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Note to the reader

Generally speaking, a certain degree of mathematical maturity is ex-
pected from the students. This includes familiarity with basic notions of
discrete mathematics, such as sets, functions, relations, partial orders, and
mathematical induction. Familiarity with more advanced topics in order
theory, such as Galois connections between posets, would be useful but is
not essential as the relevant notions will be recalled in the course. With
regard to logic and category theory, the prerequisites are detailed below:

Logic: Basic familiarity with (classical) propositional and first-order logics
is assumed, as well as with the concepts of syntax and semantics, as can be
found in any textbook on the subject (a self-contained, albeit terse, account
can be found in §2.1 of (Libkin, 2004)). This includes, in particular, the
ability to read a formula in first-order logic and interpret it in a model.
A similar degree of acquaintance with modal logic (corresponding roughly
to §§1.1-1.3 of (Blackburn et al., 2001)) is desirable, although the relevant
concepts will be reviewed in Chapter 1.

Category theory: Familiarity with basic notions of category theory is a
prerequisite for the course. These include the concepts of categories, func-
tors, natural transformations, isomorphisms, monics, and epics. This ma-
terial (and much more) can be found in the first two chapters of (Adamek
et al., 1990), or in §§1.1-1.5 of (Abramsky and Tzevelekos, 2011). Some
familiarity with more advanced notions, such as adjunctions, limits, colim-
its, universal constructions, and comonads, is useful but not essential: these
concepts will be motivated and introduced during the course through the
examples of game comonads.
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Introduction

These lecture notes are written for the course Relating Structure to
Power: An Invitation to Game Comonads, taught by the two authors at
the 33rd European Summer School in Logic, in Galway (Ireland) in 2022.
Our main aim is to provide the first beginner friendly introduction to the
study of game comonads.

The study of game comonads originates in the study of two problems in
computer science which are famously computationally difficult. The first one
is the so-called Constraint Satisfaction Problem (CSP). It can be presented
as a problem of deciding if, for a fixed (testing) relational structure B, there
exists a homomorphism A — B, for a structure A given on input. Similarly,
the isomorphism problem is a decision problem determining if A and B are
isomorphic, that is, A = B.

Both problems have a logical reading. When A and B are finite, it is
known that A = B precisely when A and B satisfy the same formulas in
first-order logic or in the first-order logic with counting quantifiers. Similarly,
the existence of a homomorphism A — B amounts to checking if B satisfies
primitive positive formulas which are true in A.

The difficulty of both problems let the research communities to the study
their approximations. From the point of view of logic, this means restrict-
ing the involved formulas in both above problems. In particular, instead of
studying the equivalence of A and B in (full) first-order logic, we aim to
decide a weaker equivalence, that is, a logical equivalence in a selected frag-
ment of first-order logic (with or without counting quantifiers). Similarly,
instead of checking if B satisfies all primitive positive formulas that hold in
A, we only check those that satisfy certain syntactic requirements.

It turns out that many such approximations can be decided in poly-
nomial time. Moreover, these approximations can be often presented as a
game between Spoiler, who is trying to show that either A A B or A % B,
and Duplicator who is defending the opposite position.

Game comonads come from the idea that these games can be formalised
purely semantically. In fact, Duplicator winning strategies in the approx-
imation games of A — B correspond to homomorphisms A —¢g B in the
Kleisli category for some comonad G. Similar encodings which make use of
the same comonad G can be made for the game-theoretic approximations of
the isomorphism problems too. This encoding of games brings an important
twist to the study of these problems and potentially also to model theory as
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well. With game comonads we can reason about logic fragments and their
expressivity abstractly, by using the language of category theory. Moreover,
the study of the formally dual notion, that is, the study of monads has a
very long tradition in category theory. We make use of the rich literature
on the subject, with an eye on applications in finite model theory.

One example of the borrowing from the theory of monads is when we turn
our attention to coalgebras of our comonads. Since its beginnings, the theory
of monads concentrated on the study of algebras of monads, which provides a
generalisation of universal algebra to settings where possibly more structure
is present; for example, to the study of topological groups. The formal dual
of algebras for a monad are coalgebras of a comonad. Perhaps surprisingly,
coalgebras of our game comonads correspond to some well-known decom-
positions from combinatorics, such as forest cover and tree decompositions
and thereby also tree-depth and tree-width graph parameters.

There is a tight connection between logic fragments and combinatorial
parameters in the study CSP and isomorphism problems. The theory of
game comonads makes this connection explicit. Furthermore, by formalising
our proofs categorically, with the said comonad as a parameter, we are able
to obtain many results in a uniform fashion. The well-known problems are
recovered by instantiations of the comonad in question.

Although the study of game comonads started quite recently, in 2017,
it has already shown a lot of potential. Many logic fragments and combi-
natorial parameters have been captured and some of the most important
theorems from finite model theory have been formalised in the language of
comonads. However, there is still a whole avenue of interesting research
directions, both from the point of view of category theory and finite model
theory, that awaits more attention. We hope that this text provides enough
inspiration for such explorations.

Warning: These notes are currently under heavy development. We
are only providing a rough draft of the first chapter and also the necessary
categorical preliminaries at the moment. The other listed chapters are in
various stages of writing up and will be released in due time. Admittedly,
some examples, exercises and references are to be added. Moreover, the
current version of this text does not include any results related to modal
logic and modal comonads.
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CHAPTER 1

Syntax and semantics: a fruitful duality

In this chapter we explain the basics of the interplay between syntax
and semantics in logic. This relationship is well-known in model theory. We
however look at it from the point of view of finite model theory. Concretely,
we explain the Chandra—Merlin correspondence which is a refinement of the
standard model theoretic correspondence between syntax and semantics to
finite structures. As we will see in later chapters, this correspondence plays
a fundamental role in the theory of game comonads and neatly explains why
some of the constructions explained later work the way they do. We also
look at refinements of the Chandra—Merlin correspondence to the restricted
variable and restricted quantifier-rank fragments of logics.

1.1. Theories and structures

Syntax and semantics: Correspondences between theories and sets of structures, the Chandra-Merlin
correspondence between finite structures and primitive positive sentences. The homomorphism order
and homomorphism equivalence.

In the CSP and isomorphism problems, we can only compare structures
of the same ‘type’. This is done by specifying a relational signature o, that is,
specifying a (finite) set of names of relation symbols {Ry,..., R,} together
with their arities. The arity ar(R) of a relation symbol R in ¢ is a positive
integer. Typically, instead of writing down the arities explicitly, we specify
them implicitly, e.g. by writing o = {R(,-), P(-), S(-,-,)} to mean that o
consists of a binary relation R, unary relation P and a ternary relation S.

A relational signature o defines the category of o-structures Str(o).
Every o-structure A is specified by its universe A (i.e. a set of vertices or
points) and an interpretation of every relation in the signature. That is, for
a relation symbol R € o of arity n we have a set of n-tuples (also called
edges or relations)

RAC A"
Homomorphisms of o-structures are required to preserve these relations.
Concretely, for o-structures A, B, a homomorphism f: A — B is a function
between the universes such that, for every (ai,...,a,) in R4, the tuple
(f(a1),..., f(ay)) is in RE.

Further, upon fixing a relational signature o, we may specify a fragment
of first-order logic that allows us to talk about properties of o-structures. As
usual we form formulas in terms of existential and universal quantifiers 3, V,

1



1.1. THEORIES AND STRUCTURES 2

conjunctions and disjunctions A, V, negations — and atomic formulas. As
atomic formulas we allow equality x = y between variables and an n-ary
predicate R(x1,...,x,) for every n-ary relation symbol R in the signature
o. We also include the always true statement t and always false f statements
among atoms. In the following we write FO(co) for the set of all first-order
sentences in signature o.

Example 1.1. The sentence Jz.t (in any signature o) expresses the fact
that a o-structure is non-empty. Further, for the relational signature of
directed graphs o, that is, 0 = {E(+,-)}, the first-order sentence
def
e(@,y) = Fa(E(z,21) A J22(E(21, 22) A E(22,9)))
expresses that there is a path of length 3 between z and y. A

In the following we make use of two standard relations on o-structures.
We say that o-structures A, B are logically equivalent in a fragment L of
first-order logic, and write

A=* B,
if, for every sentence ¢ € £, A E ¢ holds precisely whenever B F ¢ holds.
Furthermore, we write

A=* B,
whenever, for every sentence ¢ € £, if A F ¢ then also B F ¢.

It is an important feature of finite structures that A = B iff A =FO©) B,
This is made more precise in the following exercise.

Exercise 1.2. Let A be a finite o-structure with universe {a1,...,a,} and
write v4 for the ‘graph’ of the structure, that is the sentence

Jz1, .. T (Ppos A Preg AVY(y =21V - Vy=uay,))

where ¢p,s is the formula in free variables x1,...,z, obtained as the con-
junction of all R(xy,, ... ,xy,) such that (ax,,...,ax,) € R4, for some R € 0.
Similarly, and tney is the conjunction of all —R(xy,,...,xy,) such that

(akys-- -, an,) & RA.
Given a o-structure B, show the following.

(a) A= B iff BFE 4,

(b) A= Biff A=* B, for every logic £ such that y4 € £, and

(¢c) A= B iff A=FO©) B, A
Exercise 1.3. Show that whenever a fragment of logic £ is closed under
negation (i.e. ¢ € £ implies ~¢ > 1 for some ¢ € £) then A =° B is
equivalent to A =% B. In particular, A =F°(@) B holds precisely whenever
A =FO0) B does. A

Exercise 1.4. Let o be the signature of directed graphs, o = {E(-,-)}. If £
is the fragment of first-order sentences of the form

Az1, ..,z p(x1, .00 Th)
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where ¢ is a conjunction of atomic formulas, then an infinite path with a
starting vertex A and a single vertex with a loop B, shown in Figure 1 below,
satisfy that A =% B. Find the sentence that proves that the converse is not

true. A
e —>0—>0—>0—3 .- Q
A B

FIGURE 1. Two directed graphs

1.1.1. Model-theoretic correspondences. It is a standard fact that, by
Godel’s completeness theorem, that a theory is consistent if and only if it
has a model. Furthermore, there is a one-to-one correspondence between

(1) complete consistent theories T', and
(2) non-empty classes of o-structures A such that A € A if and only if
A =FO©) B for every B € A.

The correspondence is established by assigning to a complete consistent
theory T the class of its models A = {A | A E T}. Conversely, given a
class A as in (2), the theory Th(A) = {¢ € FO(0) | AE ¢} of an arbitrary
A € A is complete and consistent.

