An Invitation to Game Comonads, day 2: Games and Game Comonads ^a

Tomáš Jakl

5 August 2025

ESSLLI 2025, Bochum

the European Union

^aThis project has received funding from the EU's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101111373.

Funded by

The What and Why of games, i

- (Finite) model theory looks at structures up to definable properties.
- Given a logic fragment \mathscr{L} (e.g. $\mathscr{L} = \mathrm{FO}^k$, FO_k , or ML_k), define the equivalence relation

$$A \equiv^{\mathscr{L}} B$$
 iff $\forall \varphi \in \mathscr{L}$. $(A \vDash \varphi \iff B \vDash \varphi)$.

- However, reasoning about $\equiv^{\mathscr{L}}$ can get convoluted, it depends on syntactic properties of \mathscr{L} .
- Games provide semantic characterisations of the syntactic equivalences $\equiv^{\mathscr{L}}$.

1

The What and Why of games, ii

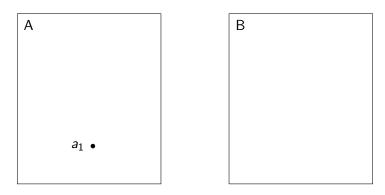
- Two players:
 - **Spoiler** aims to show that $A \not\equiv^{\mathscr{L}} B$ and
 - **Duplicator** that $A \equiv^{\mathscr{L}} B$.
- Syntactic logical resources (e.g. the k in FO_k) correspond to natural semantic resource parameters in a game, e.g.:

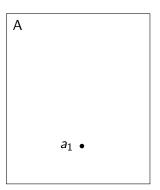
Logical resource		Game resource
quantifier rank	\leftrightarrow	number of rounds
variable count	\leftrightarrow	number of pebbles
modal depth	\leftrightarrow	number of rounds

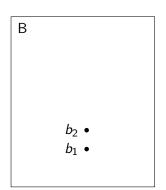
2

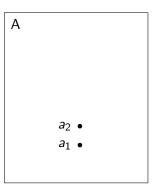
Games and bounded quantifier rank

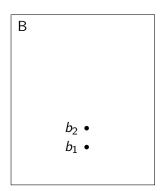
A	В

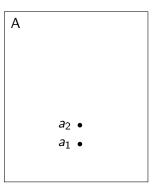


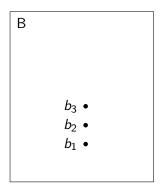


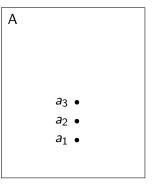


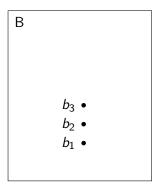


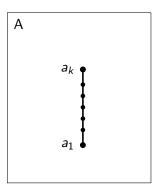


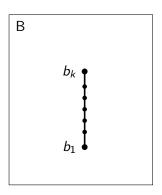












Theorem

 $A \equiv^k B$ iff Duplicator wins in the k-round E–F game.

Back-and-forth EF games formally

The (back-and-forth) Ehrenfeucht–Fraïssé game between structures *A* and *B*:

- In the i^{th} round Spoiler and Duplicator pick elements a_i, b_i as follows:
 - Spoiler chooses an element $a_i \in A$ or $b_i \in B$;
 - Duplicator responds by picking an element b_i or a_i in the other structure.
- Duplicator wins after k rounds if $\{(a_i, b_i) \mid i = 1, ..., k\}$ is a **partial isomorphism** between A and B.

Back-and-forth EF games formally

The (back-and-forth) Ehrenfeucht–Fraïssé game between structures *A* and *B*:

- In the i^{th} round Spoiler and Duplicator pick elements a_i, b_i as follows:
 - Spoiler chooses an element $a_i \in A$ or $b_i \in B$;
 - Duplicator responds by picking an element b_i or a_i in the other structure.
- Duplicator wins after k rounds if $\{(a_i, b_i) \mid i = 1, ..., k\}$ is a **partial isomorphism** between A and B.
- 1. For all $i, j \in \{1, \dots, k\}$, $a_i = a_j \iff b_i = b_j$.
- 2. For all relation symbols R of arity n and all $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

$$(a_{i_1},\ldots,a_{i_n})\in R^A\iff (b_{i_1},\ldots,b_{i_n})\in R^B.$$

Back-and-forth EF games and logic

Theorem (Ehrenfeucht & Fraissé, 1954 and 1961)

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round back-and-forth Ehrenfeucht-Fraissé game between A and B.
- 2. $A \equiv^{FO_k} B$. That is, for all first-order sentences φ with quantifier rank at most k, $A \models \varphi \iff B \models \varphi$.

