2 (called Th+2), from the

Fibonacci trees of height h

and h + 1 (called Th and

Th+1, respectively) as:

Th Th+1

=⇒ the size of Th+2 = 1 + size of Th + size of Th+1
4

We see that there are two minimal AVL trees of height 2 and four

minimal AVL trees of height 3. However, those minimal trees are all the

same, except for the ordering of children. Similarly, the minimal AVL

trees of larger heights are also of the same size.

For now, we are only interested in the size of a minimal AVL tree of a

certain height. Because all minimal AVL trees of a given height have the

same size, we can pick just one representative AVL tree for every height.

The following procedure describes a construction of Fibonacci trees

T1,T2,T2, ..., where Th is the minimal AVL tree of height h (up to

ordering of children):

• T0 is the empty tree

• T1 is the one element tree

• Th+2 is obtained by making Th and Th+1 children of the root node

(as shown in the picture on the previous slide).

For example, to construct T4 we combine T1 and T2. Because

T2 = T3 =

we obtain that T4 is the following tree

and T5 is the following tree

and so on.

Fibonacci trees and Fibonacci numbers

Denote the size of Th as |Th|:

h |Th|
0 0

1 1

2 1 + |T0|+ |T1| = 2

3 1 + |T1|+ |T2| = 4

4 1 + |T2|+ |T3| = 7

5 1 + |T3|+ |T4| = 12

6 1 + |T4|+ |T5| = 20
...

...

k Fk

0 0

1 1

2 F0 + F1 = 1

3 F1 + F2 = 2

4 F2 + F3 = 3

5 F3 + F4 = 5

6 F4 + F5 = 8
...

...

|Th+2| = 1 + |Th|+ |Th+1|
1 + |Th+2| = (1 + |Th|) + (1 + |Th+1|)

vs Fk+2 = Fk + Fk+1

=⇒ |Th|+ 1 = Fh+2
5

We can slightly modify the sum

|Th+2| = 1 + |Th|+ |Th+1|

to

1 + |Th+2| = (1 + |Th|) + (1 + |Th+1|)

Then, we see that the sizes of Fibonacci trees are computed similarly to

Fibonacci numbers.

In particular, if we substitute Fh+2 for 1 + |Tk+2|, Fh for the first bracket

and Fh+1 for the second bracket we obtain the following formula:

Fk+2 = Fk + Fk+1

This is precisely the formula which defines Fibonacci numbers!

There is one caveat, though. The sequence |T0|, |T1|, |T2|, ... is shifted

by two elements, when compared F0,F1,F2, We have that

|Th|+ 1 = Fh+2

Computing the bounds

If an AVL tree has height h then its size is

• ≤ the size of the perfectly balanced tree of height h, and

• ≥ the size of Fibonacci tree of height h (that is, |Th|).

Therefore (because |Th| = Fh+2 − 1)

Fh+2 − 1 ≤ the size of the tree ≤ 2h+1 − 1

Binet’s formula: Fk =

(√
5+1
2

)k
−
(√

5−1
2

)k

√
5

≈ O(1.61k)

=⇒ the size of an AVL tree is exponential in its height

=⇒ the height of an AVL tree is logarithmic in its size

=⇒ an AVL tree of size n has height O(log n)

6

If we have a tree of height h which is AVL, we know that the size of our

tree could be as small as |Th|, or as big as the size of the perfectly

balanced tree of height h. However, in general it is somewhere in

between.

Let n be the size of an AVL tree, then we have that

Fh+2 − 1 ≤ n ≤ 2h+1 − 1

These are conditions on size, given that we know the height of our AVL

tree. Conversely, if we know the size and we know that the tree is AVL,

then what implications does this have for the height? Let’s express the

conditions for height in terms of n.

For example n ≤ 2h+1 − 1, gives us that

log2 n ≤ log2(2h+1 − 1) ≤ log2(2h+1) = h + 1.

In other words, height h is at least log2 n − 1.

Furthermore, Fh+2 − 1 ≤ n gives us the upper bound on the height of our

tree. In very simplified terms we can assume that Fh ≈ 1.61h×a (where a

is some constant, e.g. a = 1√
5

).

Then,

1.61h+2×a ≈ Fh − 1 ≤ n

from which we obtain that

log1.61(1.61h+2×a) ≤ log1.61 n

Because

log1.61(1.61h+2×a) = log1.61(1.61h+2) + log1.61 a = h + 2 + log1.61 a

and because constants don’t matter for O, we obtained that

h is in O(log n).

Consequences for time complexities

For a Binary Search Tree implemented as a height-balanced tree

(e.g. AVL tree), where n = the number of nodes of the tree:

• search(x) goes through at most O(log n)-many levels

=⇒ O(log n) steps

• insert(x) :

1. We first find the leaf where to insert x =⇒ O(log n) steps,

2. then, insert it there =⇒ O(1) steps,

3. finally, on the way up, in each node we do balancing

=⇒ O(log n)-many times we do O(1) steps

=⇒ O(log n) steps in total

• delete(x) is similar to insert , it also takes O(log n) steps

7

Invariants

Invariants are conditions about the data structure/state of your

program

• which you can assume to be true before executing an

operation, then

• when you are modifying the data structure, you can violate

them,

• as long as you fix them before you finish with the operation.

(Therefore, the next time, when you execute another

operation, you can again assume that the invariants are true.)

Invariants help you to write programs correctly!

8

Analogy from the real life: Invariants are like kitchen posters (e.g. plates

go to the cupboards, cutlery goes to the drawer, ...):

• When you come to the kitchen, you can assume that everything is

as the kitchen poster says.

• When you’re working in the kitchen, you take plates and knifes out.

In other words, you don’t care what the poster says.

• But, before you finish, you put everything back in place!

(So that when somebody else comes to the kitchen, they know

where to find everything.)

In short: We tidy up the kitchen after we are done!

Example

Loop invariants:

1 whi le (< l oop cond i t i o n >) {
2 // at the b eg i nn i n g o f the loop , we assume tha t

3 // the i n v a r i a n t s ho ld

4

5 <l oop body> // he r e we can v i o l a t e the i n v a r i a n t s

6

7 // he r e we have to make s u r e tha t the i n v a r i a n t s

8 // ho ld aga in f o r the nex t i t e r a t i o n

9 }
10

11 // the i n v a r i a n t a r e t r u e a f t e r the l oop f i n i s h e s

AVL Trees: The invariant is that the imbalance of every node is

-1, 0, or 1. When inserting an element to an AVL tree we first

break the invariant and then, by balancing, we fix it again.

9

	AVL Trees

