1

Exercise Sheet, Week 4

Trees in Mem

We represent trees in Mem . Each node takes 3 locations in memory:

e Oth location: stores the pointer to the left subtree (or END if it is empty)

e 1st location: stores the value stored in the node

e 2th location: stores the pointer to the right subtree (or END if it is empty)

We store the address of the root node of the tree in variable root .
For example:

root

0 o]

e becomes —’I 6 I |

G @ 25

y)

X

71X

AN

Exercises:

1.

2

Use the function allocate memory(n) to create a representation of the tree shown above.

Make sure that you store the address of the root node in variable root .

. Starting from root , write a code that inserts a node with 8 as the right child of the node

7 into the same tree as you created in (1).

Write a function void insert(int root, int x) which inserts the value x into the
binary search tree with the root stored in root (you can assume that the tree is not
empty).

Write a function int branchSum(int root) which computes the sum of all numbers on
the rightmost branch of the tree. (In the above case, it would be 4 +6 4+ 7 = 17.)

Write a function int sum(int root) which computes the sum of all numbers stored in the
nodes of the tree.

What is the time complexity of your function sum from (5)7 Express the time complexity
with respect to n = the size of the tree.

Bonus: Write a function int maxLessThan(int root, int x) which finds the largest
value stored in the tree which is < x.

Challenging: Amortized complexity

Consider a modification of dynamic arrays, which we did in the class:

1.
2.

initially allocate an array of 1000 entries

whenever the array becomes full, increase its size by 100, 1002, 1003, 100%, 100°, ... elements.

What is the amortized complexity of insertion now?
What is the problem with this approach?