Exercise

Let $A=(\mathbb{N},<)$ and $B=(\{1,\ldots,5\},<)$. Does Duplicator have a winning strategy in the 2-round back-and-forth EF game?

Back-and-forth EF games and logic

Theorem (Ehrenfeucht & Fraissé, 1954 and 1961)

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round back-and-forth Ehrenfeucht–Fraissé game between A and B.
- 2. $A \equiv^{FO_k} B$. That is, for all first-order sentences φ with quantifier rank at most k, $A \models \varphi \iff B \models \varphi$.

Exercise

Let $A = (\mathbb{N}, <)$ and $B = (\{1, ..., 5\}, <)$. Does Duplicator have a winning strategy in the 2-round back-and-forth EF game?

Answer: No. Bonus exercise: Find a quantifier rank 2 formula that distinguishes A and B.

Forth-only EF games

Forth-only variant of the EF game: Spoiler plays always in A and Duplicator responds in B.

- Duplicator wins after k rounds if $\{(a_i, b_i) \mid i = 1, ..., k\}$ is a **partial homomorphism** from A to B.
- 1. For all $i, j \in \{1, \dots, k\}$, $a_i = a_j \implies b_i = b_j$.
- 2. For all relation symbols R of arity n and all $i_1, \ldots, i_n \in \{1, \ldots, k\}$,

$$(a_{i_1},\ldots,a_{i_n})\in R^A \implies (b_{i_1},\ldots,b_{i_n})\in R^B.$$

6

Forth-only EF games

Forth-only variant of the EF game: Spoiler plays always in A and Duplicator responds in B.

- Duplicator wins after k rounds if $\{(a_i, b_i) \mid i = 1, ..., k\}$ is a **partial homomorphism** from A to B.
- 1. For all $i, j \in \{1, \dots, k\}$, $a_i = a_j \implies b_i = b_j$.
- 2. For all relation symbols R of arity n and all $i_1,\ldots,i_n\in\{1,\ldots,k\}$,

$$(a_{i_1},\ldots,a_{i_n})\in R^A\implies (b_{i_1},\ldots,b_{i_n})\in R^B.$$

Note: Duplicator can win the forth-only game in both directions but still lose the back-and-forth game!

Consider e.g.
$$A = (\mathbb{N}, \leq)$$
 and $B = (\{1, \dots, 5\}, \leq)$.

Forth-only EF games and logic

Theorem

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round <u>forth-only</u> Ehrenfeucht–Fraissé game played from A to B.
- 2. $A \Rightarrow^{\operatorname{PP}_k} B$. That is, for all <u>primitive positive</u> sentences φ with quantifier rank at most k, $A \models \varphi \implies B \models \varphi$.

Exercise

Show that Spoiler has a winning strategy in the 3-round forth-only EF game from $A=(\mathbb{N},<)$ to $B=(\{1,\ldots,5\},<)$.

Find a primitive positive φ with quantifier rank at most 3 such that $A \vDash \varphi$ and $B \not\vDash \varphi$.

7

The Ehrenfeucht-Fraissé comonad

Intuition:

- View games as semantic constructions in the category $Str(\sigma)$.
- Given a σ -structure A, define a new σ -structure $\mathbb{E}_k(A)$ on the set of all possible plays in A in the k-round EF game.
- This yields an 'operation':

$$\mathbb{E}_k \colon \mathsf{Str}(\sigma) \to \mathsf{Str}(\sigma)$$

Theorem

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round forth-only EF game played from A to B.
- 2. There exists a Kleisli morphism $\mathbb{E}_k(A) \to B$.

The Ehrenfeucht-Fraïssé comonad formally

For every structure A, define $\mathbb{E}_k(A)$ by:

• The universe:

$$\mathbb{E}_k(A) = \{ [a_1, \dots, a_j] \mid a_1, \dots, a_j \in A, \ 1 \le j \le k \}$$

$$\approx \text{ plays in } A$$

The Ehrenfeucht-Fraïssé comonad formally

For every structure A, define $\mathbb{E}_k(A)$ by:

• The universe:

$$\mathbb{E}_k(A) = \{[a_1, \ldots, a_j] \mid a_1, \ldots, a_j \in A, \ 1 \leq j \leq k\}$$

