Exercise Sheet, Week 5

Trees in Mem (continue)

In Java, in order to represent a binary tree which stores integers, one can define a class

```
class Node {
    Node left;
    int value;
    Node right;
}
```

In the last tutorial, we said that we can represent trees in Mem. Each node then takes 3 locations in memory. In some sense, we mimicked Java's representation because whenever you write

```
node = new Node();
```

this corresponds to our:

```
node = allocate_memory (3); // then node stores just an *address*, e.g. number 693
```

Furthermore,

```
node.left = null; // empty 1 Mem[node] = END; // empty
node.value = 123; 2 Mem[node+1] = 123;
node.right = node2; corresponds to }\mp@subsup{3}{3}{}\mathrm{ Mem[node +2] = node2;
// assume that node2 has
// been created earlier
```

```
Mem[node +1] = 123;
```

Mem[node +1] = 123;
5 // assume that node2 has
5 // assume that node2 has
6 // been created earlier

```
6 // been created earlier
```

The concrete representation in Mem, might look like as follows. For example, if node $=693$ and the second node stores 555 and has no children, we might have:

i	Mem[i]
693	END
694	123
695	698
696	949193
697	419399
698	END
699	555
700	END
701	149939

Exercises:

Solve the following in the Mem representation. You can first write the solution to the exercises in Java and then translate them the same way as above. Hint: Use recursion, stacks or queues.
$5-\frac{1}{2}$. Write a function int size(int root) which computes the number of nodes in the tree.
5. Write a function int sum(int root) which computes the sum of all numbers stored in the nodes of the tree.
6. What is the time complexity of your function sum from (5)? Express the time complexity with respect to $n=$ the size of the tree.
Does it make sense to express the time complexity in terms of the tree's height?
7. Bonus: Write a function int maxLessThan(int root, int x) which finds the largest value stored in the binary search tree which is $\leq x$.

