Exercise Sheet, Week 3

1 Determining the time complexity

The running time of an algorithm usually grows in proportion to the size of the input. To an algorithm, we assign a complexity class which determines the speed of such growth. Let's say that the size of the input is n (e.g. an array consisting of n elements). Then, an algorithm which takes $\leq 4 n+3123$ steps is in $\mathcal{O}(n)$.

When determining the complexity class, we strip away the (leading) constants. For example, algorithms taking $\leq 23492 n, \leq 31 n+10$, or $\leq 2 n+10^{30}$ steps are all in $\mathcal{O}(n)$. In general, if the number of steps is less than or equal to $a n+b$, for some constants a and b, then the algorithm is in $\mathcal{O}(n)$. Similarly, the algorithms which need $\leq a n^{2}+b$ steps belong to $\mathcal{O}\left(n^{2}\right)$, or with $\leq a \log n+b$ steps belong to $\mathcal{O}(\log n)$, etc.

An algorithm which multiplies all elements in the array:

```
```

```
int product(int[] arr) {
```

```
```

int product(int[] arr) {

```
```

```
int product(int[] arr) {
    int n = arr.length;
    int n = arr.length;
    int n = arr.length;
    int x = 1;
    int x = 1;
    int x = 1;
    int i = 0;
    int i = 0;
    int i = 0;
    while (i<n) {
    while (i<n) {
    while (i<n) {
        x = x * arr[i];
        x = x * arr[i];
        x = x * arr[i];
        i++;
        i++;
        i++;
    }
    }
    }
    return x;
```

 return x;
    ```
    return x;
```

2 }

```
```

2 }

```
```

Finding the largest element of the array in three different ways:
}

```
```

int largest3(int[] arr) {

```
int largest3(int[] arr) {
    sort(arr);
    sort(arr);
    if (arr.length == 0) {
    if (arr.length == 0) {
        return 0;
        return 0;
    } else {
    } else {
        int last = arr[arr.length - 1];
        int last = arr[arr.length - 1];
        return last;
        return last;
    }
    }
}
```

```
```

int largest1(int[] arr) {

```
```

int largest1(int[] arr) {
int n = arr.length;
int n = arr.length;
int max = 0;
int max = 0;
for (int i=0; i<n; i++) {
for (int i=0; i<n; i++) {
bool largest = true;
bool largest = true;
for (int j=0; j<n; j++) {
for (int j=0; j<n; j++) {
if}(\operatorname{arr[i]}<\operatorname{arr[j])
if}(\operatorname{arr[i]}<\operatorname{arr[j])
largest = false;
largest = false;
}
}
if (largest)
if (largest)
max = arr[i];
max = arr[i];
}
}
return max;

```
    return max;
```

In largest3 assume that sort(arr) is in $\mathcal{O}(n \log n)$.

An algorithm which modifies the last value in the array:

```
```

void modify(int[] arr) {

```
```

void modify(int[] arr) {
if (arr.length == 0)
if (arr.length == 0)
throw Exception;
throw Exception;
int last = arr[arr.length - 1];
int last = arr[arr.length - 1];
if (last < 0) {
if (last < 0) {
last = -last;
last = -last;
}
}
arr[arr.length - 1] = last;
arr[arr.length - 1] = last;
}

```
```

}

```
```

```
int largest2(int[] arr) {
    int n = arr.length;
    int max = 0;
    if (arr.length == 0) {
        return 0;
    } else {
        max = arr [0];
        for (int i=0; i<n; i++) {
            if (arr[i] > max)
                max = arr[i];
        }
        return max;
    }
}
```

To which complexity classes do those algorithms belong? Possible answers $\mathcal{O}(1)$, $\mathcal{O}(n), \mathcal{O}(n \log n), \mathcal{O}\left(n^{2}\right)$.

| Procedure | Complexity Class |
| :---: | :---: |
| product | |
| modify | |
| largest1 | |
| largest2 | |
| largest3 | |

Hint: To start with, try what happens if you call product (arr) with arr = [3, 4, 1, 12, 3]. How many steps will it take? And what if arr $=[3,4,1,12,3,1,2,33]$? Try the same strategy for the other algorithms as well.

2 Comparison of complexity classes

If the number of steps is smaller than $7 n^{2}+2$ then it is also smaller than $7 n^{3}+2$. This is because, for n getting larger and larger, the number n^{3} grows faster than n^{2}. Moreover, the constants 7 and 2 can be replaced by any other constants and so any algorithm which is in $\mathcal{O}\left(n^{2}\right)$ is also in $\mathcal{O}\left(n^{3}\right)$. This justifies that we can see \mathcal{O} to mean "proportional or less".

Example: If an algorithm takes less than $21 n^{3}+6 n+12$ steps then it is in $\mathcal{O}\left(n^{3}\right)$ because the number of steps $\leq 21 n^{3}+6 n+12 \leq 21 n^{3}+6 n^{3}+12=27 n^{3}+12$.

Indicate to which complexity class the algorithm belongs based on the number of steps it takes:

| number of steps | $\mathcal{O}(1)$ | $\mathcal{O}(n)$ | $\mathcal{O}\left(n^{2}\right)$ | $\mathcal{O}\left(n^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | \checkmark | \checkmark | \checkmark | \checkmark |
| $\leq n$ | \mathbf{x} | \checkmark | \checkmark | \checkmark |
| $\leq n^{2}$ | \mathbf{x} | \mathbf{x} | \checkmark | \checkmark |
| ≤ 341243 | | | | |
| $\leq 25 n+72$ | | | | |
| $\leq n^{2}+n$ | | | | |
| $\leq n^{3}+n^{2}+n$ | | | | |
| $\leq 12+n \times(34+n)$ | | | | |
| $\leq n^{3}+4 \times(1+31 n+4 n)$ | | | | |
| $\leq n \times(3 n+n \times(83+n))$ | | | | |
| $\leq n^{5}$ | | | | |
| $\leq 2^{n}$ | \boldsymbol{x} | \boldsymbol{x} | \boldsymbol{x} | \boldsymbol{x} |

3 Exponentials and Logarithms

Recall that, for a number a and a positive integer n, we defined

$$
a^{n}=a \times a \times \cdots \times a(\text { repeated } n \text { times }), \quad a^{-n}=\frac{1}{a^{n}} \quad \text { and } \quad a^{1 / n}=\sqrt[n]{a}
$$

We also defined $\log _{a} b$ to be the value c such that $a^{c}=b$. Solve the following:

1. $2^{2}=?, 3^{2}=?, 4^{2}=?, 5^{2}=$?
2. $2^{3}=?, 3^{3}=?, 4^{3}=?, 5^{3}=$?
3. $4^{3}=?, 4^{-2}=?, 4^{1 / 2}=?, 8^{1 / 3}=$?
4. For which n is $\frac{16}{2^{n}}=1$? And when is $\frac{30}{2^{n}} \leq 1$? What is the ceiling $\left\lceil\log _{2} 30\right\rceil$?
5. $4^{3 / 2}=?, 5^{31} / 5^{28}=?,(\sqrt[2]{3})^{6}=$?
6. $\log _{3} 27=?, \log _{5} \sqrt[3]{5}=?, \log _{2} \sqrt[3]{4}=$?
