
Exercise Sheet, Week 6

Question 1. Each node of the following heap tree stores a value followed by its priority:

D,6

C,5

A,4 E,3

Z,2

Show how the tree changes after each of the following operations (executed in a sequence):

(i) insert(Q,4)

(ii) insert(M,1)

(iii) insert(M,10)

(iv) deleteMax()

(v) insert(H,8)

(vi) 5× deleteMax()

Question 2. Draw the corresponding (complete) trees for the following arrays (we only store
priorities). Use the same convention as for heap trees, that is, node on position i has its left

and right child stored on position 2*i and 2*i+1 , respectively. Also, the parent of node i is

stored on position i div 2 . Assume that we index the arrays starting from 1.

(i) [10,6,2,5,3,1]

(ii) [6,4,5,7,0,2,4,4,0]

(iii) [1,1,1,0,0,0,0,0,0,0,0]

(iv) [4,3,3,2,1,1,5,1]

Question 3. Decide which of the trees from Question 2 are heap trees.

Question 4. bubbleDown keeps swapping a node with the higher priority child as long as any
of its children has a higher priority. Finish the implementation.

1 void bubbleDown (int i , int [] heap , int n) {
2 i f (l e f t (i) > n) { // has no ch i l d r en
3 return ;
4 } else i f (r i g h t (i) > n) { // only has the l e f t c h i l d
5

6

7 } else { // has both ch i l d r en
8

9

10

11

12

13

14

15 }
16 }

where n is the number of elements stored in the heap, left(i) returns 2*i and right(i)

returns 2*i+1 .

Question 5. Write void update(int index, int priority, int[] heap, int n) which

changes the priority of the node stored on position index (make sure that the result is a heap

tree). You can use bubbleUp and bubbleDown .

1