In fact, first-order logic (in general) does not distinguish non-isomorphic
structures. Whenever a theory has an infinite model then it has many more
different non-isomorphic models. In particular, even if a theory is so-called
w-categorical (i.e. has only one countable model, up to isomorphism), by
Lowenheim—Skolem Theorem, it has a model of every infinite cardinality.

This changes when we focus on finite structures, that is, we study the
subcategory Stry;, (o) of Str(c) consisting of o-structures with finite uni-
verse. Then, logical equivalence already captures isomorphism, cf. Exer-
cise 1.2. In fact, the theory of a single finite structure is determined by one
sentence, as shown in the following exercise.

Exercise 1.5. For a finite o-structure A and sentence ¢ € FO(o), show that
¢ € Th(A) iff v4 implies ¢, where 4 is the graph of A from Exercise 1.2. A

It is a consequence of Lowenheim—Skolem Theorem that a theory has a
unique model (up-to isomorphism) if and only if it has a unique finite model.
Therefore, the (1)—(2) correspondence above restricts to finite structures as
follows. There is a one-to-one correspondence between

(1’) sentences in FO(o) (up-to equivalence) with a unique model, and
(2’) finite o-structures (up-to isomorphism).

Now comes a twist. The (1’)—(2’) correspondence only allows us to de-
scribe structures up-to isomorphism which, as we know, is difficult to verify.
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By the example of Chandra and Merlin (1977) we look at a variation of this
correspondence and restrict the sentences in the logic to primitive positive
sentences. These are the first-order sentences in signature ¢ where disjunc-
tion, universal quantification and negation is not allowed. For simplicity,
we also do not consider sentences with equality. Put differently, we only
allow sentences obtained as a combination of existential quantification 4,
conjunctions A, and also R(z1,...,x,), for every n-ary relation symbol R in
the language 0. Moreover, we also allow the always true statement t. Write
PP(o) for the collection of all primitive positive sentences in signature o.

Example 1.6. Note that all sentences appearing in Examples 1.1 and 1.4
are primitive positive. A

It is an important feature of this logic that the primitive positive theory
Thppy)(A) = {p € PP(0) | AF ¢}

of a finite structure A is uniquely determined by a single primitive positive
sentence. Namely, let

U: Stry;,(0) — PP(0)
be the operation that assigns to a finite o-structure A on universe {ay,...,a,}
its primitive positive ‘graph’ W(A), defined as follows:

dzy ... Jzp /\ /\ R(xiy,. .., xi,) (1.1)

Reo (ail ,...,aiT)ERA

Observe that if we only care about sentences up-to interprovability, by the
usual rules of first-order logic, re-ordering of elements of the structure will
not change the resulting sentence.

As we show later, in Proposition 1.10 below, ¥(A) encodes everything
that is true of A in PP(0), i.e. for a primitive positive sentence ¢,

p e Thpp(g)(A) — \I}(A) F . (12)

Example 1.7. Let o be the signature of graphs and let A be the graph on
two vertices with a loop, as drawn below.

o)

Then, W(A) is the sentence Jx1x9.F(x1,x2) A E(x2,x2). Notice that, the
main difference between W(A) and the sentence 74, defined in Exercise 1.2,
is that W(A) omits the “negative” part of the sentence as well as the part
that says that every vertex is either x; or z3. Indeed, v4 is equivalent to
the following sentence.

drixo (E($1, 1‘2) VAN E(:UQ, xg) A —\E(xg, .731) A —\E(azl, .731)
AVy(y=z1Vy =) A
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The property (1.2) of ¥ above establishes that the primitive positive
theory of a finite structure is uniquely described by a single sentence. In
fact, every primitive positive sentence can be obtained from a ‘unique’ finite
o-structure. Although, this time the uniqueness is not up-to isomorphism
but instead up-to homomorphism-equivalence, as we explain later on.

In order to establish a correspondence between primitive positive sen-
tences and finite structures, we need a mapping in the opposite direction.
Define

M: PP(o) — Stryi(0)
as the operation that builds a finite o-structure M(yp) out of a primitive
positive sentence ¢ as follows. First, we assume that no two quantifiers bind
the same variable name in ¢ (if this is not the case, we can rename the
variables first). Further, recall that formulas Jy (¢ A ) and (Jy p) A ¢ are
equivalent in first-order logic if y does not occur freely in 1. Consequently,
 is equivalent to a sentence in the prenex normal form

Jzq ... Fzpy V(21,0 Tp)

where 9 is just a conjunction of atoms. We therefore build M(y) as the
structure on the set {z1,...,z,}, with relations between the elements pre-
cisely as given by .

Let us now record essential properties of the two operations. Given
o-structures A, B, in the following we write

A— B

to express the fact that there exists a homomorphism from A to B.

Lemma 1.8. Let A be a finite o-structure and @ a primitive positive sen-
tence. Then:

(i) AEU(A)
(i) M(p) F ¢
(ii) M(V(A)) = A
Furthermore, for a o-structure B of arbitrary size,

(iv) BE ¢ iff M(¢) — B.

PROOF. Item (iii) follows directly from the definitions and items (i) and
(ii) follow directly from (iii) and (iv). Next, we carefully check (iv). Let
Jz1,...,xnY(21,...,2,) be the prenex normal of ¢, where 1 is a conjunc-
tion of atoms.

If B F ¢ then, by definition, there exist by,...,b, € B such that B F
Y(b1,...,b,). We define a function

f:M(¢) — B

as the mapping x; — b;. Observe that for a tuple (z;,,...,;,) in RM(®),
we have that B F R(b;,,...,b; ) since B F ¢ (by,...,by). In other words, for
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(iy,- -, xi,) in RM®) implies that (f(x4,), ..., f(z;,)) is in RP or, in other
words, f is a o-structure homomorphism.

Conversely, given a homomorphism f: M(¢) — B, we wish to prove
that B F ¢. It is enough to show that, for the assignment

b1 = f(SL‘l), ey bn = f(:cn),
we have that B F ¥(b1,...,b,). But this follows from the fact that f is
a homomorphism. Indeed, for any atom R(z;,,...,x; ) appearing in the
conjunction 1, the tuple (z;,,...,x;, ) belongs to RM(®) | Then, since f is a
homomorphism, the tuple (f(x;,), ..., f(%i.)) = (biy, ..., b;, ) is in RP or, in
other words, B F R(b;,,...,b;, ). Consequently, we obtain B F 9(b,...,by,)
since the choice of atoms from the conjunction was arbitrary. ([

This careful and concrete examination now pays off. We can establish
further important properties of the two operations, simply by an abstract
manipulations from (i)—(iv).

Lemma 1.9. For o-structures A, B and primitive positive sentences @, 1,

(v) If A— B and AFE ¢ then B F ¢,
(vi) A — B iff BE V(A) (assuming A is finite), and
(vii) ¢ 1 implies M(¢) — M(p).

PROOF. (v) By (iv), A F ¢ is equivalent to M(¢) — A. Then, by com-
position with A — B we obtain a homomorphism M(p) — B. Therefore,
by (iv) again, B F ¢.

(vi) The left-to-right direction follows directly from (i) and (v) as A F
U(A) and A — B implies B F W(A). Conversely, by (iv), B F W(A) implies
M(¥(A)) — B. Then, by (iii), we see that A — B.

(vii) By (ii) we see that M(y) F ¢ and then (iv) gives M(¢)) — M(yp).

U

With the previous two lemmas we can now address the promised equiv-
alence from (1.2).

Proposition 1.10. Let A be a finite structure and ¢ € PP(o), then
AFp <= Y(A)F .

PROOF. Assume that A F ¢ and assume further that B F U(A) for some
o-structure B. The former is equivalent to M () — A by (iv) and the latter
to A — B by (vi). By homomorphism composition we obtain M(y) — B
which by (iv) makes B F ¢. We have showed that any structure satisfying
W(A) also satisfies p. By completeness, that gives that W(A) F .

Conversely, assume W(A) F ¢. Then, by (vii), M(¢) — M(¥(A)).
However, then (iii) entails M(¢) — A. Consequently, by (iv), A F ¢. O

Coming back to the classical model-theoretic correspondence between
(1) and (2), let us examine what does the restriction to primitive positive
sentences, on one hand, and finite structures, on the other, buys us.
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We have observed that the primitive positive theory Thpp(s)(A4) of a
finite structure is determined by a single primitive positive sentence, that
is, its primitive positive ‘graph’ W(A). Therefore, instead of dealing with
theories, as in (1), we may restrict to individual sentences. Conversely, from
(v) it follows, that the class A = {A € Stry;,(0) | A E ¢} of models of a
single sentence ¢ € PP(0) is upwards closed in the homomorphism order,
i.e. if A€ A and A — B then also B € A. Furthermore, A is completely
determined by the sentence M(y), which also belongs to A. Indeed, by (iv),
B e Aiff M(p) — B.

To obtain a correspondence similar to (1’) and (2’), we observe that the
choices of the “determining sentence” W(A) of a primitive positive theory
of A and the “determining structure” M(yp) for the class of models of a
primitive positive sentence ¢, are unique up-to a reasonable notion of equiv-
alence. As before, the reasonable notion of equivalence for sentences is the
interprovability (that is, when ¢ ¢ and 9 - ¢) which is the same as that
¢ and 9 are equivalent in the logic (i.e. - ¢ <> ). For structures A, B, the
reasonable notion of equivalence is the homomorphism equivalence

AS B
i.e. the existence of a homomorphism A — B as well as B — A.
Observe that M and ¥ are invariant under these equivalences. Indeed,
by (vii), if ¢ <> 1 then M(¢) = M(v) and, conversely, A = B implies
U (A) +» ¥(B) by the following lemma.

Lemma 1.11. For finite o-structures A, B,
(viii) A — B implies ¥(B) = U(A).

PROOF. A — B implies B F ¥(A) by (vi) and then by Proposition 1.10
also ¥(B) - U(A). O

In the following we observe that homomorphism equivalence and =FF(@)-
equivalence are the same relation on finite structures. In fact, we show that
A =PP0) B s is characterised by the homomorphism order.

Proposition 1.12. Given a finite A and arbitrary B,
A= B iff A=PP@) B

PROOF. Observe that (v) already expresses the left-to-right direction.
For the converse direction, observe that A F W(A) by (i) and so, by our
assumption A =FP) B also Bk W(A). Therefore, by (vi), A — B. O

To summarise, the Chandra-Merlin correspondence is given by the two
mappings ¥ and M between PP(c) and the class Stry;,(o) of finite rela-
tional structures in signature o.

