Exercise Sheet, Week 6

Question 1. Each node of the following heap tree stores a value followed by its priority:

Show how the tree changes after each of the following operations (executed in a sequence):

(i) insert(Q,4) (iv) deleteMax()
(ii) insert(M,1) (v) insert(H,8)
(ili) insert(M,10) (vi) 5x deleteMax()

Question 2. Draw the corresponding (complete) trees for the following arrays (we only store
priorities). Use the same convention as for heap trees, that is, node on position i has its left
and right child stored on position 2*i and 2*i+1 , respectively. Also, the parent of node i is
stored on position i div 2. Assume that we index the arrays starting from 1.

(i
(i

(ii

) [10,6,2,5,3,1]

) [6,4,5,7,0,2,4,4,0]

) [1,1,1,0,0,0,0,0,0,0,0]
(iv) [4,3,3,2,1,1,5,1]

Question 3. Decide which of the trees from Question 2 are heap trees.

Question 4. bubbleDown keeps swapping a node with the higher priority child as long as any
of its children has a higher priority. Finish the implementation.
void bubbleDown (int i, int[] heap, int n) {

if (left(i) > n) { // has mo children

return;
} else if (right(i) > n) { // only has the left child

} else { // has both children

)

where n is the number of elements stored in the heap, left(i) returns 2%i and right(i)

returns 2*i+1 .

Question 5. Write void update(int index, int priority, int[] heap, int n) which

changes the priority of the node stored on position index (make sure that the result is a heap
tree). You can use bubbleUp and bubbleDown .



