An Invitation to Game Comonads, day 4: Logical Equivalences ^a

Tomáš Jakl

7 August 2025

ESSLLI 2025, Bochum

the European Union

^aThis project has received funding from the EU's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101111373.

Funded by

Recap and motivation

On Day 2, we saw how games provide syntax-free characterisations of various logical equivalences (respectively, preorders) of the form

$$\equiv^{\mathscr{L}}$$
 (respectively, $\Rightarrow^{\mathscr{L} \cap PP}$)

for an appropriate choice of the logic fragment $\mathscr{L}.$

We then defined comonads

$$\mathbb{E}_k$$
, \mathbb{P}_k , and \mathbb{M}_k

based on these games (by considering the set of plays) and showed how to encode strategies in the forth-only games as $G(A) \to B$ resp. $A \to_G B$.

For our logic fragments, we obtained

$$A \Rightarrow^{\mathcal{L} \cap PP} B \iff A \rightarrow_{G} B$$

From Kleisli to Eilenberg-Moore

The morphisms $A \rightarrow_G B$ form the Kleisli category K(G).

Question:

Can we capture other logical equivalences within K(G)?

For instance, what does isomorphism in K(G) correspond to? (We answer that on Day 5.)

In order to characterise the equivalences $\equiv^{\mathscr{L}}$, w.r.t. the full fragments

$$FO_k$$
, FO^k and ML_k ,

corresponding to back-and-forth games, we move to the Eilenberg–Moore category $\mathbf{EM}(G)$ of coalgebras.

Eilenberg–Moore coalgebras as forest-ordered structures

Yesterday, we saw that the Eilenberg-Moore categories

$$\mathsf{EM}(\mathbb{E}_k),\;\mathsf{EM}(\mathbb{P}_k)\;\mathsf{and}\;\mathsf{EM}(\mathbb{M}_k)$$

can be identified with categories whose <u>objects</u> are structures equipped with an appropriate compatible forest order (and a pebbling function in the case of \mathbb{P}_k).

The morphisms are the homomorphisms that preserve the forest orders (and also the pebbling functions in the case of \mathbb{P}_k).

We use this concrete equivalent description of $\mathbf{EM}(\mathbb{E}_k)$ to characterise \equiv^{FO_k} .

Cofree coalgebras

For any comonad $(G, \varepsilon, (\cdot)^*)$ on $\mathscr C$ and $A \in \mathrm{Ob}(\mathscr C)$,

$$(G(A), G(A) \xrightarrow{\delta_A} G(G(A)))$$

is a G-coalgebra!

Cofree coalgebras

For any comonad $(G, \varepsilon, (\cdot)^*)$ on $\mathscr C$ and $A \in \mathrm{Ob}(\mathscr C)$,

$$(G(A), G(A) \xrightarrow{\delta_A} G(G(A)))$$

is a G-coalgebra!

Example

For $G = \mathbb{E}_k$ and a σ -structure A, the compatible forest order \leq on $\mathbb{E}_k(A)$ is

$$u \le w \iff u \text{ is a prefix of } w$$

For $G = \mathbb{P}_k$, the forest order \leq is as above and the pebble function $p \colon \mathbb{P}_k(A) \to \{1, \dots, k\}$ is defined by

$$p([(p_1, a_1), \ldots, (p_n, a_n)]) = p_n$$

Cofree functors

For any comonad $(G, \varepsilon, (\cdot)^*)$ on $\mathscr C$ there is a functor

$$F^G \colon \mathscr{C} \to \mathbf{EM}(G)$$

which sends

- an object $A \in \mathscr{C}$ to $(G(A), G(A) \xrightarrow{\delta_A} G(G(A)))$, and
- ullet a morphism $f\colon A o B$ in $\mathscr C$ to $G(f)\colon (G(A),\delta_A) o (G(B),\delta_B).$

Exercise

Verify that F^G is a functor for $G = \mathbb{E}_k, \mathbb{P}_k$ and/or \mathbb{M}_k , from the concrete descriptions of $\mathbf{EM}(G)$.

Cofree coalgebras and logic

Main idea:

Describe
$$A \equiv^{\mathscr{L}} B$$
 by comparing the cofree coalgebras $F^G(A)$ and $F^G(B)$ (in the category $\mathbf{EM}(G)$).