M
T
PP(0) Str i, (o)

~_
N4
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As we have shown, one of the characterising features of this correspondence
is that we can transfer between syntactic and semantic characterisations of
the satisfaction relation. That is, for A finite and ¢ € PP(0):

M(p) > A <= AFp < V(A)Fp (1.3)
Moreover, M and ¥ establish a one-to-one equivalence between

(17) sentences in PP(o) (up-to equivalence), and
(27) finite o-structures (up-to homomorphism equivalence).

Exercise 1.13. Provide the missing details for the proof of (i)—(iii) in
Lemma 1.8. Hint: Use (iv) to show (ii) and (iii)4(iv) for (i). A

1.1.2. The order-theoretic point of view. We might view PP(o) and
Str i, (o) as preorders. The set of primitive positive sentences PP (o) may
be ordered by F, that is, for sentences ¢, 9 € PP(0) we say that ¢ is less
than or equal to v iff ¢ = +. Similarly, we might order Stry;,(c) by the
homomorphism order, that is, for finite structures A, B, we say that A is
less than or equal to B iff there exists a homomorphism A — B.

Under these order, (vii) and (viii) simply say that ¥ and M are antitone
mappings between the two preorders PP (o) and Stry, (o). In fact, M and
U can be viewed as the maps witnessing that PP(c) and Stry, (o) are
isomorphic, as preorders. By (iii) we know that any finite structure A is
isomorphic to M(W(A)). The following shows the corresponding fact for the
composition in the opposite order.

Lemma 1.14. For any primitive positive sentence @,
(iz) = U (M(p)) < ¢

PROOF. By completeness ¢ - ¥(M(y)) is equivalent to the statement
that, for every o-structure A,

AFE ¢ implies AE ¥(M(yp)).

To show that, let A F . By (1.3), this implies M(¢) — A. Since ¥ is
antitone by (viii), we have that W(A) - U(M(yp)). Finally, by (1.3) again,
AE U(M(p).

The converse direction follows by Proposition 1.10 and (iii). O

Exercise 1.15. The preorders PP (o) and Stry;,(o) are not posets. Find
two different sentences ¢, which are equivalent - ¢ <> v and, similarly,
find two non-isomorphic finite structures A, B which are homomorphically
equivalent, that is, A S B. A

1.2. Resource-bounded logics

finite-variable and bounded quantifier-rank fragments, their interplay with the Chandra-Merlin
correspondence, modal logic
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As we said earlier, establishing whether there exists a homomorphism
A — B or whether A and B are isomorphic A = B are very difficult compu-
tational problems. Establishing some computational feasibility requires us
to look at at approximations of these problems. Let us look at the approxi-
mations to the homomorphism problem first.

One approach of finding approximations to the homomorphism prob-
lem is offered by the link made in Proposition 1.12. Observe that for any
fragment L of PP(o) the relation =L s coarser than =PP(®) and, more
importantly, that gives us that

A— B implies A=* B.

In other words, for any fragment £ of PP(c), the relation =% is an ap-
proximation of the homomorphism order. In fact, the above implication
is probably more natural in its negative form, which is more suitable for
application:

A BB implies A4 B.

If we can decide =% quickly then we can quickly refute some instances
where A — B does not hold. Ideally we want the relation =% to be as close
to the homomorphism order — as possible, while still maintaining good
computational properties. Moreover, there are well-known important cases
where =% exactly matches — for a carefully chosen £, see e.g. Barto and
Kozik (2014).

Probably the most natural way to find fragments of PP (o) is by having
syntactic restriction on sentences of PP(c). Recall that primitive positive
formulas are formed from atoms, in terms of conjunctions A and existential
quantification 3. Naturally, we can impose restrictions on what types of
conjunctions we allow or, similarly, what types of existential quantifiers we
allow. The former is found for example in the work of Dalmau (2005).

In the following we look at two types of restrictions of quantifications
which have been widely studied in the literature and for which it is known
that the relation =% can be computed by an efficient algorithm.

1.2.1. Bounded quantifier rank fragments. Probably the most natural
syntactic restriction is the one where we bound the depth of nesting of
quantifiers. Formally, this is done by defining the quantifier rank qrank(y)
of a formula ¢ as a function from formulas to natural numbers. We define
it inductively, on the structure of primitive positive sentences by:

grank(A) :=0 (for an atomic formula A)

grank(p A ) := max(qrank(p), qrank(¢))
qrank(3z ¢) := qrank(yp) + 1
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In fact, this definition can be naturally extended to arbitrary formulas of
first-order logic as follows.
qrank(—y) := qrank(yp)
qrank(yp V ¢) := max(qrank(p), qrank(y))
grank(Vz @) := qrank(y) + 1
Example 1.16. Let us consider the following sentence
¢ = Jwy (R(z,y) A R(y, x) A3z S5(x,y,2)).

Since this is our first example where we consider syntactic restrictions, we
are going to be pedantic and write the sentence ¢ carefully, with all brackets
that are typically dropped by convention:

Jz (Jy (R(z, y) A (R(y, z) A 325(x,y,2)))).-
Next we show how that the quantifier rank qrank(p) of ¢ is equal to 3, by
applying the inductive definition of qrank(-) step by step.
qrank(p) = qrank(3z (y (R(z,y) A (R(y, ) A 325(2,y, 2)))))

= qrank(Jy (R(z,y) A (R(y,z) A 32S5(z,y,2)))) + 1

= qrank(R(z,y) A (R(y,z) A 32S(x,y,2))) + 2

= max(qrank(R(z,y)),qrank(R(y, x) A 325(z,y, 2))) + 2

= max (0, max(qrank(R(y,x)), qrank(3zS5(x,y, 2)))) + 2

= max (0, max(0, qrank( (x,y,2))+ 1)) +2

= max(0, max(0,1)) +

=1+2=3
Observe that the order of conjunctions does not actually matter because
grank(-) is defined as the maximum of quantifier ranks of the two parts,
which is a commutative operation. This shows very important later on in

Section 1.2.3 because it allows us to encode the nesting of quantifiers as tree
orders on structures. A

For a natural number k, denote by FOg (o) the quantifier-rank k frag-
ment of first-order logic, which consists of the sentences in first-order logic
¢ € FO(o) such that qrank(p) < k. Similarly, we define PPy(o) as the
restriction of PP(o) to sentences in FOg (o).

Since PPy(0) is a fragment of PP(o), Proposition 1.12 gives us that

A— B implies A EPP’“(") B.

Furthermore, FO (o) is a fragment of FO(o) and so, by Exercise 1.2(c),
we see that the logical equivalence in FOg (o) approximates isomorphism.
Indeed, for finite structures A, B, we have that

A= B implies A =FOk() B,

We conclude this part by noting an important fact about this fragment.
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Proposition 1.17. Up-to equivalence there are only finitely many sentences
in FOg (o).
Consequently, there are also only finitely many sentences in PPy (o).

Example 1.18. Observe that FOy (o) is not closed under equivalence. There
exist sentences in first-order logic ¢, such that ¢ ¢ FOg (o) but F ¢ <> 9.
In fact, the same can be said about the PPy(o) fragment. Construct such
sentences. A

Exercise 1.19 (advanced). Prove Proposition 1.17. Hint: It is important
that we only allowed finite signatures which are finitary, that is, the relation
symbols in our language are of finite arity. A

1.2.2. Bounded variable fragments. Another possible syntactic restric-
tion is by allowing only certain variables to be used in the quantifications.
For every natural number k we fix a set of pairwise different variables
{x1,...,2;}. Then, we write FO*(0) for k-variable fragment of first-order
logic, that is, for the collection of first-order sentences that only use variables
among 1, . ..,x). Similarly, we write PP*(¢) for k-variable primitive posi-
tive sentences, i.e. for the collection of sentences in the intersection of PP (o)
and FO*(o). Note that we do not restrict the quantifier rank of sentences
in these two fragments.
For example, the following is a sentence in PP?(o)

Jzq1 (Fza (R(x1,22) A Jz1 (R(22, 21) A R(21,21))))- (1.4)

On the other hand, the following is not in PP?(¢), even though, the two
sentences are equivalent.

Jzy (3wo (R(21, v2) A 33 (R(22, 73) A R(23,73))))

It turns out that the FO¥(0) and PP*(s) fragments are already quite
expressive. In fact, FO*(o) is more expressive than the fragment FO(o)
we defined in the previous section since, for any A, B, we have that

A =F0"0) p implies A ="+ B

and also that i
A=PP ) B implies A QPP’“(”) B.

These important facts follow from the following lemma.

Lemma 1.20. Given a sentence ¢ in FOy(o), there is a sentence i in
FOk(U), of the same quantifier rank, such that ¢ and ¢ are equivalent.

Moreover, the same statement holds when restricting to sentences in
PP (c) and PP*(0), respectively.

ProOF IDEA. We rename the variables in ¢ to x1, ..., x, based on their
nesting depth. The out-most quantifications will bind x1, all next-level
quantifications bind 3, and so on.

For example, the sentence Jz(Jy R(x,y) A 3z R(z,z)) gets renamed to
the sentence Jzq(Jzo R(z1, 22) A Jxo R(x2,21)). O
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The proof of Lemma 1.20 demonstrates that, from the point of view
of expressibility of FO¥(¢), it is enough to look at formulas up-to variable
renaming. Although, we have restricted sentences to only those that use
the variables among x1,...,z, in FOk(O'), morally, in this fragment we can
express any property that is expressible in a sentence that uses at most k
distinct variables, whichever they are. For example, the sentence in (1.4)
can be more conveniently written as:

Jz (Jy (R(z,y) A 3z (R(y, x) A R(z,2))))

Indeed, since we only used variables x,y, we can do the renaming = — x
and y — 3, to obtain an equivalent sentence in FO?(o).

Example 1.21. A statement similar to Proposition 1.17 cannot be proved
for the k-variable fragment. Find an infinite set of mutually non-equivalent
sentences in FO* (o) for k = 2.

Hint: In the language of graphs, you can say in FO?(o) that there exists
a path of length n, for every natural number n. A

1.2.3. Tree order via the Chandra—Merlin correspondence. In the
following we would like to understand how the syntactic restrictions we made
in Sections 1.2.1 and 1.2.2 translate as properties of finite structures via the
Chandra—Merlin correspondence.

Observe that in the construction of M(yp), for a primitive positive sen-
tence ¢, as we defined it in Section 1.1.1, we throw away all information
about syntactic properties of ¢ that were important to us in the previous
two sections. More specifically, in the definition of M(p) we first rename
all variables in ¢ so that no variable is quantified twice and then we con-
vert the formula to its prenex normal form, which throws away the order of
quantifier nesting.

