
ICY Data Structures and Algorithms

&

Fundamentals: Data Structures

Tomáš Jakl

(based on lectures by Paul Blain Levy)

Spring 2018



Module organisation

Assessment

80% (exam) + 20% (2 assignments)

+ 0% (2 unassessed assignments)

Classess

theoretical lecture + (more) practical tutorial classes

Material

These slides on canvas + John Bullinaria’s lecture

notes on

http://www.cs.bham.ac.uk/~jxb/dsa.html

Shared document

We have a shared document/forum for Questions

and Answers (experimental):

http://cs.bham.ac.uk/~txj300/dsa2018-doc 1

http://www.cs.bham.ac.uk/~jxb/dsa.html
http://cs.bham.ac.uk/~txj300/dsa2018-doc


Programs = Algorithms + Data Structures

We use Data Structures to efficiently organise and structure

collections of data in a computer.

Algorithms manipulate data structures to achieve a given goal.

Therefore, in order for a program to be fast, it has to use efficient

data structures and do so efficiently.

In this module we focus on:

• various data structures

• basic algorithms

• understanding the strengths and weaknesses of those, in terms

of their time and space complexities

2



Abstract data types (ADT)

An abstract data type is

• a type

• with associated operations

• whose representation is hidden to the user

Example

Integers are an abstract data type with operations + , - , * ,

mod , div , . . .

3



• A type is a collection of values, e.g. integers, Boolean values (true

and false).

• The operations on ADT might come with mathematically specified

constrains, for example on the time complexity of the operations.

• Advantages of ADT’s as explained by Aho, Hopcroft and Ullman

(1983):

“At first, it may seem tedious writing procedures to govern all

accesses to the underlying structures. However, if we

discipline ourselves to writing programs in terms of the

operations for manipulating abstract data types rather than

making use of particular implementations details, then we can

modify programs more readily by reimplementing the

operations rather than searching all programs for places where

we have made accesses to the underlying data structures. This

flexibility can be particularly important in large software

efforts, and the reader should not judge the concept by the

necessarily tiny examples found in this book.”



List is an ADT

An example of a list of numbers

〈2, 5, 1, 8, 23, 1〉 (ordered collection of elements)

List is an ADT; list operations are:

• insert an entry (on a certain position)

• delete an entry

• access data by position

• search

• move around the list

• concatenate two lists

• sort

• ...

(we focus only on some of them)
4



Different representations of lists

Depending on what operations are needed for our application, we

choose from different data structures (some implement certain

operations faster than the others):

• Arrays.

• Linked lists.

• Dynamic arrays.

• Unrolled linked lists.

You’ve already met the first two in the Software Workshop.

5



Arrays



(Simplified) memory model

To demonstrate how memory management in an Operating System

(OS) works we are going to treat memory as a gigantic array

Mem[-]

(for simplicity we assume that every entry can contain either an

integer or a string).

Two operations provided by the OS:

• allocate memory(n) – the OS finds a continuous segment

of n unused locations, designates that memory as used, and

returns the address of the first location.

• free memory(address) – the OS designates the memory as

free again.

6



This is a simplification from what is in Java, C and other languages. In

reality, strings, for example, are stored as blocks of items in Mem (i.e.

they occupy more than just one location).



List as an array of a fixed length

1 i n t [ ] nums = new i n t [ 4 ] ;

in Java is (roughly) translated as

1 nums = a l l o c a t e m e m o r y ( 4∗1 ) ;

nums

93 23 12 53

i Mem[i]
...

...

3321 ”Alice”

3322 ”Bob”

3323 93

3324 23

3325 12

3326 53

3327 333
...

...

array

nums

1 x = nums [ 3 ] ; // 53

2 nums [ 3 ] = 4 ;
becomes

1 x = Mem[ nums +3] ;

2 Mem[ nums+3] = 4 ;

7



• The variable nums stores the address where the array starts in

Mem ; in our case it is equal to 3323.

• Every int in the array occupies one location in Mem . In the next

slide we show an example of where every item in the array occupies

more than just one location in Mem .

• Notice that the value of x is 53. This is because we the indexing

arrays starts from 0, i.e. the indexes of elements in nums are

0, 1, 2, 3.



More complicated arrays in Mem[−]

1 c l a s s Student {
2 S t r i n g name ;

3 i n t i d ;

4 }
5 Student [ ] s t u d s = new Student [ 3 ] ;

becomes

1 s t u d s = a l l o c a t e m e m o r y ( 3∗2 ) ;

i Mem[i]

...
...

4029 ”Sarah”

4030 1419231

4031 ”Berry”

4032 2113812

4033 ”Gale”

4034 1322813
...

...

1 s t u d s [ 1 ] . name = ” John ” ;

2 s t u d s [ 1 ] . i d = 1419231;

becomes

1 Mem[ s t u d s +2∗1+0] = ” John ” ;

2 Mem[ s t u d s +2∗1+1] = 1419231;

8



• To store one Student we need to allocate two locations in Mem .