• The "last move" function:

$$\varepsilon_A \colon \mathbb{E}_k(A) \to A, \qquad [a_1, \ldots, a_j] \mapsto a_j$$

The Ehrenfeucht-Fraissé comonad formally

For every structure A, define $\mathbb{E}_k(A)$ by:

• The universe:

$$\mathbb{E}_k(A) = \{[a_1, \ldots, a_j] \mid a_1, \ldots, a_j \in A, \ 1 \le j \le k\}$$

• The "last move" function:

$$\varepsilon_A \colon \mathbb{E}_k(A) \to A, \qquad [a_1, \dots, a_j] \mapsto a_j$$

• Extend $\mathbb{E}_k(A)$ to a σ -structure: for an n-ary relation $R \in \sigma$, set

$$(s_1,\ldots,s_n)\in R^{\mathbb{E}_k(A)}$$

if and only if

- 1. s_1, \ldots, s_n are pairwise comparable in the prefix order, and
- 2. $(\varepsilon_A(s_1),\ldots,\varepsilon_A(s_n))\in R^A$.

Exercise

Visualise $\mathbb{E}_3 A$ where A is the following graph:

$$A = a \rightarrow b$$

Recall: The signature of graphs is just $\sigma = \{R(\cdot, \cdot)\}.$

Strategies as Kleisli morphisms: the case of \mathbb{E}_k

Theorem

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round forth-only EF game played from A to B.
- 2. There exists a homomorphism $\mathbb{E}_k(A) \to B$.

Strategies as Kleisli morphisms: the case of \mathbb{E}_k

Theorem

The following statements are equivalent for all structures A, B:

- 1. Duplicator has a winning strategy in the k-round forth-only EF game played from A to B.
- 2. There exists a homomorphism $\mathbb{E}_k(A) \to B$.

Proof.

- $1\Rightarrow 2$. A Duplicator strategy in the k-round forth-only EF game from A to B defines a function $\mathbb{E}_k(A)\to B$. The winning condition ensures that this function is a homomorphism.
- $2 \Rightarrow 1$. Fix a homomorphism $f: \mathbb{E}_k(A) \to B$ and suppose Spoiler plays a_1, \ldots, a_k . Duplicator responds with $b_i = b_j$ if $a_i = a_j$ for some j < i, or $b_i = f([a_1, \ldots, a_i])$ otherwise.

Composition of logical relations

Notice that $A \Rightarrow^{\operatorname{PP}_k} B$ and $B \Rightarrow^{\operatorname{PP}_k} C$ imply $A \Rightarrow^{\operatorname{PP}_k} C$.

Composition of logical relations

Notice that $A \Rightarrow^{\operatorname{PP}_k} B$ and $B \Rightarrow^{\operatorname{PP}_k} C$ imply $A \Rightarrow^{\operatorname{PP}_k} C$.

Strategies compose too: forth-only Duplicator winning strategies from A to B and from B to C yield a strategy from A to C.

Composition of logical relations

Notice that $A \Rightarrow^{\operatorname{PP}_k} B$ and $B \Rightarrow^{\operatorname{PP}_k} C$ imply $A \Rightarrow^{\operatorname{PP}_k} C$.

Strategies compose too: forth-only Duplicator winning strategies from A to B and from B to C yield a strategy from A to C.

But how do we compose $\mathbb{E}_k(A) \to B$ and $\mathbb{E}_k(B) \to C$?

The rest of the comonad structure

- The functions $\varepsilon_A \colon \mathbb{E}_k(A) \to A$ are homomorphisms in $\mathbf{Str}(\sigma)$.
- Reconstructing the history of Duplicator's answers:
 Each homomorphism f: E_k(A) → B induces a homomorphism

$$f^*: \mathbb{E}_k(A) \to \mathbb{E}_k(B)$$

 $[a_1, \dots, a_j] \mapsto [f([a_1]), f([a_1, a_2]), \dots, f([a_1, \dots, a_j])].$

The rest of the comonad structure

- The functions $\varepsilon_A : \mathbb{E}_k(A) \to A$ are homomorphisms in $\mathbf{Str}(\sigma)$.
- Reconstructing the history of Duplicator's answers:
 Each homomorphism f: E_k(A) → B induces a homomorphism

$$f^*: \mathbb{E}_k(A) \to \mathbb{E}_k(B)$$

 $[a_1, \dots, a_j] \mapsto [f([a_1]), f([a_1, a_2]), \dots, f([a_1, \dots, a_j])].$

These data define a **comonad** on the category $Str(\sigma)$, called the Ehrenfeucht–Fraïssé comonad.

