
Exercise Sheet, Week 8

Question 1. Use merge sort to sort the following sequences:

〈2, 7, 2, 3, 8, 5, 4, 1〉 〈1, 2, 3, 4, 5, 6, 7〉

Question 2. Use quicksort to sort the first sequence of Question 1 with the following pivot-
selection strategies:

(a) The leftmost element.

(b) The middle element.

(c) A random element given by the following “random” sequence of positions:

6, 0, 2, 0, 1, 4, 1, 3, 1, 2, 4, 1, 0, 2, 3, 5, 1, 2, 0, 0, 0, 0, 0, 0, ...

(Use mod if the position is out of scope of the part of the array which you are sorting.)

Question 3. What would be the time complexity of the modified merge sort which calls itself
recursively only as long as the size is n or n

2 and, for smaller inputs, it calls selection sort instead?

Question 4. Instead of recursion, use stacks to implement quicksort. You can use function
partition as in the lecture. Hint: It might help to use the following class to remember which

partitions are to be sorted:

1 class I n t e r v a l {
2 int l e f t ;
3 int r i g h t ;
4 }

1 void qu i ck so r t (int [] a r r) {
2 s = new Stack<In t e rva l >() ;
3 s . push (new I n t e r v a l (0 , a r r . length −1)) ;
4

5 while (s . notEmpty ()) {
6

7

8

9

10

11

12

13

14 }
15 }

Question 5. Write code for int partition(arr, left, right) as we described in in the

lecture, that is, partition rearranges the array so that

� the small entries are stored on positions left, left+1, left+2, ..., pivot index-1 ,

� pivot is stored on position pivot index and

� the large entries are stored on pivot index+1, pivot index+2, ..., right .

The return value is the position of the pivot in arr , that is, pivot index .

1

1 int pa r t i t i o n (int [] arr , int l e f t , int r i g h t) {
2 o l d p i v o t i nd ex = choosePivot (arr , l e f t , r i g h t) ;
3 tmpLE = new int [r i ght− l e f t +1] ;
4 tmpG = new int [r i ght− l e f t +1] ;
5

6 p ivo t index = −1;
7 a = 0 ;
8 b = 0 ;
9

10 for (int i =0; i<r i ght− l e f t +1; i++) {
11 i f (a r r [l e f t+i] <= arr [o l d p i v o t i nd ex]) {
12

13

14

15

16

17

18 } else {
19

20

21 }
22 }
23

24 // Copy tmpLE and tmpG in to arr :
25

26

27

28

29

30

31 // Return the l o c a t i on o f p i v o t in arr :
32 return ??? ;
33 }

(Bonus) Question 6. Instead of recursion, use stacks/queues to implement merge sort. (You
can use function merge as in the lecture.)

(Bonus) Question 7. Write partitioning for quicksort which “in-place”, that is, it does not need
to allocate any extra memory. Remark: This can break stability of quicksort.

2