Path embeddings

An object (A, \leq) of $EM(\mathbb{E}_k)$ is a **path** if \leq is a (finite) linear order. Paths are noted by $P, Q, R \dots$

An object (A, \leq) of $\mathbf{EM}(\mathbb{E}_k)$ is a **path** if \leq is a (finite) linear order. Paths are noted by $P, Q, R \ldots$

An arrow in $f: (A, \leq) \to (B, \leq)$ in **EM**(\mathbb{E}_k) is an **embedding** if it is an embedding as a σ -homomorphism, that is:

- f is injective, and
- for any n-ary $R \in \sigma$,

$$(a_1,\ldots,a_n)\in R^A\iff (f(a_1),\ldots,f(a_n))\in R^B.$$

An object (A, \leq) of $EM(\mathbb{E}_k)$ is a **path** if \leq is a (finite) linear order. Paths are noted by $P, Q, R \ldots$

An arrow in $f: (A, \leq) \to (B, \leq)$ in **EM**(\mathbb{E}_k) is an **embedding** if it is an embedding as a σ -homomorphism, that is:

- f is injective, and
- for any n-ary $R \in \sigma$,

$$(a_1,\ldots,a_n)\in R^A\iff (f(a_1),\ldots,f(a_n))\in R^B.$$

A path embedding is an embedding

$$m: P \rightarrow (B, \leq)$$

where P is a path.

An object (A, \leq) of $EM(\mathbb{E}_k)$ is a **path** if \leq is a (finite) linear order. Paths are noted by $P, Q, R \ldots$

An arrow in $f: (A, \leq) \to (B, \leq)$ in **EM**(\mathbb{E}_k) is an **embedding** if it is an embedding as a σ -homomorphism, that is:

- f is injective, and
- for any n-ary $R \in \sigma$,

$$(a_1,\ldots,a_n)\in R^A\iff (f(a_1),\ldots,f(a_n))\in R^B.$$

A path embedding is an embedding

$$m: P \rightarrowtail (B, \leq)$$

where P is a path. Define $\mathbb{P}X$ as the collection of all path embeddings into X. (let us not worry about set-theoretic issues now...)

Consider a morphism

$$m: P \to F^{\mathbb{E}_k}(A)$$

where P consists of elements $p_1 \prec \cdots \prec p_n$.

Consider a morphism

$$m \colon P \to F^{\mathbb{E}_k}(A)$$

where P consists of elements $p_1 \prec \cdots \prec p_n$. Because m is a forest morphism, there is a list $[a_1, \ldots, a_n] \in \mathbb{E}_k(A)$ such that

$$\forall i \in \{1,\ldots,n\}, \quad m(p_i) = [a_1,\ldots,a_i].$$

Consider a morphism

$$m: P \to F^{\mathbb{E}_k}(A)$$

where P consists of elements $p_1 \prec \cdots \prec p_n$. Because m is a forest morphism, there is a list $[a_1, \ldots, a_n] \in \mathbb{E}_k(A)$ such that

$$\forall i \in \{1,\ldots,n\}, \quad m(p_i) = [a_1,\ldots,a_i].$$

Example

What if, furthermore,

$$m: P \rightarrowtail F^{\mathbb{E}_k}(A)$$

is a path embedding?

Consider a morphism

$$m: P \to F^{\mathbb{E}_k}(A)$$

where P consists of elements $p_1 \prec \cdots \prec p_n$. Because m is a forest morphism, there is a list $[a_1, \ldots, a_n] \in \mathbb{E}_k(A)$ such that

$$\forall i \in \{1,\ldots,n\}, \quad m(p_i) = [a_1,\ldots,a_i].$$

Example

What if, furthermore,

$$m: P \rightarrowtail F^{\mathbb{E}_k}(A)$$

is a path embedding?

Also, the relations on P and on $\{a_1, \ldots, a_n\}$ agree!

Exercise

Let

$$m: P \rightarrowtail F^{\mathbb{E}_k}(A)$$
 and $n: P \rightarrowtail F^{\mathbb{E}_k}(B)$

be path embeddings. Show that, if their images contain only $\underline{\text{non-repeating}}$ sequences, then \underline{m} and \underline{n} induce a partial isomorphism between A and B.