Rather a family of comonads, indexed by the resource parameter k (number of rounds).

Comonads defined

A **comonad** (in Kleisli–Manes form) on a category $\mathscr C$ is given by:

- an object map $G : \mathrm{Ob}(\mathscr{C}) \to \mathrm{Ob}(\mathscr{C})$,
- a **counit** morphism $\varepsilon_A \colon G(A) \to A$ for every $A \in \mathrm{Ob}(\mathscr{C})$,
- a **coextension operation** associating with any morphism $f: G(A) \to B$ a morphism $f^*: G(A) \to G(B)$,

such that for all morphisms $f: G(A) \to B$ and $g: G(B) \to C$:

$$\varepsilon_A^*=\operatorname{id}_{G(A)},\ \varepsilon_B\circ f^*=f,\ (g\circ f^*)^*=g^*\circ f^*.$$

Exercise

- Check, for \mathbb{E}_k , the comonad laws:
 - 1. $\varepsilon_A^* = \mathrm{id}_{\mathbb{E}_k(A)}$
 - 2. $\varepsilon_B \circ f^* = f$
 - 3. $(g \circ f^*)^* = g^* \circ f^*$
- Observe that $A \to B$ implies $\mathbb{E}_k(A) \to B$, but not vice versa. (Btw, what is the logical reading of this?)

Games and bounded variable count

Pebble games

(Back-and-forth) k-pebble game: Players place two sets of pebbles $\{p_1, \ldots, p_k\}$ each on one of the structures A, B.

Pebble games

(Back-and-forth) k-pebble game: Players place two sets of pebbles $\{p_1, \ldots, p_k\}$ each on one of the structures A, B.

- In the i^{th} round, Spoiler places pebble p_u on an element of one of the structures.
- Duplicator places the corresponding pebble p_u on an element of the other structure.
- Duplicator wins after n rounds if the relation determined by the current placings of the pebbles is a partial isomorphism.
- Duplicator wins the k-pebble game if they have a strategy which is winning after n rounds, for all $n \ge 0$.

Note: Pebbles can be moved forever, this is an infinite game.

Pebble games and logic

Theorem

The following are equivalent for all * finite* structures A, B:

- 1. Duplicator has a winning strategy in the back-and-forth k-pebble game between A and B.
- 2. $A \equiv^{FO^k} B$. That is, for all first-order sentences φ with at most k variables, $A \vDash \varphi \iff B \vDash \varphi$.

Pebble games and logic

Theorem

The following are equivalent for all *finite* structures A, B:

- 1. Duplicator has a winning strategy in the back-and-forth k-pebble game between A and B.
- 2. $A \equiv^{FO^k} B$. That is, for all first-order sentences φ with at most k variables, $A \vDash \varphi \iff B \vDash \varphi$.

Similarly, the following are equivalent:

- 3. Duplicator has a winning strategy in the $\underline{\text{forth-only}}$ k-pebble game played from A to B.
- 4. $A \Rightarrow^{\operatorname{PP}^k} B$. That is, for all <u>primitive positive</u> sentences φ with at most k variables, $A \vDash \varphi \implies B \vDash \varphi$.

For every structure A and fixed $\mathbf{k} \coloneqq \{p_1, \dots, p_k\}$, let

• The universe:

$$\mathbb{P}_k(A) = \{ [(p_1, a_1), \dots, (p_j, a_j)] \mid p_i \in k, a_i \in A \}$$
 where p_i is the **pebble index** of move (p_i, a_i) .

For every structure A and fixed $\mathbf{k} := \{p_1, \dots, p_k\}$, let

The universe:

$$\mathbb{P}_k(A) = \{ [(p_1, a_1), \dots, (p_j, a_j)] \mid p_i \in \mathbf{k}, a_i \in A \}$$
 where p_i is the **pebble index** of move (p_i, a_i) .

• $\varepsilon_A : \mathbb{P}_k(A) \to A$, $[(p_1, a_1), \ldots, (p_j, a_j)] \mapsto a_j$.

For every structure A and fixed $\mathbf{k} \coloneqq \{p_1, \dots, p_k\}$, let

• The universe:

$$\mathbb{P}_k(A) = \{ [(p_1, a_1), \dots, (p_j, a_j)] \mid p_i \in \mathbf{k}, a_i \in A \}$$
 where p_i is the **pebble index** of move (p_i, a_i) .