In the following, we show that M(p) can be equipped with a compatible
forest order that correspond to the syntactic properties of ¢, before we did
any syntactic modifications to it. Furthermore, this extra tree order can be
used to characterise o-structures that arise from sentences in FOg (o) and
FO¥(0), respectively.

Before we define the tree order on M(¢) we make a notational distinction
between the different formulas appearing in the construction, starting from
a primitive positive sentence ¢:

e Denote by ¢y the sentence obtained from ¢ after the renaming of
variables so that no variable is quantified twice.

o We assume that the variables occurring in ¢y after this renaming
are exactly vy,...,v,.

e Denote by

Fui, .., v 04 (V1)

the prenex normal form of ¢y, where ¢4 is just a conjunction of
atoms.
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With this, we are now ready to define the tree order on M(y). Recall
that M(y) is a o-structure with the universe {vy,...,v,}. For elements
v;, vj of M(yp), write

V; S Uj
if v; appears in the scope of variable v; in py.

Lemma 1.22. Given a sentence ¢ € PP(c) and A = M(yp), the binary
relation < on A, defined as above is a forest order:

(T1) < is a partial order, that is, < is reflexive, transitive and anti-
symmetric.

(T2) For every element a € A, the set la = {x € A|x < a} is a finite
set, linearly ordered by <.

Furthermore, it satisfies the following compatibility condition:
(T3) If (a1,...,an) € RA then, for everyi,j € {1,...,n}, either
a; < aj or a; < a;.

ProOF. (T1) and (T2) follow directly from the fact that formulas in
first-order logic are tree-shaped. To see why (T3) holds it is enough to realise
that (v1,...,v,) € RM) is only true if the atom R(vi,...,v,) appears
somewhere in the formula ¢y. Then, since ¢y is a sentence, the variables
v1,...,U, are all quantified. Let us assume that v; was quantified as the
last. But then we have that vy, ..., v, € Jv;. Consequently, these variables,
seen as elements of M(yp), are pairwise <-comparable. (]

Given a o-structure A and a binary relation < on A, we say that <
is a compatible forest order on A if it satisfies conditions (T1)—(T3). If,
furthermore, every linear chain Ja in A has size < k, we say that the forest
order has depth k. Finally, denote by Fi(o) the class of finite structures
A € Stry;,(0) which admit a compatible forest order of depth k.

With this notation, we see that Lemma 1.22 implies that M restricts to
a mapping

M: PPy(0) — Fi(o).

It turns out that axioms (T1)—(T3) and the requirement on depth charac-
terises the o-structures under the M image of sentences in PPy (o). In fact,
one can also show that ¥ restricts to a mapping between Fj (o) and PPy (o)
as well. The only caveat to this is that we have to consider formulas up-to
equivalence in logic. The following theorem expresses that the restrictions
of ¥ and M are still inverse to each other, if we look at elements of PPy (o)
and Fi (o) up-to their natural equivalence.

THEOREM 1.23. For every finite o-structure A, the following are equiv-
alent:

(1) A€ Fi(o).
(2) A is isomorphic to M(p) for some ¢ € PPy(0).
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And, similarly, for every primitive positive sentence @, the following are
equivalent:

(8) ¢ is equivalent to W(A) for some A € Fy(o).
(4) ¢ is equivalent to a sentence 1 € PP (o).

Proor. We start by showing a stronger statement than the implication
“(3) = (4)”. We show that, for a structure A,

(%) if A € Fi(o), then ¥(A) is equivalent to some 1 € PPy(o) such
that A = M(v)).

Let < be the compatible forest order of depth k, witnessing A € Fy (o).
We assume that the universe {ay, ..., a,} of A is enumerated by a depth-first
search exploration of vertices of A according to the <-order. Concretely, we
start the depth-first search from a root (i.e. minimal element) and enumerate
elements following any branch all the way to a leaf (i.e. a maximal element).
Once a leaf is reached, we backtrack to the last visited vertex which branches
and continue enumerating from there to a leaf. We repeat this procedure
until we enumerated the whole tree of our starting root. After that, we
move to the next root and continue the same way and so on, until we have
enumerated the whole structure. There might be multiple enumerations of
the universe, we pick an arbitrary one. Since

dxdy e and dydxp

are equivalent formulas, the sentence W(A) is equivalent to the same sentence
with the quantifier prenex reordered according to the enumeration of the
universe of A:

Fv1, .o AV, V) (1.5)

where @4 is the conjunction of R(v;,,...,v;. ) such that (a;,,...,a;) € R4

Next, we aim to find a formula equivalent to (1.5), which has quantifier
rank k. We wish to transform the formula to the shape that mirrors the order
< on A. Recall that conjunctions distribute over existential quantifiers for
subformulas that are not bound by the quantifier. This means that if the
variable y does not occur freely in v then the formulas

Jy(pAp) and (Jye) A

are equivalent, according to rules and axioms of first-order logic.

Going backwards in the depth-first search enumeration of A, we trans-
form (1.5) to an equivalent formula, distributing conjunctions over existen-
tial quantifiers according to the above restriction. In particular, assuming ¢
is a conjunct where variable v; ;1 does not occur and 1 is a conjunct where
it does, we transform

Elvﬁfuiﬂ (QO A 1/))
to
Fu; (o A (Fvit1 )
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whenever a; < a;11 in A, and to

(Fvi o) A (Fvi1v)

whenever a; £ a;1+1 in A.

The quantifiers in the resulting formula v are ordered according to the
<-order on A, that is, a; < a; if and only if v; is in the scope of quantification
of v;. Correctness of this procedure follows from (T4) for <. Consequently,
grank(y) < k because < is of depth k.

Furthermore, it is clear that the resulting formula v has the same number
of quantifiers as there are elements of the universe of A and the atomic
formulas appearing in the formula correspond precisely to tuples in relations
of A. Therefore, A = M(~).

We can now justify the claimed equivalences. We have shown that (2)
implies (1) in Lemma 1.22. The converse as well as “(3) = (4)” follow
directly from (). For “(4) = (3)”, assume that ¢ <> 1 for some 1) € PPy (o).
Observe that

p b W(M(y))

where the second equivalence holds by (ix). We have shown that ¢ is equiv-
alent to W(A) with A = M(v), which is in Fi(co) by “(2) = (1)”. O

As a corollary, we obtain that the relation =FF#(?) can be characterised
purely semantically, akin to the characterisation of =FP(@) in terms of the
homomorphism order in Proposition 1.12.

Corollary 1.24. For o-structures A, B,
AP0 B« VO e Fi(o) C — A implies C — B

Example 1.25. Using Proposition 1.17, show that there are only finitely
many structures in Fj (o), up-to homomorphism equivalence. A

1.2.4. Pebble function via the Chandra—Merlin correspondence.
Here we describe the restriction of the correspondence between finite struc-
tures and primitive positive sentences to PP¥(0). Let us first recall the
notation from the beginning of Section 1.2.3. For a sentence ¢ € PP(0), we
denote by ¢y the sentence obtained by renaming variables in ¢ and then
the sentence
Fu1, .0 a(V1, .. Up).

is taken to be the prenex normal form of ¢y, on the same set of variables.

Given a k-variable sentence ¢ € PP¥(0), Lemma 1.22 still ensures that
we can equip M(p) with a compatible forest order. However, this time
the trees can have arbitrary depth. In order to describe the o-structures
in the image of PP* (o) under the mapping M we need to provide further
information about the usage of variables in the original formula. To this
end, we define a pebble function

p: M(p) = {1,...,k}
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by sending v; to the number n € {1,...,k} which represents the index of
variable x,,, from the set of allowed variables 1, ...,z in PP* (o), such that
Ty got renamed to v; in the process of normalising ¢ to ¢y .

Next we observe that a similar property to (T3) above is guaranteed,
explaining the interplay between the forest order and the pebble function.
The proof is analogous to the proof of Lemma 1.22. The main difference is
that, this time, we also keep track of which quantifications overshadow each
other. We leave the proof to the reader.

Lemma 1.26. Given a sentence ¢ € PPF(o) and A = M(y) with the
compatible forest order < as in Lemma 1.22, the pebble function p: A —
{1,...,p} defined as above satisfies:

(T4) If (a1,...,an) € RA then, for everyi,j € {1,...,n}, either

(a) a; < aj and p(a;) # p(b) for every b € A such that a; < b < a;,
or
(b) aj < a; and p(aj) # p(b) for every b € A such that a; < b < a;.

Given a o-structure A, a binary relation < on A and a function p: A —
{1,...,n}, we say that <,p is a compatible k-pebble forest order on A if it
satisfies conditions (T1), (T2), and (T4). Denote by Fi (o) the class of finite
structures A € Stry;, (o) which admit a compatible k-pebble forest order.

Observe that (T4) is a stronger condition than (T3) is. Therefore, any
compatible k-pebble forest order is a compatible forest order, in sense of
Section 1.2.3.

As before, Lemma 1.26 implies that M restrict to a mapping of the
following type.

M: PP*(o) — F*(0)
We also have a theorem similar to Theorem 1.23, whose proof we leave as
an exercise to the reader.

THEOREM 1.27. For every finite o-structure A, the following are equiv-
alent:

e Ac Fko).
o A is isomorphic to M(p) for some ¢ € PP¥(o).

And, similarly, for every primitive positive sentence ¢, the following are
equivalent:

e © is equivalent to U(A) for some A € F¥(o).
e  is equivalent to a sentence ¢ € PP¥(a).

Finally, from the last theorem it directly follows that we have the fol-
lowing semantic representation of the =PP*() relation.

Corollary 1.28. For o-structures A, B,
APPO B s voe Fk(o) C = A implies C — B
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Exercise 1.29. Adapt the proof of Theorem 1.23 to show Theorem 1.27. A

Exercise 1.30. Define FOF (¢) as the intersection of FO¥(¢) and FO, (o)
and define F* (o) as the collection of finite o-structures which admit a com-
patible k-pebble forest order of depth n.

Adapt the statements in the last two sections to obtain that, for o-
structures A, B,

AFPRO) B e VO e FF(o) C — A implies C — B. A

1.3. Fragments of modal logic

modal signature, pointed Kripke structures, modal formulas, bounded modal-depth

This section is currently being written and
will be added in due time.




CHAPTER 2

Games and game comonads

This chapter is yet to be written.

2.1. Model comparison games
2.2. Ehrenfeucht-Fraissé games
2.3. Pebble games
2.4. Bisimulation games
2.5. Game comonads

2.6. Strategies as Kleisli morphisms
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CHAPTER 3

Coalgebras and combinatorial parameters

This chapter is yet to be written.

