
Maths introduction: Exponentials

Basic exponentials (for a positive integer n):

an = a× a× . . . × a (repeated n times)

Example: 23 = 2× 2× 2 = 8, 101 = 10, 102 = 100.

Exponentiation is also defined for negative numbers or fractions:

a−n =
1

an
and a1/n = n

√
a

Basic rules:

am × an = am+n (am)n = am×n

am/an = am−n a0 = 1

Example: 91/2 = 3 2−3 = 1/8√
5×
√

5 = 5
1
2 × 5

1
2 = 5

1
2

+ 1
2 = 51 = 5

163/2 = (161/2)3 = 43 = 64 1



Maths introduction: Logarithms

Basic idea (for numbers a and b):

loga b = c such that ac = b

Example: log10 1000000 = 6

log10 0.0001 = −4

log2 32 = 5

log8 32 = log8(25) = log8

(
( 3
√

8)5
)

= 5/3

From the rules for exponentiation we derive the following rules:

loga(bc) = loga b + loga c

loga(b/c) = loga b − loga c

loga(bn) = n × loga b

loga b =
logc b

logc a

2



log10 1000000 = 6 because 106 = 1000000 and

log10 0.0001 = −4 because 10−4 = 1
104 = 1

10000 = 0.0001.

Proof of the last rule (for curious students):

Observe that b = aloga b (this is exactly how logarithms are defined).

Therefore

logc b = logc(aloga b) = loga b × logc a (?)

where the last equality follows from the rule: logc(an) = n × logc a.

Finally, we obtain that loga b = logc b
logc a

from (?) by dividing both sides by logc a.



Example

Starting amount on your bank account £1000, interest is 1%, in

five years you have 1000× 1.015 pounds.

To compute when you reach £1100, you ask for which n is

1000× 1.01n ≥ 1100

or, equivalently, 1.01n ≥ 1.1 (i.e. after dividing by 1000).

The actual number of years is n ≥ log1.01 1.1.

(In fact, it is the ceiling dlog1.01 1.1e. You get the money at the

end of the year.)

3



Time Complexity



Linear search (worst case complexity)

1 i n t s e a r c h ( i n t [ ] a r r a y , i n t x ) {
2 i n t n = a r r a y . l e n g t h ;

3 i n t i = 0 ;

4

5 whi le ( i < n ) { // i t e r a t e ove r the e l ement s

6 i f ( a r r a y [ i ] == x ) {
7 r e t u r n i ; // found i t !

8 } e l s e {
9 i = i + 1 ; // t r y the next one

10 }
11 }
12

13 r e t u r n −1; // the v a l u e not found

14 }

Worst case: the value x is not in the array.

Number of steps: 2 + n × (1 + 1 + 1) + 2 = 3n + 4
(2nd and 3rd lines, then n -times 5th, 6th and 9th lines, and finally the 5th and 13th line)

4



Linear search (worst case complexity), recursively

1 i n t s e a r c h ( i n t [ ] a r r a y , i n t x ) {
2 s e a r c h r e c ( a r r a y , 0 , x ) ; // i t e r a t e ove r the e l ement s

3 }
4

5 i n t s e a r c h r e c ( i n t [ ] a r r a y , i n t i , i n t x ) {
6 i f ( i == a r r a y . l e n g t h )

7 r e t u r n −1; // the v a l u e not found

8

9 i f ( a r r a y [ i ] == x )

10 r e t u r n i ; // found i t !

11

12 i n t i n e x t = i + 1 ; // t r y the next one

13 r e t u r n s e a r c h r e c ( a r r a y , i n e x t , x ) ;

14 }

Worst case: the value x is not in the array.

Number of steps: 1 + n × (1 + 1 + 1 + 1) + 1 = 4n + 2
(2nd line, then n -times 6th, 9th, 12th and 13th lines, and finally 6th line)

5



What is the difference between the two?

From the theoretical perspective we are more interested in

proportional growth of the number of steps rather than the actual

number of steps. This is because the actual speed depends on

• the hardware on which it runs,

• programming language used (or its compiler),

• how well is the implementation optimised, ...

Therefore, we prefer to compare algorithms in terms their

complexity classes, that is, we do not care about constant factors.

=⇒ Both the non-recursive and recursive versions of the search

algorithm belong to O(n), that is, linear complexity class.

6



In practise, it does not make sense to count the exact number of steps

because

• it gets trickier and trickier as your program grows, and also

• there are many hidden constants that we can’t compute, for

example it takes longer to execute if (i < n) than i+1 .