Partial correspondence

Question: What if we drop the assumption on non-repetition?

$$m: P \rightarrowtail F^{\mathbb{E}_k}(A)$$
 and $n: P \rightarrowtail F^{\mathbb{E}_k}(B)$

Partial correspondence

Question: What if we drop the assumption on non-repetition?

$$m \colon P \rightarrowtail F^{\mathbb{E}_k}(A)$$
 and $n \colon P \rightarrowtail F^{\mathbb{E}_k}(B)$

Answer: These introduce a **partial correspondence** between A and B i.e.

- 1. For all $i, j \in \{1, \dots, k\}$, $a_i = a_j \iff b_i = b_j$.
- 2. For all *n*-ary relations R and all $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

$$(a_{i_1},\ldots,a_{i_n})\in R^A\iff (b_{i_1},\ldots,b_{i_n})\in R^B.$$

Games in the categories of coalgebras

Given any two $X, Y \in \mathbf{EM}(\mathbb{E}_k)$, we define a **back-and-forth** game \mathscr{G} played by Spoiler and Duplicator between X and Y.

Given any two $X, Y \in \mathbf{EM}(\mathbb{E}_k)$, we define a **back-and-forth** game \mathscr{G} played by Spoiler and Duplicator between X and Y.

Whenever $m: P \rightarrow X$ and $m': Q \rightarrow X$ are path embeddings, we say that m' covers m, written $m \prec m'$, if

- |Q| = |P| + 1 and
- there is an embedding $P \rightarrow Q$ making the following diagram commute.

For all $X, Y \in \mathbf{EM}(\mathbb{E}_k)$, the game \mathscr{G} is defined as follows:

• Positions in the game \mathscr{G} are pairs $(m, n) \in \mathbb{P} X \times \mathbb{P} Y$.

For all $X, Y \in \mathbf{EM}(\mathbb{E}_k)$, the game \mathscr{G} is defined as follows:

- Positions in the game \mathscr{G} are pairs $(m, n) \in \mathbb{P} X \times \mathbb{P} Y$.
- The winning relation

$$\mathscr{W}(X,Y) \subseteq \mathbb{P} X \times \mathbb{P} Y$$

consists of the pairs $(m: P \rightarrow X, n: Q \rightarrow Y)$ such that P = Q.

For all $X, Y \in \mathbf{EM}(\mathbb{E}_k)$, the game \mathscr{G} is defined as follows:

- Positions in the game \mathscr{G} are pairs $(m, n) \in \mathbb{P} X \times \mathbb{P} Y$.
- The winning relation

$$\mathscr{W}(X,Y) \subseteq \mathbb{P} X \times \mathbb{P} Y$$

consists of the pairs $(m: P \rightarrow X, n: Q \rightarrow Y)$ such that P = Q.

• The initial position is (\bot_X, \bot_Y) , where

$$\perp_X : \emptyset \rightarrowtail X \text{ and } \perp_Y : \emptyset \rightarrowtail Y$$

are the unique functions from the empty poset.

At the start of each round, the position is specified by

$$(m, n) \in \mathbb{P} X \times \mathbb{P} Y$$

- Then, either Spoiler chooses some $m' \succ m$ and Duplicator must respond with some $n' \succ n$,
- or Spoiler chooses some n' > n and Duplicator must respond with m' > m.

At the start of each round, the position is specified by

$$(m, n) \in \mathbb{P} X \times \mathbb{P} Y$$

- Then, either Spoiler chooses some $m' \succ m$ and Duplicator must respond with some $n' \succ n$,
- or Spoiler chooses some n' > n and Duplicator must respond with m' > m.

- Duplicator wins the round if they are able to respond and the new position is in $\mathcal{W}(X, Y)$.
- Duplicator wins the game if they have a strategy that is winning after j rounds, for all $j \ge 1$.
 - ... since paths in $\mathbf{EM}(\mathbb{E}_k)$ have length $\leq k$, the game terminates after $\leq k$ rounds!