- $\varepsilon_A \colon \mathbb{P}_k(A) \to A$, $[(p_1, a_1), \ldots, (p_j, a_j)] \mapsto a_j$.
- For each relation R of arity n, set $(s_1, \ldots, s_n) \in R^{\mathbb{P}_k(A)}$ iff
 - 1. s_1, \ldots, s_n are pairwise comparable in the prefix order,
 - 2. $(\varepsilon_A(s_1),\ldots,\varepsilon_A(s_n))\in R^A$,
 - 3. for all $i, j \in \{1, ..., n\}$, if s_i is a prefix of s_j , the pebble index of the last move of s_i does not appear in the suffix of s_i in s_j .

- The functions $\varepsilon_A \colon \mathbb{P}_k(A) \to A$ are homomorphisms.
- Reconstructing the history of Duplicator's answers: Each homomorphism $f: \mathbb{P}_k(A) \to B$ induces a homomorphism

$$f^*: \mathbb{P}_k(A) \to \mathbb{P}_k(B)$$

$$[(p_1, a_1), \dots, (p_j, a_j)] \mapsto [(p_1, b_1), \dots, (p_j, b_j)]$$

where $b_i := f([(p_1, a_1), \dots, (p_i, a_i)])$ for all $i = 1, \dots, j$.

- The functions $\varepsilon_A \colon \mathbb{P}_k(A) \to A$ are homomorphisms.
- Reconstructing the history of Duplicator's answers: Each homomorphism $f: \mathbb{P}_k(A) \to B$ induces a homomorphism

$$f^*\colon \mathbb{P}_k(A) o \mathbb{P}_k(B)$$

$$[(p_1,a_1),\ldots,(p_j,a_j)]\mapsto [(p_1,b_1),\ldots,(p_j,b_j)]$$
 where $b_i:=f([(p_1,a_1),\ldots,(p_i,a_i)])$ for all $i=1,\ldots,j$.

These data define a comonad on the category $Str(\sigma)$, called the pebbling comonad.

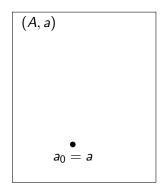
Family of comonads, indexed by the *resource parameter k* (number of pebbles)

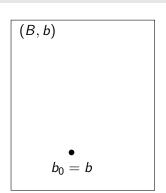
Theorem

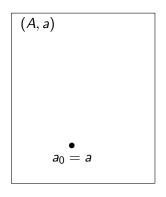
The following are equivalent for all *finite* structures A, B:

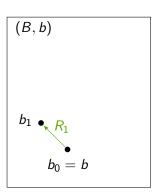
- 1. Duplicator has a winning strategy in forth-only k-pebble game from A to B.
- 2. There exists a homomorphism $\mathbb{P}_k(A) \to B$.

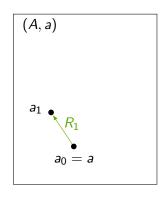
Games and bounded modal depth

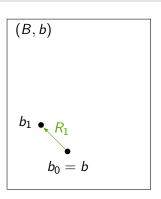


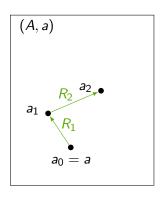


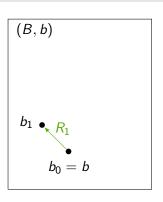


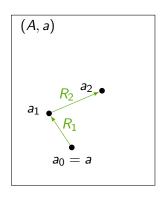


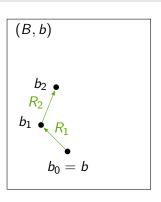


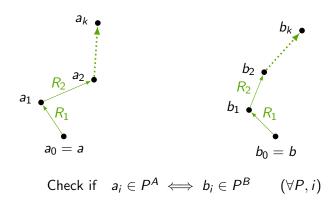


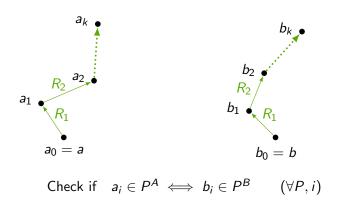












Theorem

 $(A,a) \equiv^{\mathrm{ML}_k} (B,b)$ iff Duplicator wins the k-round bisim. game.