3.1. Forest covers and tree decompositions
3.2. Eilenberg—Moore coalgebras

3.3. Coalgebra numbers
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CHAPTER 4

Game comonads and logical equivalences

This chapter is yet to be written.

4.1. Paths and embeddings
4.2. Bisimilarity
4.3. Equivalence in the full fragments
4.4. The equality symbol
4.5. Open pathwise embeddings
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APPENDIX A

Category theory

A.1. Categories

Definition A.1. A category consists of:

e A class Ob(C) of objects, typically denoted by A, B, C.
o A class Mor(C) of morphisms (also called arrows), typically denoted
by f,g,h.

e Two functions
dom, cod: Mor(€) — Ob(C)

assigning to a morphism its domain and codomain, respectively.
We write f: A — B to indicate that f is a morphism with domain
A and codomain B. For each pair of objects A, B, we define the
associated hom-set to be the collection

C(A,B) ={f e Mor(C) | f: A— B}.
e For any triple of objects A, B, C, a composition map
C(A,B) x C(B,C) = C(A,C), (f,g9)—gof.
e For each object A, an identity morphism ids: A — A.

The data above must satisfy the following equations for all arrows f,g,h
and all objects A, B, whenever the compositions are well-defined:

ho(go f)=(hog)of (Associativity law)
foida=f=idgof (Identity laws)

Remark A.2. Properly speaking, the hom-sets C(A, B) need not be sets
and may be proper classes. Cf. Definition A.25. A

Here is our first example of category:

e Set: the objects are sets and the morphisms are the functions
between them.

We can always produce a new category from an old one by selecting some
objects and taking all morphisms between them. For instance, we can define
the category

e Sety;,: the objects are finite sets and the morphisms are the func-
tions between them.

21
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In general, new categories can be obtained from old ones by restricting
either their arrows or objects, or both.

Definition A.3. Suppose € is a category and consider collections Ob(D) C
Ob(@) and, for all A, B € Ob(D), D(A, B) C C(A, B). Then D is a subcat-
egory of € if

idga € D(A, A)
for all A € Ob(D) and, for all f € D(A, B) and g € D(B, (),
go feDACQC).

If, moreover, D(A, B) = C(A, B) for all A,B € Ob(D), then D is a full
subcategory of C.

For example, Set ;, is a full subcategory of Set.

Exercise A.4. Show that a subcategory D of € is itself a category, with
respect to the obvious composition maps and identity morphisms. A

In order to provide further examples of categories, we shall recall some
basic mathematical notions.

o-Structures. Recall that a relational signature o is a set of relation sym-
bols {R; | i € I} such that each R; is assigned a positive integer ar(R;),
called the arity of R;. A o-structure is given by a set A (the universe of
the structure) together with an interpretation of the relation symbols in o.
That is, for each R; € o of arity n we have a set of n-tuples

RAC A

A homomorphisms of o-structures (or o-homomorphism, for short) from a
o-structure A to a o-structure B is a function f: A — B between their
universes that preserves the interpretations of the relations, i.e. for each
R; € o of arity n and all (aq,...,a,) € A",

(a1,...,a,) € RY = (f(a1),..., flan)) € RP.

For any relational signature o, we have a category

e Str(c): the objects are o-structures and the morphisms are the
o-homomorphisms.

Restricting to the finite o-structures, i.e. those o-structures whose universe
is a finite set, we obtain the category

e Stry;,(0): the objects are finite o-structures and the morphisms
are the o-homomorphisms.
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Relations. Let X,Y be any two sets. A relation from X to Y, written
X —» Y, is asubset R of the Cartesian product X xY. If X =Y, we simply
refer to R as a (binary) relation on X. Given a pair (z,y) € X x Y, we
sometimes write xRy instead of (z,y) € R. The identity relation on a set
X is the diagonal relation

Ax ={(z,z) e X x X |z € X},

and the composition of two relations R: X - Y and S:Y —» Z is the
relation R;S: X - Z defined by

R;S ={(z,2) e X x Z |y €Y. xRy and ySz}.
These data define a category
e Rel: the objects are sets and the morphisms are relations.

Set is a subcategory of Rel, but not a full subcategory.

Partial orders. A partial order on a set X is a binary relation on X
satisfying the following conditions for all z,y, z € X:

r<ux (Reflexivity)
r<y ANy<z — x<z (Transitivity)
r<y ANy<zxz = z=uy. (Antisymmetry)

A partially ordered set (or poset, for short) is a pair (X, <) where X is
a set and < is a partial order on X. A monotone (or order-preserving) map
from a poset (X, <x) to a poset (Y, <y) is a function f: X — Y such that
x1 <x x2 implies f(z1) <y f(x2) for all x1,z9 € X.

We obtain a category

e Pos: the objects are posets and the morphisms are monotone maps.

More generally, a relation that is reflexive and transitive—but not nec-
essarily antisymmetric—is a called a preorder. In the same spirit as above,
we can define a preordered set as a pair (X, <) consisting of a set X and a
preorder < on it. This yields a category

e PreOrd: the objects are preordered sets and the morphisms are
monotone maps.

Pos is a full subcategory of PreOrd.

Forests and trees. Let (X, <) be a poset. A subset C' C X is said to be a
linear order (or a chain) if, for all z,y € C, either x <y or y < z. For any
element xz € X, let us write

le={yeX|y<a}
for the downset of x.
A forest is a poset (X, <) such that, for all z € X, the downset |z is

a finite linear order. The roots of a forest are the minimal elements, i.e.
those elements that are not strictly above any other element. The covering
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relation < associated with the partial order < is defined by x < y if and only
if z < y (that is, z < y and x # y) and there is no z such that z < z < y.

A forest morphism from a forest (X, <x) to a forest (Y, <y ) is a function
f: X — Y that preserves roots and the covering relation. That is, for all
x1,w2 € X, if 21 is a root of (X, <x) then f(z1) is a root of (Y, <y), and if
x1 < w2 then f(x1) < f(x2). This defines a category

e Forests: the objects are forests and the arrows are forest mor-
phisms.

A forest with at most one root is a called a tree. Considering only those
objects of Forests that are (non-empty) trees, we obtain a new category

e Trees: the objects are non-empty trees and the arrows are forest
morphisms.

The category of trees is a full subcategory of the category of forests.

Monoids and groups. A monoid is a triple (M, -, 1) where M is a set,
o MxM—M

is a binary operation on M (the multiplication of M), and 1 is an element
of M (the identity element), satisfying the equational axioms:

r-(y-z)=(x-y)-z (Associativity law)
r-l=x=1x (Identity laws)
A monoid homomorphism from (M, -pr, 1p7) to (N, -y, 1) is a function

f: M — N that preserves the multiplication and the identity element, i.e.
for all mi,mo € M

fma -y me) = f(ma) -n f(mz) and  f(ly)=1y.
We thus get a category

e Mon: the objects are monoids and the arrows are monoid homo-
morphisms.

Moreover, a group is a monoid (G,-,1) in which every element has an
inverse. That is, for all g € G there is an element g~ € G such that

1 1

g9 =l=g "9

A group homomorphism from a group (G,-g,1la) to a group (H, g, 1)
is a function f: G — H that preserves the multiplication and the identity
element (i.e., is a monoid homomorphisms), as well as inverses: for all g € G,

f(g)~' = f(g~1). This yields a category

e Grp: the objects are groups and the arrows are group homomor-
phisms.

Exercise A.5. Prove that Grp is a full subcategory of Mon. A
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& Elementary classes. Let T be a first-order theory in a signature 7 (pos-
sibly containing both relation and function symbols). A 7-homomorphism
between T-structures is a function that preserves all relation and function
symbols in 7. These data define a category

e Mod(T): the objects are models of T" and the arrows are the 7-
homomorphisms between them.

Note that the categories Pos, PreOrd and Mon are of the form Mod(T)
for an appropriate signature 7 and theory T. The same holds for Grp, be-
cause every monoid homomorphism between two groups is a group homo-
morphism (see Exercise A.5). On the other hand, Rel, Forests and Trees
are not of the form Mod(T), for a signature consisting of a single binary
relation symbol, since the arrows in these categories are not all “structure-
preserving functions” between the appropriate objects.

Finally, every poset can be regarded as a category; this simple observa-
tion leads to a considerable source of examples for many categorical notions:

Example A.6. Any partially ordered set (P, <) can be seen as a category
in the following way: the objects are the elements of P and, for all z,y € P,
the hom-set P(z,y) is given by

P(z,y) = {{*} tesy
() otherwise.
In particular, between any two objects there is at most one arrow.! The
reflexivity law x < x yields the identity morphisms, and the transitivity law
<y <z=x <z gives compositions of morphisms.
Note that we did not use the fact that posets satisfy the antisymmetry
law, hence this construction works more generally for preordered sets. A

A.2. Reasoning with arrows

In ordinary mathematics, based on set-theoretic foundations, we are used
to element-wise reasoning. In order to show that two functions f,g: X — Y
are distinct, we seek to find an element = € X such that f(z) # g(x). This
hinges on the observation that two functions (with the same domain and
codomain) are equal if, and only if, they coincide at each element of their
domain. Similarly for continuous maps between topological spaces, group
homomorphisms, linear maps between vector spaces, and so forth.

This simple principle, which is an intrinsic part of the “logic of sets”
(and is a consequence of the aziom of extensionality in set theory), does not
hold in all categories. In fact, the notion of element is not even available in

IThis implies that any diagram in this category commutes!
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an arbitrary category. For this reason, it is important to learn to reason in
terms of arrows, rather than elements.?

A first useful observation is that, when comparing arrows, equations
can be rephrased in terms of commutative diagrams. Consider for instance
arrows f: A— B,g: B— D, h: A— C and i: C — D. Then the equation

gof=ioh

holds if, and only if, the following diagram commutes:

ALB

o
C —5D
This sort of rephrasing is at the base of diagrammatic reasoning, which is
pervasive in category theory.
Many mathematical notions that are usually defined in terms of elements
admit purely arrow-theoretic reformulations which can be used to generalise

these concepts to arbitrary categories. Take, for instance, the notion of
bijection: a function f: X — Y between sets is bijective if

VyeY Jlz e X. f(z) =y.

We can avoid any reference to the elements of X and Y by noting that f is
a bijection precisely when there exists a function g: Y — X such that

gof=idx and fog=idy.

The latter property only mentions arrows and makes sense in any category.

Definition A.7. An arrow f: A — B in a category C is an isomorphism if
there exists an arrow g: B — A such that

gof=idy and fog=idp.

