
Exercise Sheet, Week 3

1 Determining the time complexity

The running time of an algorithm usually grows in proportion to the size of the input. To an
algorithm, we assign a complexity class which determines the speed of such growth. Let’s say that
the size of the input is n (e.g. an array consisting of n elements). Then, an algorithm which takes
≤ 4n + 3123 steps is in O(n).

When determining the complexity class, we strip away the (leading) constants. For example,
algorithms taking ≤ 23492n, ≤ 31n + 10, or ≤ 2n + 1030 steps are all in O(n). In general, if the
number of steps is less than or equal to an+b, for some constants a and b, then the algorithm is in
O(n). Similarly, the algorithms which need ≤ an2 + b steps belong to O(n2), or with ≤ a log n+ b
steps belong to O(log n), etc.

An algorithm which multiplies all elements
in the array:

1 int product ( int [ ] a r r ) {
2 int n = arr . l ength ;
3 int x = 1 ;
4 int i = 0 ;
5

6 while ( i<n) {
7 x = x * ar r [ i ] ;
8 i++;
9 }

10

11 return x ;
12 }

An algorithm which modifies the last value
in the array:

1 void modify ( int [ ] a r r ) {
2 i f ( a r r . l ength == 0)
3 throw Exception ;
4

5 int l a s t = ar r [ a r r . l ength − 1 ] ;
6

7 i f ( l a s t < 0) {
8 l a s t = − l a s t ;
9 }

10

11 ar r [ a r r . l ength − 1 ] = l a s t ;
12 }

Finding the largest element of the array in three different ways:

1 int l a r g e s t 1 ( int [ ] a r r ) {
2 int n = arr . l ength ;
3 int max = 0 ;
4

5 for ( int i =0; i<n ; i++) {
6 bool l a r g e s t = true ;
7

8 for ( int j =0; j<n ; j++) {
9 i f ( a r r [ i ] < ar r [ j ] )

10 l a r g e s t = fa l se ;
11 }
12

13 i f ( l a r g e s t )
14 max = arr [ i ] ;
15 }
16

17 return max ;
18 }

1 int l a r g e s t 2 ( int [ ] a r r ) {
2 int n = arr . l ength ;
3 int max = 0 ;
4

5 i f ( a r r . l ength == 0) {
6 return 0 ;
7

8 } else {
9 max = arr [ 0 ] ;

10

11 for ( int i =0; i<n ; i++) {
12 i f ( a r r [ i ] > max)
13 max = arr [ i ] ;
14 }
15

16 return max ;
17 }
18 }

1 int l a r g e s t 3 ( int [ ] a r r ) {
2 s o r t ( a r r ) ;
3

4 i f ( a r r . l ength == 0) {
5 return 0 ;
6 } else {
7 int l a s t = ar r [ a r r . l ength − 1 ] ;
8 return l a s t ;
9 }

10 }

In largest3 assume that sort(arr) is

in O(n log n).

To which complexity classes do those al-
gorithms belong? Possible answers O(1),
O(n), O(n log n), O(n2).

Procedure Complexity Class

product

modify

largest1

largest2

largest3

1



Hint: To start with, try what happens if you call product(arr) with arr = [3, 4, 1, 12, 3] .

How many steps will it take? And what if arr = [3, 4, 1, 12, 3, 1, 2, 33] ? Try the same
strategy for the other algorithms as well.

2 Comparison of complexity classes

If the number of steps is smaller than 7n2 + 2 then it is also smaller than 7n3 + 2. This is because,
for n getting larger and larger, the number n3 grows faster than n2. Moreover, the constants 7
and 2 can be replaced by any other constants and so any algorithm which is in O(n2) is also in
O(n3). This justifies that we can see O to mean “proportional or less”.

Example: If an algorithm takes less than 21n3 + 6n + 12 steps then it is in O(n3) because

the number of steps ≤ 21n3 + 6n + 12 ≤ 21n3 + 6n3 + 12 = 27n3 + 12.

Indicate to which complexity class the algorithm belongs based on the number of steps it takes:

number of steps O(1) O(n) O(n2) O(n3)

1

≤ n 7

≤ n2 7 7

≤ 341243

≤ 25n + 72

≤ n2 + n

≤ n3 + n2 + n

≤ 12 + n× (34 + n)

≤ n3 + 4× (1 + 31n + 4n)

≤ n× (3n + n× (83 + n))

≤ n5

≤ 2n 7 7 7 7

3 Exponentials and Logarithms

Recall that, for a number a and a positive integer n, we defined

an = a× a× · · · × a (repeated n times), a−n =
1

an
and a1/n = n

√
a.

We also defined loga b to be the value c such that ac = b. Solve the following:

1. 22 = ? , 32 = ? , 42 = ? , 52 = ?

2. 23 = ? , 33 = ? , 43 = ? , 53 = ?

3. 43 = ? , 4−2 = ? , 41/2 = ? , 81/3 = ?

4. For which n is 16
2n = 1? And when is 30

2n ≤ 1? What is the ceiling dlog2 30e?

5. 43/2 = ? , 531/528 = ? , ( 2
√

3)6 = ?

6. log3 27 = ? , log5
3
√

5 = ? , log2
3
√

4 = ?
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