Bisimulation games

Bisimulation game (for modal logic) between pointed Kripke structures (A, a) and (B, b):

Bisimulation games

Bisimulation game (for modal logic) between pointed Kripke structures (A, a) and (B, b):

- The initial position is $(a_0, b_0) := (a, b)$.
- In the i^{th} round, where the previous position was (a_{i-1}, b_{i-1}) , Spoiler chooses a binary relation R, one of the two structures, say A, and $a_i \in A$ such that $(a_{i-1}, a_i) \in R^A$.
- Duplicator responds with an element of the other structure, say $b_i \in B$, such that $(b_{i-1}, b_i) \in R^B$.

Bisimulation games

Bisimulation game (for modal logic) between pointed Kripke structures (A, a) and (B, b):

- The initial position is $(a_0, b_0) := (a, b)$.
- In the i^{th} round, where the previous position was (a_{i-1}, b_{i-1}) , Spoiler chooses a binary relation R, one of the two structures, say A, and $a_i \in A$ such that $(a_{i-1}, a_i) \in R^A$.
- Duplicator responds with an element of the other structure, say $b_i \in B$, such that $(b_{i-1}, b_i) \in R^B$.
- Duplicator <u>loses</u> if there is no such response available.
- Duplicator wins after k rounds if, for all unary predicates P, we have $a_i \in P^A \iff b_i \in P^B$ for all $i \in \{0, ..., k\}$.

(Bi)simulation games and logic

Theorem

The following statements are equivalent for all pointed Kripke structures (A, a), (B, b):

- 1. Duplicator has a winning strategy in the k-round bisimulation game between (A, a) and (B, b).
- 2. $A \equiv^{\mathrm{ML}_k} B$. That is, for all modal formulas φ of modal depth at most k, A, $a \models \varphi \iff B$, $b \models \varphi$.

(Bi)simulation games and logic

Theorem

The following statements are equivalent for all pointed Kripke structures (A, a), (B, b):

- 1. Duplicator has a winning strategy in the k-round bisimulation game between (A, a) and (B, b).
- 2. $A \equiv^{\mathrm{ML}_k} B$. That is, for all modal formulas φ of modal depth at most k, A, $a \models \varphi \iff B$, $b \models \varphi$.

Similarly, the following are equivalent:

i.e. forth-only bisimulations

- 3. Duplicator has a winning strategy in the k-round <u>simulation</u> game played from (A, a) to (B, b).
- 4. For all <u>primitive positive</u> modal formulas φ of modal depth at most k, A, $a \models \varphi \implies B$, $b \models \varphi$.

For every pointed Kripke structure $\mathbf{A} = (A, a)$,

• $\mathbb{M}_k(\mathbf{A})$ = the set of paths of length $\leq k$ starting from a:

$$a \xrightarrow{R_1} a_1 \xrightarrow{R_2} a_2 \to \cdots \xrightarrow{R_n} a_n$$

where R_1, \ldots, R_n are binary relations.

For every pointed Kripke structure $\mathbf{A} = (A, a)$,

• $\mathbb{M}_k(\mathbf{A}) =$ the set of paths of length $\leq k$ starting from a: $a \xrightarrow{R_1} a_1 \xrightarrow{R_2} a_2 \to \cdots \xrightarrow{R_n} a_n$

where R_1, \ldots, R_n are binary relations.

• $\varepsilon_{\mathbf{A}} : \mathbb{M}_k(\mathbf{A}) \to A$ sends a path to its last element.

For every pointed Kripke structure $\mathbf{A} = (A, a)$,

• $\mathbb{M}_k(\mathbf{A})$ = the set of paths of length $\leq k$ starting from a: $a \xrightarrow{R_1} a_1 \xrightarrow{R_2} a_2 \rightarrow \cdots \xrightarrow{R_n} a_n$

where R_1, \ldots, R_n are binary relations.

- $\varepsilon_{\mathbf{A}} : \mathbb{M}_k(\mathbf{A}) \to A$ sends a path to its last element.
- For a unary relation P, set $P^{\mathbb{M}_k(A)} = \{s \mid \varepsilon_A(s) \in P^A\}$.
- For a binary relation R, set $(s,t) \in R^{\mathbb{M}_k(A)}$ if and only if

$$t = \underbrace{a \xrightarrow{R_1} \cdots \xrightarrow{R_n} a_n}_{S} \xrightarrow{R} a_{n+1}$$

For every pointed Kripke structure $\mathbf{A} = (A, a)$,

• $\mathbb{M}_k(\mathbf{A}) = \text{the set of paths of length } \leq k \text{ starting from } a$: $a \xrightarrow{R_1} a_1 \xrightarrow{R_2} a_2 \rightarrow \cdots \xrightarrow{R_n} a_n$

where R_1, \ldots, R_n are binary relations.