If there exists an isomorphism A — B, we say that A is isomorphic to B
and write A = B.

Exercise A.8. Show that the isomorphisms in the category Mon of monoids
are precisely the bijective monoid homomorphisms. A

Exercise A.9. Prove that the isomorphisms in the category Str(c), for any
relational signature o, are precisely the o-isomorphisms, i.e. the bijective
functions f: A — B such that, for each relation symbol R € o of arity n,

(a1,...,an) € RY <= (f(a1),...,f(an)) € RB.

2Having said that, (generalised) elements can be defined in a large class of categories,
and the question of whether a category has enough elements is of interest in several
contexts, such as topos theory or categorical logic. For example, Gédel’s Completeness
Theorem is equivalent to the statement that a certain category has enough elements.
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Give an example of a bijective o-homomorphism that is not an isomorphism.
A

Exercise A.10. Describe the isomorphisms in the category Pos of posets.
A

Note that every isomorphism f in a category satisfies the conditions
fog=foh = g=h
and
gof=hof = g=h
whenever the compositions are well defined. These cancellation laws define
two important classes of morphisms in any category:
Definition A.11. Let f: A — B be an arrow in a category €. We say that

e f is monic (or a monomorphism) if, for all arrows g,h: C — A,
fog=foh = g=nh.

e fis epic (or an epimorphism) if, for all arrows g,h: B — C,
gof=hof — g=h.

Exercise A.12. Prove that, in Set, the monomorphisms and epimorphisms
coincide, respectively, with the injective and surjective functions. Conclude
that, in Set, a morphism that is both monic and epic is an isomorphism. A

Exercise A.13. Give an example of a category admitting an arrow that is
both epic and monic, but not an isomorphism. A

Exercise A.14. Show that a morphism in Mon is monic if, and only if,
it is an injective monoid homomorphism. Is every epimorphism in Mon
surjective? A

Exercise A.15. Prove that, in the categories Pos, Forests and Str(c), the
monomorphisms and epimorphisms are those morphisms whose underlying
function is, respectively, injective and surjective. A

By definition, a morphism in a category has a domain and a codomain;
this is akin to the case of directed graphs, where edges have a source and a
target. Given an arbitrary category C, we can construct a new category C°P
by reversing the direction of arrows in €. That is, an arrow A — B in C°P
is defined to be an arrow B — A in €. Formally:

Definition A.16. The opposite category C°P of a category C is defined by
ODb(C°P) := Ob(C) and, for all objects A, B of C°P, C°P(A, B) = C(B, A).
Identities in C°P are the same as in C, and the composition g o f in C°P is
defined as fog in C.
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For example, let (P, <) be a poset regarded as a category as explained in
Example A.6. Its opposite category can be identified with the poset (P, <°P)
obtained by turning the order of P upside down. That is, for all z,y € P,

<Py = y<u

The passage from a category to its opposite is a purely formal operation
but is at the heart of deep connections between e.g. algebra and geometry
(mathematics), syntax and semantics (logic), and observables and states
(physics). This is the subject of duality theory.

For now, it suffices to mention the following fact, sometimes referred to
as principle of duality: An arrow-theoretic statement ¢ holds in a category
C precisely when the dual statement (obtained from ¢ by reversing the
direction of arrows) holds in C°P.

Exercise A.17. Prove that an arrow in a category C is monic (respectively,
epic) if, and only if, it is epic (respectively, monic) in C°P. A

A.3. Functors

At the heart of category theory is the idea that morphisms between
objects are as important as the object themselves. So, having defined the
notion of category, it is natural to ask what is a “morphism of categories”.

Definition A.18. A functor F: € — D from a category C to a category D
consists of:

e A map Ob(C) — Ob(D) that assigns an object F'A of D to every
object A of C.

e For all A, B € Ob(C), a map C(A, B) — D(FA, FB) that assigns
an arrow Ff: FA — FB in D to every arrow f: A — B in C,
preserving compositions and identities:

F(gof)=FgoFf and F(ida) =idpa.

Trivial examples of functors are obtained by considering a subcategory
C of a category D. Then there is a functor € — D that acts as the inclusion
on both the objects and arrows.

What is a functor from a poset P to a poset () (regarded as categories)?
The object map is simply a function F': P — (). On arrows, whenever x,y €
P satisfy x < y, we must assign an arrow F f: Fo — Fy to the unique arrow
x — y. But if there exists an arrow Fx — F'y, it is unique. So, this amounts
to saying that F'is monotone. Note that the requirement that compositions
and identities be preserved is trivially satisfied, as any diagram in a poset
commutes. Therefore, functors between posets are precisely monotone maps.

Further examples of functors are presented in the following exercises.

Exercise A.19. For any set X, denote its power-set by PX. Furthermore,
given a function f: X — Y between sets, let Pf: PX — PY be the direct
image map that sends a subset S C X to f[S] = {f(z) € Y | x € S}.
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Show that these assignments yield a functor P: Set — Set, known as the
(covariant) power-set functor. A

Exercise A.20. Given a set X, let X* denote the monoid of all finite
lists (i.e., sequences) of elements of X. The monoid operation of X* is
given by concatenation of lists, and the identity element is the empty list.
If f: X — Y is a function between sets, then f*: X* — Y™ sends a list
[€1,..., 2] to [f(x1),..., f(zn)]. Show that this construction determines a
functor Set — Mon. A

Exercise A.21. For any set X, let F'.X be the set of all non-empty finite
lists of elements of X. We equip F'X with a partial order defined as follows:
for all s,t € FX, s < t if and only if s is a prefix of t. Any function
f: X — Y induces a map FX — FY that sends a (non-empty) sequence
[®1,...,2n] to [f(x1),..., f(xn)]. Prove that these data define a functor
Set — Forests. A

Exercise A.22. Given a forest X, let X be the tree obtained by adding
a least element to X. Any forest morphism X — Y can be extended to a
forest morphism X, — Y, by sending the root of X to the root of Y.
Check that this gives a functor Forests — Trees. A

Many examples of functors arise from “forgetting” part of the structure;
these are generally (and informally) referred as forgetful functors. For ex-
ample, given a group (G, g, 1lg), we can forget its algebraic structure and
only retain the information about its underlying set G. Similarly, if f is a
group homomorphism from (G, -, 1) to (H, g, 1x), we can simply regard
f as a function G — H. These assignments determine a forgetful functor

Grp — Set.

Likewise, we can define a functor Grp — Mon by only retaining the monoid
structure of groups and group homomorphisms.

In the same way that morphisms in a category can be composed (when-
ever the codomain of one matches the domain of the other), functors between
categories can be composed. If F': B — € and G: € — D are functors, then
there is a composite functor

GF:B—D

that sends an object A of B to the object GF'A of D, and an arrow f: A —» B
in B to the artrow GFf: GFA — GFB in D.

Notation A.23. Given a functor F': ¢ — €, we sometimes denote the
composite FF: € — € by F?. Similarly, F? stands for FFF, and so forth.

Moreover, any category C admits an identity functor
ide: € — €

that acts as the identity on both objects and morphisms. This suggests
that categories, together with functors between them, form themselves a
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category. This is indeed the case, but a precise definition requires extra care
so as to avoid Russell’s paradox (“the set of all sets is not a set”).

Exercise A.24. Define a chain of functors
Forests — Pos — PreOrd — Set

whose composition is the obvious forgetful functor Forests — Set. A

An important role is played by set-valued functors, i.e. functors € — Set.
If we regard the category of sets and functions as the “universe” where ordi-
nary (classical) mathematics is carried out, set-valued functors correspond
to interpretations (e.g. of theories) in this universe. This is the perspective
adopted in categorical logic, where models of a theory are defined as set-
valued functors satisfying appropriate properties. It is therefore pertinent
to ask if, for any category C, there are any functors € — Set. The answer
is yes—whenever C satisfies a mild set-theoretic “smallness condition”.

Definition A.25. Let C be a category and suppose that, for all A, B €
Ob(C), the collection C(A, B) is a set (as opposed to a proper class). Then
C is said to be locally small.

Any object A of a locally small category € determines a hom-set functor
C(A,—): C— Set

that sends an object B of C to the set C(A, B), and an arrow f: B — C in
C to the function

C(A4, f): C(A,B) = C(A,C), g fogy.

Properties of functors. In the same way that we discussed properties of
arrows (e.g., being monic, epic, or an isomorphism), it is useful to consider
properties that a functor may, or may not, satisfy.

Definition A.26. A functor F': ¢ — D is said to be faithful (respectively,
full) if, for all objects A, B of C, the map

C(A,B) —» D(FA,FB), fw— Ff
is injective (respectively, surjective).
Note that, if € is a subcategory of D, then the inclusion functor € — D
is always faithful, and is full precisely when € is a full subcategory of D (see

Definition A.3).
Typically, forgetful functors are faithful but not full.

Exercise A.27. Prove that the forgetful functors Mon — Set and Pos —
Set are faithful but not full. A

Exercise A.28. Consider the functors Set — Mon and Set — Forests
introduced, respectively, in Exercise A.20 and Exercise A.21. Are they faith-
ful? Are they full? A
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Exercise A.29. Show that every functor preserves isomorphisms, but need
not preserve monomorphisms nor epimorphisms. A

Note that the composition of faithful functors is again faithful, and the
composition of full functors is full (check this!).

Definition A.30. A functor F': € — D is an isomorphism if there exists a
functor G: D — € such that

GF =ide and FG =idyp.

If it exists, the functor G in the previous definition is unique and referred
to as the inverse of F.

Exercise A.31. Prove that the functor Forests — Trees defined in Exer-
cise A.22 is an isomorphism. Describe its inverse. A

If a functor is an isomorphism, then it is full and faithful (why?). How-
ever, the notion of isomorphism is typically too strong. This leads to the
weaker concept of equivalence which will be introduced in the next section
(see Definition A.40).

A.4. Natural transformations

We have seen that categories consist of objects and morphisms between
them, and moreover there is an appropriate notion of morphism between
categories—namely, functors. One could go further and consider morphisms
of morphisms of categories, morphisms between the latter, etc. This is the
framework of higher category theory; in the present notes we shall only take
one more step and discuss “morphisms between functors”.

Definition A.32. A natural tranformation o: F — G between functors
F,G: C— D is a collection

{ag: FA— GA| A Ob(C)}
of arrows in D indexed by objects of C satisfying the following naturality
condition: For all arrows f: A — B in C, the following square commutes.

ra -, rp

o | Je

aa -, 6B

The morphism a4 is called the component of o at A.