• Note that our interpretation of new Student[3] is not exactly as in Java. In Java, this code creates an

array of three pointers (i.e. addresses) and each of the pointers points to a newly allocated Student

object.



Memory management

In Java

• allocations automatic

• freeing memory is automatic (by the garbage collector)

• bounds of arrays are checked

In C or C++

• allocations explicit

• freeing memory explicit

• bounds not checked

Java is slower and safe, C (or C++) is fast and dangerous.

9



A very common mistake is to forget to subtract 1 :

int[] a = new int[5];

a[5] = 1000; // Kaboom!

This leads to an ArrayIndexOutOfBoundsException in Java whereas

in C (or C++) this goes through without a warning and can lead to a

corruption of data in memory!



Inserting by shifting

To insert a student at position pos , where 0 ≤ pos ≤ size:

1 S t u d e n t s [ ] s t u d s = new S t u d e n t s [ m a x s i z e ] ;

2 i n t s i z e = 0 ; // number o f s t u d e n t s s t o r e d

3

4 vo id i n s e r t ( i n t pos , S t r i n g name , i n t i d ) {
5 i f ( s i z e == m a x s i z e )

6 throw A r r a y F u l l E x c e p t i o n ;

7

8 f o r ( i n t i=s i z e ; i > pos ; i−−) {
9 // Copy e n t r y i n p o s i t i o n i−1 to t he r i g h t

10 Mem[ s t u d s + 2∗ i ] = Mem[ s t u d s + 2∗( i −1) ] ;

11 Mem[ s t u d s + 2∗ i + 1 ] = Mem[ s t u d s + 2∗( i −1) + 1 ] ;

12 }
13

14 Mem[ s t u d s + 2∗ pos ] = name ;

15 Mem[ s t u d s + 2∗ pos + 1 ] = i d ;

16 s i z e ++;

17 }
10



If we want to insert a value to an array (at a certain position) we can do

this in two steps:

1. Create a new array, of size bigger by one.

2. Copy elements of the old array to the new one to the corresponding

positions.

However, this requires to copy the whole array every single time. Instead,

we can allocate a big array at the beginning (of size maxsize ) and then

always “only” shift elements whenever we are inserting/deleting one.



Linked Lists



Linked Lists in Mem[−]

Linked list representing a list 〈93, 23, 12, 53〉:
list

93 23 12 53

Inserting at the beginning of a list:

1 vo id i n s e r t b e g ( i n t number ) {
2 newblock = a l l o c a t e m e m o r y ( 2 ) ;

3 Mem[ newblock ] = number ;

4 Mem[ newblock +1] = l i s t ;

5 l i s t = newblock ;

6 }

Convince yourself that it works, even if list == END .

What is the complexity of insert beg ?

Does it depend on the size of the list?

list = 3823

and

i Mem[i]

...
...

0324 23

0325 3111
...

...

3111 12

3112 7479
...

...

3823 93

3823 0324
...

...

7479 53

7480 END

...
... 11



Similarly to what we had before, each is realised as a block of two

consecutive locations in Mem . The first location of such block stores a

number and the second location stores the address of the following block.

The variable list stores the address of the first such block.

END indicates the end of the list (graphically as ). Its value can be

anything that is not a valid address, for example, -1 .

A linked list is empty whenever list is equal to END .

An advantage of linked lists over arrays is that the length of linked lists is

not fixed. We can insert and delete items as we want. On the other

hand, accessing an entry on a specific position requires traversing the list.



To represent the list 〈93, 23, 12, 53〉 as a linked list do the following:

1 // a l l o c a t i n g memory f o r the boxes

2 b lock1 = a l l o ca t e memory ( 2 ) ;

3 Mem[ b l ock1 ] = 93 ;

4

5 b l ock2 = a l l o ca t e memory ( 2 ) ;

6 Mem[ b l ock2 ] = 23 ;

7

8 b l ock3 = a l l o ca t e memory ( 2 ) ;

9 Mem[ b l ock3 ] = 12 ;

10

11 b l ock4 = a l l o ca t e memory ( 2 ) ;

12 Mem[ b l ock3 ] = 53 ;

13

14 // l i n k i n g the boxes t o g e t h e r

15 l i s t = b lock1 ;

16 Mem[ b l ock1+1] = b lock2 ;

17 Mem[ b l ock2+1] = b lock3 ;

18 Mem[ b l ock3+1] = b lock4 ;

19 Mem[ b l ock4+1] = END;

Alternatively, use the function insert beg :

1 l i s t = END;

2

3 i n s e r t b e g ( 5 3 ) ;

4 i n s e r t b e g ( 1 2 ) ;

5 i n s e r t b e g ( 2 3 ) ;

6 i n s e r t b e g ( 9 3 ) ;



More operations on Linked Lists

1 vo id d e l e t e b e g ( ) {
2 // i s empty ?