- $\varepsilon_{\mathbf{A}} : \mathbb{M}_k(\mathbf{A}) \to A$ sends a path to its last element.
- For a unary relation P, set $P^{\mathbb{M}_k(A)} = \{s \mid \varepsilon_A(s) \in P^A\}$.
- For a binary relation R, set $(s,t) \in R^{\mathbb{M}_k(A)}$ if and only if

$$t = \underbrace{a \xrightarrow{R_1} \cdots \xrightarrow{R_n} a_n}_{S} \xrightarrow{R} a_{n+1}$$

• The distinguished element of $\mathbb{M}_k(\mathbf{A})$ is the trivial path (a).

- The functions $\varepsilon_{\mathbf{A}} \colon \mathbb{M}_k(\mathbf{A}) \to \mathbf{A}$ become homomorphisms of pointed Kripke structures.
- Each homomorphism $f: \mathbb{M}_k(\mathbf{A}) \to \mathbf{B}$ yields a homomorphism

$$f^*: \mathbb{M}_k(\mathbf{A}) o \mathbb{M}_k(\mathbf{B})$$
 $(a \xrightarrow{R_1} a_1 \xrightarrow{R_2} \cdots \xrightarrow{R_n} a_n) \mapsto (b \xrightarrow{R_1} b_1 \xrightarrow{R_2} \cdots \xrightarrow{R_n} b_n)$
where $b_i := f(a \xrightarrow{R_1} a_1 \xrightarrow{R_2} \cdots \xrightarrow{R_i} a_i)$.

- The functions $\varepsilon_{\mathbf{A}} \colon \mathbb{M}_k(\mathbf{A}) \to \mathbf{A}$ become homomorphisms of pointed Kripke structures.
- Each homomorphism $f: \mathbb{M}_k(\mathbf{A}) \to \mathbf{B}$ yields a homomorphism

$$f^*: \mathbb{M}_k(\mathbf{A}) o \mathbb{M}_k(\mathbf{B})$$

$$(a \xrightarrow{R_1} a_1 \xrightarrow{R_2} \cdots \xrightarrow{R_n} a_n) \mapsto (b \xrightarrow{R_1} b_1 \xrightarrow{R_2} \cdots \xrightarrow{R_n} b_n)$$
where $b_i := f(a \xrightarrow{R_1} a_1 \xrightarrow{R_2} \cdots \xrightarrow{R_i} a_i)$.

These data define a comonad, called modal comonad, on the category $\mathbf{Str}_*(\sigma)$ of pointed Kripke structures and their homomorphisms.

Family of comonads, indexed by the resource parameter k (number of rounds)

Theorem

The following statements are equivalent for all pointed Kripke structures **A**, **B**:

- 1. Duplicator has a winning strategy in the k-round simulation game played from ${\bf A}$ to ${\bf B}$.
- 2. There exists a Kleisli morphism $\mathbb{M}_k(\mathbf{A}) \to \mathbf{B}$.

The big picture

Morphisms $G(A) \to B$ in \mathscr{C} , for a comonad G, are called **Kleisli morphism**, we also denote them by $A \to_G B$.

They induce the **Kleisli category** of G, denoted K(G), such that

- $\mathrm{Ob}(\mathbf{K}(G)) = \mathrm{Ob}(\mathscr{C})$
- K(G)(A, B) consists of the Kleisli morphisms $A \rightarrow_G B$.

Morphisms $G(A) \to B$ in \mathscr{C} , for a comonad G, are called **Kleisli morphism**, we also denote them by $A \to_G B$.

They induce the **Kleisli category** of G, denoted K(G), such that

- $\mathrm{Ob}(\mathbf{K}(G)) = \mathrm{Ob}(\mathscr{C})$
- K(G)(A, B) consists of the Kleisli morphisms $A \rightarrow_G B$.
- the composition $g \bullet f : A \to_G C$ of $f : A \to_G B$ and $g : B \to_G C$ is computed in $\mathscr C$ as

Morphisms $G(A) \to B$ in \mathscr{C} , for a comonad G, are called **Kleisli morphism**, we also denote them by $A \to_G B$.