Instead of the number of steps, we care about the proportional growth of

the number of steps. For example, if the size of the input doubles, how

much longer will the algorithm take to finish? Will it be approximately

twice as long? Four times as long? (The first case corresponds to O(n),

the second to O(n2)).

This is important for the theoretical analysis of your programs. Before

actually implementing an algorithm, it is better to estimate its complexity

class and based on that you can see if such algorithm is worth

implementing or if it is just too slow.



“Big Oh” denotes proportional or less

For an algorithm operating on data of size n, how do we determine

its time complexity?

The algorithm is in O(n) whenever the number of steps is

1. ≤ 4n

2. ≤ 23492n

(Big-Oh doesn’t care about the constants.)

3. ≤ 4n + 3123

4. ≤ 23492n, provided that n ≥ 312

(Big-Oh doesn’t care about the first few n.)

Examples:

• ≤ 33n3 steps is in O(n3)

• ≤ 15 steps is in O(1) (constant time)

• ≤ 33n3 + 2.5n2 + 444n + 30 steps is in O(n3)
7



1. This generalises to other complexity classes as well. For example, if an

algorithm takes ≤ 131× n × log10 n steps, then it is in O(n log10 n). For

a proper mathematical definition of O(·) I recommend you to read

Mart́ın Escardó’s lecture notes which you can find on Canvas.

2. The case (3) can happen if, for example, the initialization of a data

structure takes many steps but then all operations on the data structure

are fast.

3. Why is ≤ 33n3 + 2.5n2 + 444n + 30 steps in O(n3)? Observe that, for

n ≥ 1,

• 2.5n2 ≤ 2.5n3 and

• 444n ≤ 444n3.

Therefore, the number of steps is

≤ 33n3 + 2.5n3 + 444n3 + 30 = 479.5n3 + 30 =⇒ the alg. is in O(n3).



Remarks

1. Because log2 n = 1
log10 2 · log10 n and 1

log10 2 is a constant,

O(log2 n) = O(log10 n) = O(log35 n) = ... = O(log n)

2. Algorithms with the time complexity in O(n) are also in O(n2).

We denote this by

O(n) ⊆ O(n2).

Similarly, we have

• O(log n) ⊆ O(n) and

• O(1) ⊆ O(log n).

Example:

• an algorithm which finishes in ≤ 2n + 4 log n steps is in O(n)
8



1. Logarithm with its base omitted, i.e. log a, is usually just a shorthand

for log10 a.

2. If an algorithm takes ≤ n steps, then it also takes ≤ n2 steps. This is

because n is always smaller or equal to n2. A similar reasoning applies to

the complexity classes.

For example, if an algorithm takes ≤ 32n + 11 steps (which means that it

is in O(n), it also takes ≤ 32n2 + 11 steps (which means that it is in

O(n2)).

In other words, any algorithm which is in O(n) is also in O(n2). We

express this by writing

O(n) ⊆ O(n2).



Linear search (average case complexity)

1 i n t s e a r c h ( i n t [ ] a r r a y , i n t x ) {
2 i n t n = a r r a y . l e n g t h ;

3 i n t i = 0 ;

4

5 whi le ( i < n ) {
6 i f ( a r r a y [ i ] == x ) {
7 r e t u r n i ;

8 } e l s e {
9 i ++;

10 }
11 }
12

13 r e t u r n −1; // the v a l u e not found

14 }

Average case: the value x is on the position n
2

(We assume that x

appears once in the array)

Number of steps: 2 + n
2 × 3 = 3

2n + 2 =⇒ it is in O(n)
(one iteration of the while loop is 3 steps, no matter if we found x or not)

9



Previously we computed that the worst case complexity of linear search

is O(n). This happens if the value is not in the array and we need to

search through the whole array.

Next, we consider a situation when the value x is in the array. (And for

simplicity we assume that it is there only once). How many steps does it

take on average to find x ?

Because x can be on any position, it is on average in the middle of the

array. This means that we find it on position n
2 and so the while-loop

evaluates n
2 -many times.



Binary Search (worst case and average case)

Searching x in a sorted array arr :

1. Compare x and arr[arr.length div 2] .

2. If x is bigger, recursively search arr on positions

(arr.length div 2) + 1 , ..., arr.length - 1 .

3. Otherwise, recursively search arr on positions

0 , ..., arr.length div 2

4. We continue like this until we are left with only one element

in the array. Then, return whether this element equals x .

The length of the array we search through reduces by one half in

every step and we continue until the length is 1.

For simplicity assume that the length of arr is 2k

=⇒ the number of steps is O(k) = O(log2 n).
10



see Paul’s notes,

includes exact computation even when the array is not 2k

If you want to compute this for general n, you have to do a bit more

involved calculation (involving floor and ceiling)