The game $\mathscr G$ and its logical counterpart

Assume the game \mathscr{G} is played between cofree coalgebras $X = F^{\mathbb{E}_k}(A)$ and $Y = F^{\mathbb{E}_k}(B)$. After k rounds, let

$$m_1 \prec \cdots \prec m_k \in \mathbb{P} X$$
 and $n_1 \prec \cdots \prec n_k \in \mathbb{P} Y$

be the path embeddings that have been played. Their images yield

$$[a_1] \sqsubseteq \cdots \sqsubseteq [a_1, \ldots, a_k] \in \mathbb{E}_k A$$
 and $[b_1] \sqsubseteq \cdots \sqsubseteq [b_1, \ldots, b_k] \in \mathbb{E}_k B$.

The game $\mathscr G$ and its logical counterpart

Assume the game \mathscr{G} is played between cofree coalgebras $X = F^{\mathbb{E}_k}(A)$ and $Y = F^{\mathbb{E}_k}(B)$. After k rounds, let

$$m_1 \prec \cdots \prec m_k \in \mathbb{P} X$$
 and $n_1 \prec \cdots \prec n_k \in \mathbb{P} Y$

be the path embeddings that have been played. Their images yield

$$[a_1] \sqsubseteq \cdots \sqsubseteq [a_1, \ldots, a_k] \in \mathbb{E}_k A$$
 and $[b_1] \sqsubseteq \cdots \sqsubseteq [b_1, \ldots, b_k] \in \mathbb{E}_k B$.

Lemma

For any
$$i\in\{1,\ldots,k\}$$
, $(m_i,n_i)\in \mathscr{W}(X,Y)$ iff
$$\{(a_i,b_i)\mid i=1,\ldots,k\}$$

is a partial correspondence between A and B.

The game $\mathscr G$ and its logical counterpart

Proposition

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the game \mathscr{G} played between $F^{\mathbb{E}_k}(A)$ and $F^{\mathbb{E}_k}(B)$.
- 2. $A \equiv^{\mathrm{FO}_k^-} B$. I.e., for first-order sentences φ without equality and with quantifier rank $\leq k$, $A \vDash \varphi \iff B \vDash \varphi$.

The game ${\mathscr G}$ and its logical counterpart

Proposition

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the game \mathscr{G} played between $F^{\mathbb{E}_k}(A)$ and $F^{\mathbb{E}_k}(B)$.
- 2. $A \equiv^{\mathrm{FO}_k^-} B$. I.e., for first-order sentences φ without equality and with quantifier rank $\leq k$, $A \vDash \varphi \iff B \vDash \varphi$.

Questions:

- How to recover equivalence with respect to FO_k ?
- The previous result relies on a notion of game in the category $\mathbf{EM}(\mathbb{E}_k)$. Can we describe it in a more structural way?

Open morphisms and bisimulations

A morphism $f: X \to Y$ in $EM(\mathbb{E}_k)$ is **open** if it satisfies the following path-lifting property: Given any commutative square

with P, Q paths, there is $Q \rightarrow X$ making the triangles commute.

Open morphisms and bisimulations

A morphism $f: X \to Y$ in $EM(\mathbb{E}_k)$ is **open** if it satisfies the following path-lifting property: Given any commutative square

with P, Q paths, there is $Q \rightarrow X$ making the triangles commute.

Further, $f: X \to Y$ is a **pathwise embedding** if, for all path embeddings $m: P \rightarrowtail X$, the composite $f \circ m$ is a path embedding.

Open morphisms and bisimulations

A morphism $f: X \to Y$ in $EM(\mathbb{E}_k)$ is **open** if it satisfies the following path-lifting property: Given any commutative square

with P, Q paths, there is $Q \rightarrow X$ making the triangles commute.

Further, $f: X \to Y$ is a **pathwise embedding** if, for all path embeddings $m: P \rightarrowtail X$, the composite $f \circ m$ is a path embedding.

A **bisimulation** between objects X, Y of $EM(\mathbb{E}_k)$ is a span of open pathwise embeddings

$$X \leftarrow Z \rightarrow Y$$
.

If such a bisimulation exists, we say that X and Y are **bisimilar**.

Games vs bisimulations

Theorem (Shah-Abramsky, Jakl-Reggio)

The following are equivalent for all objects X, Y of $EM(\mathbb{E}_k)$:

- 1. Duplicator has a winning strategy in the game \mathscr{G} played between X and Y.
- 2. X and Y are bisimilar.
- 3. X and Y are behaviourally equivalent (OPEs $X \rightarrow \cdot \leftarrow Y$)

Sketch of proof: See whiteboard.