They induce the **Kleisli category** of G, denoted K(G), such that

- $\mathrm{Ob}(\mathbf{K}(G)) = \mathrm{Ob}(\mathscr{C})$
- K(G)(A, B) consists of the Kleisli morphisms $A \rightarrow_G B$.
- the composition $g \bullet f : A \to_G C$ of $f : A \to_G B$ and $g : B \to_G C$ is computed in $\mathscr C$ as

$$G(A) \xrightarrow{f^*} G(B) \xrightarrow{g} C$$

Morphisms $G(A) \to B$ in \mathscr{C} , for a comonad G, are called **Kleisli morphism**, we also denote them by $A \to_G B$.

They induce the **Kleisli category** of G, denoted K(G), such that

- $\mathrm{Ob}(\mathbf{K}(G)) = \mathrm{Ob}(\mathscr{C})$
- K(G)(A, B) consists of the Kleisli morphisms $A \rightarrow_G B$.
- the composition $g \bullet f : A \to_G C$ of $f : A \to_G B$ and $g : B \to_G C$ is computed in $\mathscr C$ as

$$G(A) \xrightarrow{f^*} G(B) \xrightarrow{g} C$$

• and the identity $A \rightarrow_G A$ is the counit $\varepsilon_A \colon G(A) \rightarrow A$.

Morphisms $G(A) \to B$ in \mathscr{C} , for a comonad G, are called **Kleisli morphism**, we also denote them by $A \to_G B$.

They induce the **Kleisli category** of G, denoted K(G), such that

- $\mathrm{Ob}(\mathbf{K}(G)) = \mathrm{Ob}(\mathscr{C})$
- K(G)(A, B) consists of the Kleisli morphisms $A \rightarrow_G B$.
- the composition $g \bullet f : A \to_G C$ of $f : A \to_G B$ and $g : B \to_G C$ is computed in $\mathscr C$ as

$$G(A) \xrightarrow{f^*} G(B) \xrightarrow{g} C$$

• and the identity $A \rightarrow_G A$ is the counit $\varepsilon_A \colon G(A) \rightarrow A$.

Exercise

Check that K(G) is a category, from the comonad axioms for G.

Logic vs Kleisli morphisms

The typical scenario:

Consequently,

$$\Rightarrow^{\mathscr{L}\cap PP} = \rightarrow_{\mathsf{G}}$$

for appropriate choices of G and \mathscr{L} .

E.g., if
$$G = \mathbb{E}_k$$
 and $\mathscr{L} = \mathrm{FO}_k \cap \mathrm{PP} = \mathrm{PP}_k$ then

$$A \Rightarrow^{\mathrm{PP}_k} B \iff A \to_{\mathbb{E}_k} B$$

Outlook

The Kleisli category K(G) arises naturally by considering winning strategies in various forth-only games.

- From a logical viewpoint K(G) captures preservation of primitive positive fragments.
- K(G) sits in a larger category of coalgebras for G that capture combinatorial parameters of structures.
 This is the topic of tomorrow's lecture.

References

Model comparison games:

- J. Barwise, On Moschovakis closure ordinals, Journal of Symbolic Logic, vol. 42, no. 2, pp. 292–296, 1997.
- N. Immerman, Upper and lower bounds for first order expressibility, Journal of Computer and System Sciences, vol. 25, no. 1, pp. 76–98, 1982.
- P. G. Kolaitis, M. Y. Vardi, On the Expressive Power of Datalog: Tools and a Case Study, Journal of Computer and System Sciences, vol. 51, no. 1, pp. 110–134, 1995.
- L. Libkin, *Elements of finite model theory*, Springer-Verlag, Berlin, 2004.

Game comonads:

- S. Abramsky, A. Dawar, P. Wang, The pebbling comonad in finite model theory, 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pp. 1–12, 2017.
- S. Abramsky, N. Shah, Relating Structure and Power: Comonadic Semantics for Computational Resources, 27th EACSL Annual Conference on Computer Science Logic, pp. 2:1–2:17, 2018.

_

Bonus slides:

Comparing logics

Exercise

Given two comonads G, H on \mathscr{C} , if there is a collection of morphisms

$$\{\alpha_A\colon G(A)\to H(A)\}_{A\in \mathrm{Ob}(\mathscr{C})}$$

show that

$$\frac{A \to_H B}{A \to_G B}$$

Exercise

Find some examples of

$$\{\alpha_A \colon G(A) \to H(A)\}_{A \in \mathrm{Ob}(\mathsf{Str}(\sigma))}$$

for our comonads \mathbb{E}_k , \mathbb{P}_k , \mathbb{M}_k .