Example A.33. Consider the (covariant) power-set functor P: Set — Set
defined in Exercise A.19, along with the identity functor idget: Set — Set.
We show that there is a natural transformation

n: idget — P
whose component at a set X is the function

nx: X - PX, z— {z}.
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To this end, we must verify that the following square commutes for all
functions f: X — Y between sets:

x I .y

WXJ/ lﬁy
Pf
PX —— PY
In turn, this follows by observing that, for all x € X,

(ny o f)(z) = ny (f(x)) = {f(x)} = Pf({z}) = (Pfonx)(z). A

Exercise A.34. As in the previous example, consider the (covariant) power-
set functor P: Set — Set. Show that there exists a natural transformation

w: PP — P
whose component at a set X is the function

px: PPX - PX, Sw—[]JS a

Exercise A.35. Let F: Set — Mon be the functor defined in Exer-
cise A.20, and let U: Mon — Set be the forgetful functor. Recall that,
for all sets X, F'X is the monoid of finite lists of elements of X, hence UF X
is the set of finite lists of elements of X. Denoting the composite functor by
T :=UF: Set — Set, check that there is a natural transformation

n:idget = T

whose component at a set X is the function
nx: X - TX, zw [x]
Moreover, show that there is a natural transformation

w:TT —T

whose component at X is the flatten map
px: TTX — TX,

(z11s s @ing s @ty s T )] 2 (100 Tlngs ooy Thols - -+ s Thong -

Note the similarity between these natural transformations and those
defined for the power-set functor P in Example A.33 and Exercise A.34.
These are two instances of the same concept, namely that of monad. See
Appendix A.5. A

Exercise A.36. Let F': Set — Forests be the functor defined in Exer-
cise A.21, and consider the composite functor G := UF: Set — Set where
U: Forests — Set is the forgetful functor. For every set X, GX is the set
of all non-empty finite lists of elements of X. Verify that there is a natural
transformation

e: G— idSet
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whose component at X is the map sending a list to its last element:
ex: GX = X, [x1,...,25] = zp.

(Note that ex is well defined because F'X consists of non-empty lists!)
Furthermore, show that there is a natural transformation

0: F— GG
whose component at X sends a list to the list of its (non-empty) prefixes:
dx: GX = GGX, [r1,...,xs) — [[x1], [T1,22], .., [X1, .. 20]]. A

Functor categories. To give a precise meaning to the assertion that nat-
ural transformations are morphisms of functors, we introduce the notion of
functor category. For any two categories C, D, there is a category

€, D]

whose objects are functors F': € — D and whose arrows are natural trans-
formations. Given a functor F': € — D, its identity is the natural transfor-
mation a: F' — F such that, for all objects A of C, a4 = idp4. Natural
transformations can be composed in the obvious way: if a: F — G and
B: G — H are natural transformations, then their composite is the natural
transformation

fa: F — H, (Boa)s:=[fa0au.

Exercise A.37. Verify the statements in the previous paragraph and check
carefully that [C, D] is indeed a category. A

What are the isomorphisms in a functor category?

Definition A.38. Let a: FF — G be a natural transformation between
functors F,G: € — D. If all components of « are isomorphisms in D, then
« is called a natural isomorphism.

Exercise A.39. Prove that the isomorphisms in a functor category [C, D]
are precisely the natural isomorphisms. A

We can use the notion of natural isomorphism to weaken the concept of
isomorphism between categories. This is akin to the passage from homeo-
morphism to homotopy equivalence in topology.

Definition A.40. A functor F': € — D is an equivalence if there exists a
functor G: D — € and natural isomorphisms

a: GF —ide and B: FG — idp.

If there exists an equivalence € — D, we shall say that C is equivalent to D
and write C ~ D.

When D = Set, the objects of [C, Set] are set-valued functors defined
on C. Likewise, one can consider the functor category [C°P, Set] of set-valued
functors defined on the opposite category C°P. These play a central role in
category theory and are called presheaves on C. The category of presheaves
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on C is in general much larger than the original category C, yet it admits
a copy of C as a full subcategory. This is known as the Yoneda embedding,
which we recall below.

Exercise A.41. Let 2 denote a category with precisely two objects, their
identities, and two distinct parallel morphisms. This category can be de-
picted as follows (where we omit the identity arrows for convenience):

-
[ ] [ ]
-

Show that the functor category [2,Set] is isomorphic to the category of
simple, directed (multi)graphs and graph homomorphisms. A

Exercise A.42. Consider the ordered set (N, <) of natural numbers as a
category (see Example A.6). Prove that the category [N°P, Set] of presheaves
on N is equivalent to Forests. A

Recall the notion of hom-set functor defined on Page 30. Every object
of a locally small category C induces a presheaf

CP(A,—)=C(—,A): CP — Set.
Further, any arrow f: A — B in € induces a natural transformation
C(—,A) —» C(—,B)
whose component at an object C' of € (equivalently, of C°P) is the function
C(C,A) — C(C,B), g~ fog.

(Check that this is indeed a natural transformation!) This determines a
functor € — [C°P, Set].

THEOREM A.43 (Yoneda embedding). Let C be a locally small category.
The functor
C — [C°P Set], A+ C(—,A): CP — Set
is full and faithful.

A.5. Monads and comonads

Together with the notions of functor and natural transformation (and
that of adjunction, to be discussed in Appendix A.7), the concept of monad
is one of the pillars of basic category theory. Its importance is in large part
due to the fact that it shows how a number of constructions throughout
mathematics are instances of the same abstract notion. Monads are perva-
sive in algebra, but appear also in topology, probability theory, functional
programming, and other areas. The dual notion, that of comonad, is equally
important but perhaps less familiar to many researchers. We shall present
both notions, but focus in particular on comonads as they play a key role
in relation with finite model theory.

Monads and comonads are functors of type € — C, i.e. from a category
to itself, satisfying appropriate properties. The intuitions are very different
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though: whereas monads encode ways to combine distinct parts or elements,
comonads correspond to decompositions (or unravellings) of an object.

To make this idea more precise, let us look at the case of monads first.
Consider a monoid (M, -,1): the monoid operation - tells us how to combine
any two elements of M, and 1 is the identity element for this operation. In a
sense, monads are generalised monoids.? As such, they come equipped with
a multiplication and an identity satisfying the usual monoid laws.

Definition A.44. A monad on a category C is a tuple (7, u,n) where

e T: C — Cis a functor,
e 1 T? — T is a natural transformation, called multiplication,
e 7): ide — T is a natural transformation, called unit,

such that the following diagrams commute for all objects A of C:

T34 T4, 724 TA 174, 724
N
T#Al LMA Tna idpa l/m
N
724 HA 5 TA T2A 245 TA

In the previous definition, T2 denotes the composite functor 7T, and
similarly for 7°; see Notation A.23.

Example A.45. Recall from Exercise A.35 that there is a functor 7': Set —
Set that assigns to a set X the set of all finite lists of elements of X, and it
comes equipped with natural transformations

p:T? > T and n:idge; — 7.

The components of i are the flatten maps that transform a list of lists into
a list, e.g. [[z, 9], 2], [y]] is sent to [z,y, z,y], and the components of 1 send
an element x to the one-element list [z].

The tuple (T, u,n) is a monad on Set, called the free monoid monad.
This amounts to saying that the diagrams in Definition A.49 commute for all
objects of Set. We give a “proof by example”; the formal proof follows the
same ideas (with some extra bookkeeping) and is left to the reader. Suppose
we have a set X = {x,y, z}. For the left-hand diagram in Definition A.49,
we must consider an element of 73X, i.e. a list of lists of lists of elements of

X. For instance,
[[l], [z, 91l ([, y, ]]]-
Chasing this element around the diagram, we get:

HTX

(2], [, 9], [l y, 1)) = [[=], [z, 9], [, , 2]]

i Jox

Hwia y]a [x,y, ZH ’M—X> [37,33, Y, X, Y, Z]

3This is a small lie: the truth is that a monad is (a special case of) a monoid, namely
a monoid object in the functor category [C, C].
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The right-hand diagram in Definition A.49 is easier to check: given an ele-
ment of TX, say [z,y,y, x|, we have:

2,9,y 7] — 2 [[2, Y, y, ]

~
TWXI ldTX\ IMX
(1], 1), [y, [2]] === [2,9. 9, 2]
A

Exercise A.46. Fill in the details of the proof in Example A.45. A

It is instructive to look at what is a monad on a poset (regarded as a
category according to Example A.6). Let (P, <) be a poset, and let (T, 1, n)
be a monad on P. Then T': P — P is a monotone map (cf. the discussion
on Page 28), and for each x € P the component of p at x yields an arrow
e T?x — Tx. That is,

T2z <Tux.
Similarly, the component of n at z yields an arrow 7,: x — Tz and so
r<Tzx.

By monotonicity, applying 7" to both sides of the latter inequation we obtain
Tz < T?z and therefore

Tz = Tx.

In other words, T is a closure operator on P.

Definition A.47. A closure operator on a poset P is a monotone map
t: P — P that is

(1) increasing, i.e. for all z € P, z < tx, and
(2) idempotent, i.e. for all z € P, t?x = tx.

Exercise A.48. Show that monads on posets are precisely the closure oper-
ators. That is, for any closure operator t: P — P there exist unique natural
transformations p and 7 such that (¢, 4, 7) is a monad on P. A

Therefore, a monad on a poset is akin to the modality ¢ in modal logic,
and dually the modal operator [ is an instance of a comonad.

A comonad on a category € can be succinctly defined as a monad on the
opposite category C°P. More explicitly:

Definition A.49. A comonad on a category C is a tuple (G, d,e) where

e G: C — Cis a functor,
e §: G — G? is a natural transformation, called comultiplication,
e ¢: (G — ide is a natural transformation, called counit,

such that the following diagrams commute for all objects A of C:
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GA 245 24 GA 245 24
N
5/{ l(SGA oA idga iEGA
N
G2A 04, 34 G2A A5 aa

When defining comonads (and similarly, monads), there are a number
of things to be verified: one should give a functor, two natural transforma-
tions, and check that the appropriate diagrams commute. We now recall an
equivalent description of comonads that allows us to reduce these verifica-
tions and is very useful in concrete cases; a similar description for monads
is of course available using the principle of duality.

Definition A.50. A comonad in Kleisli-Manes form on a category C is
given by:

e an object map G: Ob(€) — Ob(C),

e a morphism €4: GA — A for every A € Ob(A),

e a coextension operation associating with any morphism f: GA — B
a morphism f*: GA — GB.