Games vs bisimulations

Theorem (Shah-Abramsky, Jakl-Reggio)

The following are equivalent for all objects X, Y of $EM(\mathbb{E}_k)$:

- 1. Duplicator has a winning strategy in the game \mathscr{G} played between X and Y.
- 2. X and Y are bisimilar.
- 3. X and Y are behaviourally equivalent (OPEs $X \rightarrow \cdot \leftarrow Y$)

Sketch of proof: See whiteboard.

Corollary

The following statements are equivalent for all structures A, B:

- 1. $F^{\mathbb{E}_k}(A)$ and $F^{\mathbb{E}_k}(B)$ are bisimilar.
- 2. $A \equiv^{FO_k^-} B$.

The other comonads...

- Similar results hold for the comonads \mathbb{P}_k and \mathbb{M}_k . (In the former case, we restrict to finite structures.)
- For \mathbb{M}_k , since there is no equality symbol in the logic, we get a characterisation of \equiv^{ML_k} in terms of bisimilarity in $\mathbf{EM}(\mathbb{M}_k)$.
- We shall now look at how to "add" the equality symbol in the case of \mathbb{E}_k (and \mathbb{P}_k). That is, how to go

from
$$\equiv^{\mathrm{FO}_k^-}$$
 to \equiv^{FO_k} .

/-relations

Consider a *fresh* binary relation symbol / and define the signature

$$\sigma^I := \sigma \cup \{I\}.$$

Denote the category of σ^I -structures and their homomorphisms by

$$Str(\sigma^I)$$
.

/-relations

Consider a *fresh* binary relation symbol / and define the signature

$$\sigma^I := \sigma \cup \{I\}.$$

Denote the category of σ^I -structures and their homomorphisms by

$$Str(\sigma')$$
.

There is a functor

$$t \colon \mathsf{Str}(\sigma) \to \mathsf{Str}(\sigma^I)$$

that views a σ -structure A as a σ^I -structure where I^A is the identity relation on A.

/-relations

Consider a *fresh* binary relation symbol / and define the signature

$$\sigma^I := \sigma \cup \{I\}.$$

Denote the category of σ^I -structures and their homomorphisms by

$$Str(\sigma')$$
.

There is a functor

$$t : \mathsf{Str}(\sigma) \to \mathsf{Str}(\sigma^I)$$

that views a σ -structure A as a σ^I -structure where I^A is the identity relation on A.

Since \mathbb{E}_k was defined *uniformly* for all signatures, there is an Ehrenfeucht–Fraïssé comonad \mathbb{E}_k^I on $\mathbf{Str}(\sigma^I)$.

Exercise

Characterise pairs of path embeddings

$$m: P \rightarrowtail F^{\mathbb{E}'_k}(\mathbf{t}A)$$
 $n: P \rightarrowtail F^{\mathbb{E}'_k}(\mathbf{t}B)$

in $\mathbf{EM}(\mathbb{E}_k^I)$.

Exercise

Characterise pairs of path embeddings

$$m: P \rightarrowtail F^{\mathbb{E}'_k}(\mathbf{t}A)$$
 $n: P \rightarrowtail F^{\mathbb{E}'_k}(\mathbf{t}B)$

in $\mathbf{EM}(\mathbb{E}_k^I)$.

They correspond to partial isomorphisms!

Equivalence in FO_k with equality

$$\mathsf{Str}(\sigma) \xrightarrow{\mathsf{t}} \mathsf{Str}(\sigma^I) \xrightarrow{F^{\mathbb{E}_k^I}} \mathsf{EM}(\mathbb{E}_k^I)$$

Theorem

The following statements are equivalent for all σ -structures A,B:

- 1. $F^{\mathbb{E}'_k}(\mathbf{t}(A))$ and $F^{\mathbb{E}'_k}(\mathbf{t}(B))$ are bisimilar.
- 2. $A \equiv^{\mathrm{FO}_k} B$.