3 i f ( l i s t == END) {
4 throw

5 E m p t y L i s t E x c e p t i o n ;

6 }
7

8 f i r s t n o d e = l i s t ;

9 l i s t = Mem[ f i r s t n o d e +1] ;

10 f ree memory ( f i r s t n o d e ) ;

11 }

1 Boolean i s e m p t y ( ) {
2 r e t u r n l i s t == END;

3 }

1 i n t v a l u e a t ( i n t i n d e x ) {
2 x = l i s t ; // p o i n t e r

3

4 whi le ( i n d e x > 0) {
5 i f (Mem[ x +1] == END)

6 throw

7 OutOfBoundsExcept ion ;

8

9 x = Mem[ x +1] ;

10 i ndex−−;

11 }
12

13 r e t u r n Mem[ x ] ;

14 }

What is the time complexity of those operations?

How would you implement insert end and delete end ?
12



Insert at the end

1 vo id i n s e r t e n d ( i n t number ) {
2 newblock = a l l o c a t e m e m o r y ( 2 ) ;

3 Mem[ newblock ] = number ;

4 Mem[ newblock +1] = END;

5

6 i f ( l i s t == END) {
7 l i s t = newblock ;

8 } e l s e {
9 p o i n t e r = l i s t ;

10

11 whi le (Mem[ p o i n t e r +1] != END)

12 p o i n t e r = Mem[ p o i n t e r +1] ;

13

14 Mem[ p o i n t e r +1] = newblock ;

15 }
16 }

13



The same by recursion

1 vo id i n s e r t e n d ( i n t number ) {
2 l i s t = i n s e r t h e l p ( l i s t , number ) ;

3 }
4

5 // j u s t a h e l p e r f u n c t i o n :

6 i n t i n s e r t h e l p ( i n t a d d r e s s , i n t number ) {
7 i f ( a d d r e s s == END) {
8 newblock = a l l o c a t e m e m o r y ( 2 ) ;

9 Mem[ newblock ] = number ;

10 Mem[ newblock +1] = END;

11 r e t u r n newblock ;

12 } e l s e {
13 Mem[ a d d r e s s +1] = i n s e r t h e l p (Mem[ a d d r e s s +1] , number ) ;

14 r e t u r n a d d r e s s ;

15 }
16 }

14



Comparison

If we store a list of n elements as an array or a linked list, how

efficient are going to be the basic operations of lists (seen as an

ADT)?

Array Linked List

access data by position

search

insert an entry at the beginning

insert an entry at the end

insert an entry (on a certain position)

delete an entry

concatenate two lists

15



Search is a procedure which finds the position (counting from 0) where a

value given on input is stored in the array or linked list.

We compare the efficiencies by how many elements of the list do we have

to traverse (in the worst case) in order to finish the operation.

In practise, we choose between using an array or linked list depending on

which operations we need the most often.



Comparison (solution)

If we store a list of n elements as an array or a linked list, how

efficient are going to be the basic operations of lists (seen as an

ADT)?

Array Linked List

access data by position constant linear

search linear linear

insert an entry at the beginning linear constant

insert an entry at the end linear* linear*

insert an entry (on a certain position) linear linear

delete an entry the same the same

concatenate two lists linear linear*

16



By “how efficient” we mean how many items in the list we have to

traverse?

Constant means that the number of operations does not depend on the

number of elements in the list. Linear means that we might, in the worst

case, traverse the whole list.

The stars indicate that it could be improved to the constant time if we

use a slightly different representation. For example, inserting at the end

of an array in constant time is possible if we implement insert ing as

on slide 10.



Modifications

Linked list with a pointer to the last node:

first last

93 23 12 53

Fast insert end

slow delete end

Doubly linked list:

93 23 12 53

Try yourself: Write insert beg , insert end , delete beg

and delete end for those two representations.

17



If we remember where the first and the last block of a doubly linked list

is stored, then inserting at the end and deleting from the end could be

implemented in constant time.



Time for a quiz show!

Let nums be the address of an array of integers of length len .

· · ·
nums

Which of the following algorithms creates a linked list faster?

1 i n t l i s t = END;

2

3 f o r ( i n t i =0; i < l e n ; i ++)

4 i n s e r t e n d ( l i s t , Mem[ nums+i ] ) ;

1 i n t l i s t = END;

2

3 f o r ( i n t i=l e n −1; i <= 0 ; i−−)

4 i n s e r t b e g ( l i s t , Mem[ nums+i ] ) ;

18



If we do not keep track of the last node (as was the case on slide 17) then

the second algorithm is faster. This is because every insert beg takes

constant time to execute whereas when running insert end we need to

traverse 1, 2, 3, ..., len -many elements, that is, in total we traverse

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

many elements.


	Arrays
	Linked Lists

