
More on organisation

Tutorials

see your group on Syllabus page in Canvas

Office hours

Tuesday 11:15–12:15 in 242 (after the tutorial)

Assignments deadlines

1st assignment: 12 February 2018

2nd assignment: 19 March 2018

(submit before the lecture)

Shared document

http://cs.bham.ac.uk/~txj300/dsa2018-doc

0

http://cs.bham.ac.uk/~txj300/dsa2018-doc

Stacks

Stacks = LIFOs (Last-In-First-Out)

Stack is an abstract data type defined by its three operations:

• push(x) puts value x on the top of the stack

• pop() takes out a value from the top of the stack

If there are no values in the stack, it raises

EmptyStackException .

• is empty() says whether the stack is empty

(picture source: wikipedia) 1

Stack is an abstract data type. A stack is a list of values. The two ends

of the list are called the bottom and top. We push a value (add it to the

top of the stack) and pop a value (remove from the top of the stack).

Thus a stack behaves in a Last In First Out (LIFO) manner. If we try to

pop from an empty stack, we get an EmptyStackException . In theory

we should be able to push any number of values, but in practice that

won’t be possible and we will get an exception if we run out of memory.

We can have a stack of any type of value, e.g. a stack of integers, a

stack of strings, a stack of Booleans etc.

As a part of the specification of stacks it is usually also said that

push(x) followed by is empty() gives false , and push(x)

followed by pop() gives x back.

Since we see a stack as an abstract data type, we do not specify how it is

implemented.

Example

Suppose we create an empty stack and we push 3, push 5, push 2

and pop; we get 2. Suppose we then pop; we get 5. Suppose we

push 1, push 8, then pop. Pop again three times, what do we get?

Usage

For example, when we are solving tasks with dependencies.

Imagine that we want to complete a task A, push(A) , and

1. A depends on B and C =⇒ push(B) and push(C)

(ok, we need to solve C first but ...)

2. C depends on D =⇒ push(D) .

Once we complete D (pop()), C (pop()), and B (pop()), we

can also complete A (pop()).

2

(More verbose example of usage:)

One reason that stacks are useful is that sometimes, in order to complete

job A we must first do job B and then job C, but in order to complete

job B we must first do job D, and in order to do that we must first do

job E and job F. So we have a job stack. While we are doing E it is at

the top of the stack, with D below, and B below that, and A at the

bottom. When we start a job we push it onto the stack, and when we

complete a job we pop it.

Another example: the most natural way of evaluating an expressing

written in reversed polish notation is by using stacks.

Stacks as linked lists

30

15

11

5

To store a stack as a linked list we pick the faster of

the two options:

1. the top is at the beginning, i.e. 〈30, 15, 11, 5〉
2. the top is at the end, i.e. 〈5, 11, 15, 30〉

Question: Which one is better and why?

3

Since inserting and deleting from the beginning of a linked list is

constant, the first option is better. In other words, we take

• push = insert beg

• pop = delete beg

• is empty (for stacks) = is empty (for linked lists)

This way every operation on stacks takes constant time.

The second option would mean that push = insert end and pop =

delete end . Then, even if we stored the position of the end of the

linked list (to make sure insert end is fast), delete end would still

be slow (linear time) and so the second option is not reasonable.

Stacks as arrays

Stacks are usually stored as arrays:

1 // I n i t i a l i z e an empty s t a c k :

2 s t a c k = new i n t [MAXSTACK] ;

3 s t a c k s i z e = 0 ;

(With the bottom of the stack stored on the 0th position of the array.)

In the tutorials, we show how to implement push and pop for

this representation in constant time.

=⇒ No matter if we store stacks as linked lists or arrays, in both

cases, push , pop , and is empty finish in constant time.

4

Storing stacks as arrays has the advantage that we avoid calling

allocate memory all the time (this takes time, even if it is done

automatically for us, like in Java). On the other hand, we need to know

the maximum size of the stack in advance.

Queues

Queues = FIFOs (First-In-First-Out)

Queue is an abstract data type defined by its three operations:

• enqueue(x) puts value x at the rear of the queue

• dequeue() takes out a value from the front of the queue

If there are no values in the queue, it raises

EmptyQueueException .

• is empty() says whether the queue is empty

Rear Front

DequeueEnqueue

5

Queue is an abstract data type. A queue is a list of values (e.g. integers,

Booleans, ...). The two ends of the list are called the rear and front. We

enqueue a value (add it to the rear of the queue) and dequeue a value

(remove it from the front of the queue). Thus a queue behaves in a First

In First Out (FIFO) manner. If we try to dequeue from an empty queue,

we get an EmptyQueueException . In theory we should be able to

enqueue any number of values, but in practice that won’t be possible and

we will get an exception if we run out of memory.

Example

Starting from an empty queue, enqueue 4 and 3, dequeue, then

enqueue 1 and dequeue two times. What is the last value you get?

What would happen in the next dequeue?

Usage

A typical application of queues is a print queue: files are sent to

the queue for printing and are printed in the order in which they

were sent.

After sending a file, you know that only the jobs currently in the

queue will be printed before yours.

6

Queues are useful whenever we have need to process tasks in the order in

which they came. We demonstrate this in the printer queue but there are

many more examples (e.g. web server when serving websites).

Notice that since the tasks in a print queue are executed in the order in

which they came, there is no priority. Even as a lecturer I have to wait for

all student tasks that came before mine to finish before my file gets

printed.