Equivalence in FO_k with equality

$$\underbrace{\overset{\mathbb{E}'_k}{\bigcap}}_{\text{Str}(\sigma)} \xrightarrow{\mathsf{t}} \mathsf{Str}(\sigma^I) \xrightarrow{\mathsf{F}^{\mathbb{E}'_k}} \mathsf{EM}(\mathbb{E}'_k)$$

Theorem

The following statements are equivalent for all σ -structures A,B:

- 1. $F^{\mathbb{E}'_k}(\mathbf{t}(A))$ and $F^{\mathbb{E}'_k}(\mathbf{t}(B))$ are bisimilar.
- 2. $A \equiv^{\mathrm{FO}_k} B$.

Proof.

By the characterisation of \equiv^{FO_k} , item 1 holds iff

$$\mathbf{t}(A) \vDash \varphi \iff \mathbf{t}(B) \vDash \varphi$$

for all $\varphi \in FO_{k}^{-}(\sigma^{I})$. But this is equivalent to item 2.

Generalisations

- The same strategy applies to FO^k, the k-variable logic with equality (provided we restrict to finite structures).
- However, the argument is essentially exactly the same!
- Question: Is there a way to make this formal?

One game to rule them all

An abstract setting (Overshoot!?)

In full generality, we only need

$$R : \mathbf{Str}(\sigma) \to \mathscr{A}$$

together with

- a choice of objects $\mathcal{P} \subseteq \mathscr{A}$ (paths) and
- a choice of monomorphisms $\rightarrowtail \subseteq \mathscr{A}$ (embeddings)

which satisfy

- $\forall X \in \mathscr{A}$, there is a minimal path embedding $\bot_X : \mathbf{0}_X \rightarrowtail X$
- f,g embeddings $\implies g \circ f$ embedding
- $g \circ f$ embedding $\implies f$ embedding

Then we can specify the game as before.

Back-and-forth (abstract) "path embedding" game

Given any two $X, Y \in \mathscr{A}$, define \mathscr{G} as before:

- Positions: $\mathbb{P} X \times \mathbb{P} Y$
- Winning relation: $\mathcal{W}(X,Y) \subseteq \mathbb{P}X \times \mathbb{P}Y$
- Initial position: (\bot_X, \bot_Y)

At position (m, n)

- Spoiler picks some $m' \ge m$ or $n' \ge n$, and
- Duplicator responds with $n' \ge n$ or $m' \ge m$, respectively.

Duplicator wins the round if $(m', n') \in \mathcal{W}(X, Y)$.

Definition

 $A \sim_{\mathscr{G}} B \iff \text{Duplicator wins the game } \mathscr{G} \text{ between } R(A) \text{ and } R(B)$

Example

Extend σ to a two-sorted signature $\sigma^+ = \sigma \cup \{I, e\}$ where e goes between the two sorts.

Define

$$\mathsf{t} \colon \mathsf{Str}(\sigma) \to \mathsf{Str}(\sigma^+)$$

where
$$\mathbf{t}(A) = (A, \mathcal{P}(A); I^A, e^A)$$
 where $e(a, S)$ iff $a \in S$.

Example

Extend σ to a two-sorted signature $\sigma^+ = \sigma \cup \{I, e\}$ where e goes between the two sorts.

Define

$$t \colon \mathsf{Str}(\sigma) \to \mathsf{Str}(\sigma^+)$$

where $\mathbf{t}(A) = (A, \mathcal{P}(A); I^A, e^A)$ where e(a, S) iff $a \in S$.

Define

$$R : \mathbf{Str}(\sigma) \xrightarrow{\mathbf{t}} \mathbf{Str}(\sigma^+) \xrightarrow{F^{\mathbb{E}_k^+}} \mathbf{EM}(\mathbb{E}_k^+)$$

Then,

$$A \equiv^{\mathrm{MSO}_k} B \iff R(A) \sim_{\mathscr{G}} R(B).$$

Similar techniques capture Description Logic.

Outlook

- Bisimilarity can be defined too!
- However, for it to capture $\sim_{\mathscr{G}}$, it is necessary to assume more.
- In particular, arboreal categories provide a convenient (synthetic) setting to think about games.
- Tomorrow (Day 5), we discuss how to abstractly capture also counting logics, and existential and positive fragments.
- In some cases, there are equality elimination results which, in a sense, tell us that working with σ -structures and σ^I -structures is the same.
- These will rely on homomorphism counting theorems.

