
Amortized complexity



Different kinds of complexities

Average Case complexity

= average complexity over all possible inputs/situations

(we need to know the likelihood of each of the input!)

Worst Case complexity

= the worst complexity over all possible inputs/situations

Best Case complexity (mostly useless)

= the best complexity over all possible inputs/situations

Amortized complexity

= average time taken over a sequence of consecutive

operations

1



We will often see algorithms where the worst case complexity is much

more than the average case complexity. It depends on the usage, if you’re

processing a lot of data, occasional bad performance might be OK.

However, if we are serving a customer and (in the worst case) she has to

wait a long time, that’s not good for the company’s reputation.

In average–, worst– or best-case complexities, we are concerned in the

performance of one (independent) operation. The amortized complexity

is different: we are thinking about the average time complexity among a

number of successive operations.

The idea is that, sometimes, you deliberately put extra effort in some

operations, in order to speed up subsequent operations. For example, you

might spend some time cleaning up or reorganizing of your data structure

in order to improve the speed of the coming operations.

Whenever you are reorganizing your data structure, it might slow you

down now but you’ll benefit from this later (and hopefully many times).



Example: Linear search

What is the time complexity of linear search, where the searched

value is stored in x ? Assume that the length of the array is n.

• Worst Case: x is at the end of the array

=⇒ we need to traverse n elements

• Best Case: x is at the beginning of the array

=⇒ we only compare with the first one

• Average Case (assuming that x is in the array) – we

consider two scenarios:

(1) The likelihood of x being on any position is uniform. In

other words, the chance that x is on position 0 is the same

as for 1 or any other position.

Then, the average number of traversed elements is equal to

1 + 2 + 3 + ... + n

n
=

n(n+1)
2

n
=

n + 1

2

2



Example: Linear search

What is the time complexity of linear search, where the searched

value is stored in x ? Assume that the length of the array is n.

• Worst Case: x is at the end of the array

=⇒ we need to traverse n elements

• Best Case: x is at the beginning of the array

=⇒ we only compare with the first one

• Average Case (assuming that x is in the array) – we

consider two scenarios:

(1) The likelihood of x being on any position is uniform. In

other words, the chance that x is on position 0 is the same

as for 1 or any other position.

Then, the average number of traversed elements is equal to

1 + 2 + 3 + ... + n

n
=

n(n+1)
2

n
=

n + 1

2 2



We assume that x is in the array and it is there exactly once! Otherwise,

we would have to compute the average complexity slightly differently.

Recall that we have a formula for triangular numbers:

1 + 2 + . . . + n =
n(n + 1)

2

The arithmetic progression 1 + 2 + . . . + n can be also written as
∑n

i=1 i .

Another example of a progression for which we have an exact formula is

the following geometric progression:

1 + a + a2 + a3 + · · ·+ ak−1 =
ak − 1

a− 1
.

We will see an example of this on slide 8 for a = 2.



Example: Linear search

• Average Case (assuming that x is in the array) – we

consider two scenarios:

(2) If the likelihood is not uniform, then the average number

of traversed elements is computed as

1×P(1) + 2×P(2) + 3×P(3) + . . . + n×P(n)

where P(i) denotes the likelihood (or probability) that x is

stored on the i th position. This means that 0 ≤ P(i) ≤ 1

and the sum of all likelihoods is equal to 1, i.e.

P(1) + P(2) + . . . + P(n) = 1.

(In the uniform case P(i) = 1
n for every position.)

Remark: The sum P(1) + P(2) + . . . + P(n) can be also written as
∑n

i=1 P(i).
3



Example: Amortized car cost

Oil consumption: 8 litres per 100 miles

Price of 1 litre is £1.20

=⇒ £9.6 per 100 miles

Extra expenses

• new tyres £320 every 70 000 miles

• new breaks £250 every 30 000 miles

• fix gearbox £300 every 130 000 miles

• fix clutch £406 every 100 000 miles

• labour £200 per hour to fix these

=⇒ extra £4.3 per 100 miles

=⇒ £13.9 is amortized cost per 100 miles

(? those numbers are somewhat made up!)
4



Amortized complexity: Dynamic array (first attempt)

Naive approach:

1. initially allocate an array of 1000 entries

2. whenever the array becomes full, increase its size by 100

To insert n entries, starting from empty, how long does it take?

For simplicity assume that n = 1000 + 100k (for some k).

1000 insertions +

1000 copies + 100 insertions +

1100 copies + 100 insertions +

1200 copies + 100 insertions +

1300 copies + 100 insertions +

...

In total:

• insertions: 1000 + 100k

• copies:

1000(k − 1)

+ 100×(1 + 2 + . . . + (k − 1))

= 1000(k − 1) + 50k(k − 1)

5



At the beginning we have

MAXSIZE = 1000;
arr = new int[MAXSIZE];
stored = 0;

We add elements to it by storing them at the end and increasing

stored by one. Then, anytime stored == MAXSIZE (i.e. arr

becomes full), we have to allocate a new array of size

MAXSIZE = MAXSIZE + 100 and copy all elements from arr into it.

Recall that 1 + 2 + . . . + n = n(n+1)
2 therefore

1 + 2 + . . . + (k − 1) =
(k − 1)k

2

The following analysis, however, does not depend on the exact choice of

the parameters. If we started with an array of length 10 and increased its

size by 5 every time it becomes full, for example, the resulting amortized

complexity would still be the same.