Queue as a linked list

In order to have an efficient implementation we need to store the

location of the last element in the linked list.

We have two options again:

1. Front at beginning of the linked list, rear at end

2. Rear at beginning of the linked list, front at end

Question: Which one is better and why?

7

Think of how would enqueue and dequeue be implemented if we did (1)

or (2).

For (1) to enqueue, as long as we keep track of the end, constant time,

to dequeue, remove first node and change head poitner, constant time.

For (2) to enqueue, allocate new and change the head pointer, to

dequeue, we don’t know the address of the penultimate node and so we

have to find it first, linear time.

(1) makes sense, (2) doesn’t. In other words, we take

• enqueue = insert end

• dequeue = delete beg

This way both enqueue and dequeue take constant time.

Queue stored in an array (1st attempt)

Whenever we enqueue (resp. dequeue) we move rear (resp.

front) to the right:

7 22 -3 10 10

rearfront

We eventually run out of space! To fix this, every time we

dequeue , move everything to the left. It works but is slow!

22
-3

10

10

7

front

rear

Instead we use a circular storage of a queue.

We move Front and Rear clockwise.

Works beautifully in theory but how do we

implement it in an array?

8

If we know that the size of queue is limited during the run of our

program, we can store the queue as an array. We store the position of

the front and the rear of the queue in variables front and rear ,

respectively. Then, values stored in the queue are stored on the positions

front , front+1 , ..., rear . To enqueue we increase rear by 1

(move it to the right) and store the new value on the position rear . To

dequeue we read out the value on position dequeue and move

dequeue to the right.

However, this way, we eventually reach the end of the array and we can’t

move rear anymore. If we could store our queue in a “circular” array,

we could keep moving front and rear clockwise forever.

Digression: div and mod (maths break)

For numbers a, b with b > 0 we write a div b to mean the

result of dividing a by b and discarding the remainder, and we

write a mod b to mean the reminder.

For example: 123 div 10 = 12 58.7 div 10 = 5

123 mod 10 = 3 58.7 mod 10 = 8.7

Example

Formula racing: Assume that one lap in a race is 600 meters.

Then a formula which has driven 1500 meters has done

1550 div 600 = 2 laps and 1550 mod 600 = 350 meters in

the third lap.

9

Note that a div b is always an integer and 0 ≤ a mod b < b

such that

(a div b) ∗ b + a mod b = a.

Consequently: −123 div 10 = −13 and −123 mod 10 = 7.

mod can be used to define flooring (rounding down to an integer),

we have

bxc = x div 1 and x div y = bx/yc

(very useful when we do complexity)

10

Note that in Java Math.floorDiv and Math.floorMod behave better

than % and / , respectively, because the latter interpret the operations

on negative numbers incorrectly.

More examples:

• 100 mod 10 = 0 (100 is divisible by 10)

• −18 div 10 = −2 (move backwards 2 * 10)

• −18 mod 10 = 2 (and then 2 steps forwards)

(it has to be in the bounds: 0 ≤ −18 mod 10 < 10)

• Floor: b14.3c = 14, b7.0c = 7, b−5.3c = −6

• Ceiling: d14.3e = 15, d7.0e = 7, d−5.3e = −5

Representing circles

Positions in the circle, numbered clockwise, correspond to the

positions in the array:

0

1

2

3

4

5 a
b

c

d
e

f
=⇒

a b c d e f

0 1 2 3 4 5

Example

For a position pos in the circle (e.g. pos = 5), moving

clockwise by two positions is computed as (pos + 2) mod 6 .

Or in general (pos + 2) mod circle length .

11

Circular queue

1 // I n i t i a l i z e an empty queue :

2 queue = new i n t [MAXQUEUE] ;

3 r e a r = 0 ;

4 f r o n t = 0 ;

We store values in the queue in between positions marked by

rear and front , that is,

• if front ≤ rear then the queue consists of the entries on

positions front, front + 1, ..., rear − 1:

front rear

• if rear < front then the queue consists of the entries on

positions front, front + 1, ...,MAXQUEUE − 1 and

0, 1, ..., rear − 1:
frontrear

12

Contrary to our first attempt, we store rear one position ahead of

where the last element of the queue is stored. This is to simplify

calculations. For example, the queue is empty whenever

front == rear .

Consequently, the queue is full whenever front is equal to

rear + 1 mod MAXQUEUE and trying to enqueue in such case raises

an exception. However, even though the queue is full, one space in the

array is not being used. This could be avoided if one really wants but it

complicates matters and, for example, checking whether the queue is

empty would not be as simple as just checking that front == rear .

Circular queue

1 // I n i t i a l i z e empty queue :

2 queue = new i n t [MAXQUEUE] ;

3 r e a r = 0 ;

4 f r o n t = 0 ;

1 boolean i s emp t y () {
2 r e t u r n r e a r == f r o n t ;

3 }

1 vo id enqueue (i n t a) {
2 i n t newrear = (r e a r +1) mod MAXQUEUE; // move c l o c kw i s e

3

4 i f (newrear == f r o n t)

5 throw OutOfMemoryException ; // the queue i s f u l l

6

7 queue [r e a r] = a ;

8 r e a r = newrear ;

9 }

We do mod MAXQUEUE to make sure we stay in the circle.

13

Final points

As we will see, stacks and queues are used in many algorithms.

We often just say “make a stack” or “make a queue” and we don’t

care how they are implemented.

We know that, whether it is as an array or linked list, it can be

done efficiently.

14

	Stacks
	Queues