These must satisfy the following equations for all morphisms f: GA — B
and g: GB — C:

ea=idga, epofr=f, (gof) =g of" (A1)

Given a comonad in Kleisli-Manes form, we can extend the object map
G: Ob(€) — Ob(C) to a functor € — € by setting

Gf=(foea)

for every morphism f: A — B. Furthermore, the arrows d4 = idg, are
the components of a natural transformation §: G — G?, the arrows €4 are
the components of a natural transformation €: G — ide, and (G, d,¢) is a
comonad on C.

Exercise A.51. Prove that, conversely, every comonad on € induces a
comonad in Kleisli-Manes form, and the two assignments are inverse to each
other. (Hint: define the coextension of f: GA — B as f* :=Gfods.) A

Example A.52. We define a comonad on Set using the Kleisli-Manes form.
The object map

G: Ob(Set) — Ob(Set)

sends a set X to the set of all non-empty finite lists of elements of X. For
each set X,

ex: GX = X, [z1,...,2p] = 2y

is the function sending a list to its last element. Finally, the coextension
operation sends a function f: GX — Y to the function

[ GX = GY, [x1,...,z5] = [f([z1]), f([x1,22]), .o, f([21, .-, 20])]-
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It remains to show that the equations
ex =ldgx, eyofi=/f, (gof) =g of
are satisfied for all functions f: GX — Y and ¢g: GY — Z. So, we fix an

arbitrary element [z1,...,z,] € GX and compute:
ex([z1, ..., 2n]) = [ex([z1]), ex([z1, 22]), - . -, ex ([z1, - - -, 2n))]
= [x1,...,2p],
ey o f) [z, zn]) = ey ([f([z1]), -, f[z1, - 2a])])
= f([l‘la s al'n]),
(go f) ([wr, - an]) = [(go f)([x1]), .-, (g0 )21, - - -, zn])]

= [o([f ( V) --- [ ([za])s - f([21, - 2n])])]
= ([ ([ ])7 ([mlr"’xn])b
= (g )([3?17 Tn))-

The associated comonad ( ,0,¢) is the one described in Exercise A.36
(check this!). A

Exercise A.53. Prove that comonads on a poset P are precisely the interior
operators on P, i.e. the monotone maps g: P — P that are

(1) decreasing, i.e. gx < x for all z € P, and
(2) idempotent, i.e. g’z = gz for all x € P.

Either give a direct proof or use Exercise A.48 combined with the principle
of duality. A

A.6. Kleisli and Eilenberg—Moore categories for a comonad

Monads and comonads induce, respectively, categories of algebras and
categories of coalgebras. For example, algebras for monads over Set essen-
tially correspond to varieties of algebras in the sense of universal algebra.*
In this section, we shall focus exclusively on coalgebras for comonads, as
these are relevant in connection with finite model theory.

Given a comonad, there are two categories of coalgebras that are worth
looking at: the Kleisli category is the “minimal” one and consists only of the
co-free coalgebras, whereas the Eilenberg—Moore category is the “maximal”
one and consists of all coalgebras. The former is easier to describe, but
some constructions require working in the latter category. Let us start by
introducing the Kleisli category of a comonad:

Definition A.54. Let G be a comonad (in Kleisli-Manes form) on a cate-
gory C. The Kleisli category of G, denoted by K(G), is defined as follows:

¢ Ob(K(G)) = Ob(C).

4To make the statement precise, one should restrict to those monads on Set that are
finitary, i.e. that preserve so-called directed colimits.
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e For all A, B € Ob(C), K(G)(A, B) = C(GA, B).
For any two arrows f € K(G)(A, B) and g € K(G)(B, C), their composite
is defined as the following composition in C:
ca-L a2
The identity id4 € K(G)(A, A) is the arrow e4: GA — A in C.

Exercise A.55. Verify that K(G) is a category. That is, the composi-
tion operation is associative and the identity arrows are identities for the
composition operation. A

To get a better intuition of the Kleisli category, it is useful to compare
it to the Eilenberg—Moore category.

Definition A.56. Le G be a comonad on a category €. An Filenberg—Moore
coalgebra for G is a pair (4, «) such that A € Ob(C), o € C(A,GA), and
the following diagrams commute.

A—25 GA A—25 GA
o e
A GA =25 G2A

The arrow « is called the structure map of the coalgebra. A morphism of
Filenberg—Moore coalgebras (A,«) — (B, ) is an arrow f € C(A, B) com-
patible with the structures maps, i.e. making the following square commute.

A%B

| b

GA*>GB

Definition A.57. Let G be a comonad on a category C. The Eilenberg—
Moore category of G, denoted by EM(G), consists of the Eilenberg—Moore
coalgebras for G and their morphisms. Compositions and identities are the
obvious ones.
For any comonad G, there is a functor
V: K(G) - EM(G).
At the level of objects, V sends A € Ob(K(G)) = Ob(€) to (GA,d4). With
regards to morphisms, V assigns to an arrow f € C(GA, B) the arrow f*.
Proposition A.58. Let G be a comonad on a category €. Then
V: K(G) - EM(G)
s a full and faithful functor.
ProoF. We first check that V is well defined. Let A be an arbitrary

object of K(G). To show that (GA,d4) is an Eilenberg-Moore coalgebra,
we must prove that the following diagrams commute.
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GA A, 24 GA A, 24

idh \LEGA 5Al l(SGA
GA

G2A -S04, 34

In turn, this follows at once from the fact that G is a comonad (see Defini-
tion A.49).

Now, fix an arbitrary arrow f in K(G), i.e. f € C(GA, B). To see that
f*: GA — G B is a morphism of Eilenberg—Moore coalgebras, we must check
that the following square commutes.

A - aB

w e

c2A S5, a2
To this end, recall that
ff=Gfoda (A.2)

for all arrows f: GA — B (see Exercise A.51). In particular, id, = da.
Thus,

Gffodg=f" Eq. (A.2)
= (idgp o f*)"
=idggo f* 3'd equation in Eq. (A.1)
=odpo f*.

The fact that V preserves compositions and identities is an immediate
consequence of the third and first equations, respectively, for a comonad in
Kleisli-Manes form (check the details!).

It remains to show that V is full and faithful. Faithfulness is clear: just
observe that, for all f,g € C(GA, B), f* = g* implies

f=epofi=epog'=g

by virtue of the second equation for a comonad in Kleisli-Manes form.
To establish fullness of V, let g: (GA,04) — (GB,dp) be a morphism of
Eilenberg-Moore coalgebras. We have

(epog) =G(epog)oda Eq. (A.2)
=GepoGgody G is a functor
=(Gepodpog g coalgebra morphism
=cphog, Eq. (A.2)

which coincides with g by the first equation for comonads in Kleisli-Manes
form. Note that ep o g € C(GA, B) = K(G)(A, B), hence V is full. O
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Let us look at an example. Consider the comonad G on Set defined in
Example A.52. Recall that, for any set X, GX is the set of non-empty finite
lists of elements of X, and a function f: X — Y is sent to the function

Gf: GX = GY, [x1,...,zp] = [fx1,..., fz,].
We claim that there is an isomorphism of categories
EM(G) = Forests.

Suppose (X, «) is an Eilenberg—Moore coalgebra for G. The set GX
carries a natural forest order, namely the prefix order. The commutativity
of the first diagram in Definition A.56 tells us that ex o = idx and so
the structure map a: X — GX is injective. Hence the forest order on GX
induces a partial order on X given by

r<y < a(r) <ay)

for all z,y € X. To show that this is a forest order on X, it suffices to show
that the image of « is a downwards closed subset of GX (why?). That is,
any element of GX that is below some element in the image of « is also in
the image of a.

Fix an arbitrary = € X and suppose that a(z) is of the form [z1, ..., ;]
(incidentally, note that x,, = = because ex o & = idx ). The commutativity
of the second diagram in Definition A.56 implies that

[a(z1),...,a(zpn)] = [[x1], -y [21, - o 2]

But any element that is below a(x) in the prefix order of GX is of the form
[x1,...,x;] for some j € {1,...,n}, and in view of the previous equation all
these elements are in the image of a.

Therefore, any structure map a: X — GX defines a forest order on X.
Further, the coalgebra morphisms preserve these forest orders. To see this,
suppose that f: (X,a) — (Y, ) is a morphism of coalgebras, i.e. the follow-
ing square commutes.

x 1 .,y

o

An element = € X is a root precisely when a(a:) = [z] (why?), and similarly
for elements of Y. Thus, f preserves roots because a(x) = [z] entails

A(fz) = [fz].
To see that f preserves the covering relation, suppose that x, 2’ € X satisfy
z <z and a(z’) = [x1,...,2,]. Observe that x < 2z’ if and only if fz < fz'
(why?), and so a(x) = [z1,...,2p—1]. The commutativity of the previous

square yields

B(fx) =[fz1,... fona] and B(fa') = [fr1,..., fan]
which shows that S(fx) < B(fz').
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It is straightforward to check that compositions and identities are pre-
served, hence this construction of a forest order from a structure map gives
a functor

EM(G) — Forests.

Conversely, given a forest order (X, <), let «: X — GX be the function
that sends © € X to the list [z1,...,2,] of (non-strict) predecessors of z.
That is, z; is a root and

Tl < < Ty =T

The first diagram in Definition A.56 commutes simply because the last ele-
ment of the list a(z) is z, and the second diagram commutes by definition
of a (check this!). In other words, (X, «) is an Eilenberg—Moore coalgebra.
Furthermore, any forest morphism f: (X, <) — (Y, <) preserves the corre-
sponding structure maps because, for all x € X, if the predecessors of x are
x1 < -+- < x then the predecessors of fz are fzy < -+ < fx (spell out the
details of this argument!).

Again, it is clear that compositions and identities are preserved, so we
obtain a functor

Forests — EM(G).

Exercise A.59. Prove that the functors EM(G) < Forests defined above
are inverse to each other. A

What is the Kleisli category K(G) of the comonad G? By Proposi-
tion A.58, combined with the previous discussion, it can be identified with
the full subcategory of Forests defined by the forests of the form GX (en-
dowed with the prefix order).

A.7. Adjunctions

Note. This section will appear in due course. Familiarity with adjunc-
tions is not necessary for most of the material in the course, and this notion
will be recalled in the lectures when needed.

Adjunctions are a fundamental notion in category theory and provide a
vast generalisation of free constructions such as free groups, free modules,
etc. This is related to the fact that every adjunction induces a monad—and
every monad arises from an adjunction (not a unique one, though).

Importantly, adjunctions have a symmetric nature. In fact, every ad-
junction induces not only a monad but also a comonad, and every comonad
arises from some adjunction.
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