Copying and inserting together: 1000k + 100k + 50k(k − 1)

Amortized cost of one insertion:

1100k + 50k(k − 1)

1000 + 100k

The numerator is in O(k2) and denominator is in O(k)

=⇒ the whole fraction is in O(k).

But O(n) = O(k) because n = 1000 + 100k

=⇒ the amortized complexity of insertion is O(n).

6



Copying and inserting together: 1000k + 100k + 50k(k − 1)

Amortized cost of one insertion:

1100k + 50k(k − 1)

1000 + 100k

The numerator is in O(k2) and denominator is in O(k)

=⇒ the whole fraction is in O(k).

But O(n) = O(k) because n = 1000 + 100k

=⇒ the amortized complexity of insertion is O(n).

6



The amortized cost is computed as the average number of operations

needed for one insertion. In our case:

number of copying and inserting

number of inserting

We see that copying is the problem. In the following smarter approach

we try to suggest a different strategy which makes sure that copying

happens less often.



Amortized complexity: Dynamic array (= Java’s ArrayList)

Smart approach:

1. initially allocate an array of 1000 entries

2. whenever the array becomes full, double its size

To insert n entries, starting from empty, how long does it take?

For simplicity assume that n = 1000× 2k (for some k).

1000 insertions +

1000 copies + 1000 insertions +

2000 copies + 2000 insertions +

4000 copies + 4000 insertions +

8000 copies + 8000 insertions +

...

In total:

• insertions:

1000

+1000×(1+2+4+ . . .+2k−1)

• copies:

1000× (1 + 2 + 4 + . . . + 2k−1)

7



Copying and inserting together:

1000 + 2×1000×(1 + 2 + 4 + . . . + 2k−1)

Because 1 + 2 + 4 + . . . + 2k−1 = 2k − 1, this is equal to

1000 + 2×1000×(2k − 1)

Amortized cost of one insertion:

1000 + 2×1000×2k

n

Because n = 1000× 2k , the numerator is in O(n) and denominator

is in O(n)

=⇒ the whole fraction is in O(1)

=⇒ amortized complexity of insertion is O(1)

8



Copying and inserting together:

1000 + 2×1000×(1 + 2 + 4 + . . . + 2k−1)

Because 1 + 2 + 4 + . . . + 2k−1 = 2k − 1, this is equal to

1000 + 2×1000×(2k − 1)

Amortized cost of one insertion:

1000 + 2×1000×2k

n

Because n = 1000× 2k , the numerator is in O(n) and denominator

is in O(n)

=⇒ the whole fraction is in O(1)

=⇒ amortized complexity of insertion is O(1)

8



Comparison

Inserting at the end of an array

Average Case Best Case Worst Case Amortized

Naive alg. — O(1) O(n) O(n)

Smart alg. — O(1) O(n) O(1)

(Average Case complexity doesn’t make sense to consider here.)

Search in a sorted array

Average Case Best Case Worst Case Amortized

Linear srch O(n) O(1) O(n) O(n)

Binary srch O(log n) O(log n) O(log n) O(log n)

(Amortized complexity is the same as Average Case complexity because the

previous searches don’t have any effect on the next one.)

9



We see that the best case and worst case complexities of the Naive

algorithm and the Smart algorithm are the same. The only difference is

the amortized complexity. The reason why the amortized complexity of

the naive algorithm is worse is because the worse case happens too often.

Average Case complexity doesn’t make sense to consider in the first table. The

time complexity does not depend on the “size” of the value that is being

added. It only depends on the current number of elements stored in the array.



Trees



Trees

We store values (e.g. integers, Booleans, Students, ...) in the

nodes of the trees.

Depending on the number of

branches:

• Unary trees

= Linked Lists,

• Binary trees,

• Ternary trees,

• Quad trees, ...

33

10 30

21 1

0th level

(root)

1st level

2nd level

(leafs)

size = number of nodes = 5

height = number of levels = 3

Terminology: root, nodes, branches, leafs, depth or level of a node,

height or size of the tree

10



Trees

We store values (e.g. integers, Booleans, Students, ...) in the

nodes of the trees.

Depending on the number of

branches:

• Unary trees

= Linked Lists,

• Binary trees,

• Ternary trees,

• Quad trees, ...

33

10 30

21 1

0th level

(root)

1st level

2nd level

(leafs)

size = number of nodes = 5

height = number of levels = 3

Terminology: root, nodes, branches, leafs, depth or level of a node,

height or size of the tree
10



Binary Search Tree

Binary Search Tree is a tree which is either

empty or

1. values in the left subtree are smaller

than in the root

2. values in the right subtree are larger

than in the root

3. root’s left and right subtrees are also

Binary Search Trees

4

2

1 3

5

1, 2, 3, 4, 5

=⇒ values in the Binary Search Tree represent a sorted sequence!

11



Binary Search Tree

Binary Search Tree is a tree which is either

empty or

1. values in the left subtree are smaller

than in the root

2. values in the right subtree are larger

than in the root

3. root’s left and right subtrees are also

Binary Search Trees

4

2

1 3

5

1, 2, 3, 4, 5

=⇒ values in the Binary Search Tree represent a sorted sequence!

11



Searching Binary Search Trees

Starting from the root node, how do we determine whether a value

x is in the tree?

If the tree is empty, x is not in the tree! Otherwise, compare x

and the value stored in the root. There are three possibilities:

• They are equal =⇒ we found it!

• x is smaller =⇒ we search the left subtree.

• x is larger =⇒ we search the right subtree.

Compare

complexities:

1

2

3

4

. . .

vs.

4

2

1 3

6

5 7

12


	Amortized complexity
	Trees