References

Games for equality-free logic:

 E. Casanovas, P. Dellunde and R. Jansana, On Elementary Equivalence for Equality-free Logic, Notre Dame Journal of Formal Logic, vol. 37, no. 3, pp. 506–522, 1996.

Open morphisms and bisimilarity:

 S. Abramsky, N. Shah, Relating Structure and Power: Comonadic Semantics for Computational Resources, 27th EACSL Annual Conference on Computer Science Logic, pp. 2:1–2:17, 2018.

Refining classical notions introduced in:

- A. Joyal, M. Nielson, G. Winskel, Bisimulation and open maps, 8th Annual IEEE Symposium on Logic in Computer Science, pp. 418–427, 1993.
- A. Joyal, I. Moerdijk, A completeness theorem for open maps, Annals of Pure and Applied Logic, vol. 70, issue 1, pp. 51–86, 1994.

Bonus slides:

Different presentations of comonads

Natural transformations

Natural transformations are "morphisms of functors".

Given functors $F:\mathscr{C}\to\mathscr{D}$ and $F':\mathscr{C}\to\mathscr{D}$, a **natural** transformation

$$\alpha \colon F \Rightarrow F'$$
 or $\mathscr{C} \underbrace{ \downarrow \alpha}_{F'} \mathscr{D}$

is given by a collection of morphisms

$$\{F(A) \xrightarrow{\alpha_A} F'(A) \mid A \in \mathrm{Ob}(\mathscr{C})\}\$$

such that, for every $h: A \to B$ in \mathscr{C} ,

$$F(A) \xrightarrow{\alpha_A} F'(A)$$

$$F(h) \downarrow \qquad \qquad \downarrow_{F'(h)} \qquad \text{(i.e. } F'(h) \circ \alpha_A = \alpha_B \circ F(h))$$

$$F(B) \xrightarrow{\alpha_B} F'(B)$$

Example: the identity natural transformations

For any functor $F: \mathscr{C} \to \mathscr{D}$, the collection

$$\{\operatorname{id}_{F(A)}\colon F(A)\to F(A)\mid A\in\operatorname{Ob}(\mathcal{C})\}$$

is a natural transformation $id_F: F \Rightarrow F$ since

$$\begin{array}{ccc}
A & \xrightarrow{\mathrm{id}_{F(A)}} & A \\
F(f) \downarrow & & \downarrow F(f) \\
B & \xrightarrow{\mathrm{id}_{F(B)}} & B
\end{array}$$

Example: the counit natural transformation

For a comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} ,

$$\{ \varepsilon_A \colon G(A) \to A \mid A \in \mathrm{Ob}(\mathscr{C}) \}$$

is a natural transformation $\varepsilon \colon G \Rightarrow \mathrm{Id}_{\mathscr{C}}$. That is, for any $f \colon A \to B$ in \mathscr{C} , we have

$$G(A) \xrightarrow{\varepsilon_A} A$$

$$G(f) \downarrow \qquad \qquad \downarrow f$$

$$G(B) \xrightarrow{\varepsilon_B} B$$

Which follows by

$$\varepsilon_B \circ G(f) = \varepsilon_B \circ (f \circ \varepsilon_A)^* = f \circ \varepsilon_A$$

Example: the comultiplication natural transformation

For every comonad $(G, \varepsilon, (\cdot)^*)$ there is a natural transformation

$$\delta \colon G \Rightarrow GG$$

The component δ_A of δ is obtained as the coextension $\mathrm{id}_{G(A)}^*\colon G(A)\to GG(A)$ of $\mathrm{id}_{G(A)}\colon G(A)\to G(A)$.

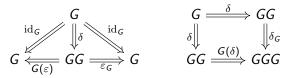
Exercise

Show that δ is a natural transformation.

Two comonad presentations

For any comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} ,

- $G: \mathscr{C} \to \mathscr{C}$ is a functor.
- $\varepsilon \colon G \Rightarrow \mathrm{Id}_{\mathscr{C}}$ is a natural transformation.
- $\delta : G \Rightarrow GG$ is a natural transformation.
- These satisfy



Fact: The presentation that we use $(G, \varepsilon, (\cdot)^*)$ can be recovered from the data (G, ε, δ) , by defining $(\cdot)^*$ as $f^* := G(f) \circ \delta$.