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Summary of Day 2

Woas discussed:

o Model comparison games capture relationships in logic.

e Forth-only versions of some games modelled semantically as
G(A)— B
o These constructions satisfies axioms of a comonad (G, ¢, (-)*):

ea=ldga)y epofi=f (gof") =g'of”

Obvious questions:

e What can we use from the theory of (co)monads?

o Generic proofs by employing categorical tools?



FUI’ICtOI‘S (from day 1)

Recall, functors are “homomorphisms of categories”.

A functor F: € — Z is given by

e a mapping on objects F: Ob(%) — Ob(2)

e a mapping on morphisms, for every A/ B € €,
F:%(A B)— 2(F(A), F(B))
which preserves identities and compositions:

(ldA) ldF (A)
F(fog)=F(f)oF(g)



Example: comonads extend to functors!

Given a comonad (G, e, (-)*) on €, define
f:A=B — G(f): G(A) = G(B)
G(f) = (foea)
G is a functor € — € as
G(ida) = (idacea)” = (ea)" = idg(a)
G(f)oG(g)=(foe) o(goe) = (foco(goe))*
=(fogoe)*=G(fog)

Example
For h: A— B in Str(o), the functor E4(h): Ex(A) — Ex(B)
maps [a1,...,ap| to [h(a1),..., h(an)].



Eilenberg—Moore coalgebras

Given a comonad (G, ¢, (-)*) on &, for every A € Ob(G), define
the comultiplication

Sa: G(A) — G(G(A))

as the morphism (idg(a))*-

Then, a morphism a: A — G(A) is a G-coalgebra on A if

A A—2 G(A)
I T
G(A) —— A G(A) 2 G(G(A))

(ile. caca=id and Jaoa = G(«o) o )



Origins — Dual notions

Algebras as functions in Set
F(A) — A
E.g. for signature ¥ = {V, =} and F(A) = (Ax A)W A

functions (Ax A)W A — A =~ X-algebras (A,V, )

Correspondence (X signature, £ equations) <«— monads T

. AT ) T S T
Alg(z,e)g{ T(A) —— A | d\ Jo @nd | Lo }
A A

T(A) —>



Example: List comonad

Define a comonad on Set

List: Ob(Set) — Ob(Set), A+~ {[a1,...,an] | ai € A}

The counit is
ea: List(A) — A, [a1,...,an] — an
and, for a function f: List(A) — B, define
f*: List(A) — List(B)

by [a1,...,an] — [b1,...,bn] where b; = f([a1,...,ai])



Example: List-coalgebras, the first axiom

imposes

[al,...,an]@an



Example: List-coalgebras, the second axiom

A " List(A)
o| 2
List(A) —=, [igt(List(A))
imposes
a @ [a1,- .., an]
Jo
* [[a1], [a1, @2], - - - s [a1, - - - s an]]
1l
List(«
a1, an] —22 s Taan),. .. alan)]
Therefore

a(aj) = a1, .., aj]



Example: List-coalgebras, the second axiom: forest order

For, w,w’ € List(A), write

wCw for wis a prefix of w
Consequently,
o If a(a) = [a1,...,an] then a(a;) T ofa)) iff i <.
e The set {a1,...,an} is a chain in the <,-order where
a<,ad <= aa)Cad)

o <, defines a forest order:
o (A, <,) is a poset
e Vac A Ja={xe€ A|x <, a}is afinite chain.



Example: List-coalgebras, recovering from forest orders

For a poset (A, <) where < is a forest order, define

a<: A — List(A)

by setting
ag(a) = [al, ey an]
where
la={a1,...,a,} isthechain aj<---<a,=a
Exercise

The mapping a< is a List-coalgebra.
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Example: List-coalgebras, finale

Proposition

For any set A € Set, there is a bijective correspondence between

e coalgebras A — List(A)

o forest orders < on A

Proof.

It is enough to observe that a = a<, and < =< [
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Morphisms of G-coalgebras

G-coalgebras form a category

EM(G)
o Objects: (A, o) where a: A — G(A) is a G-coalgebra

e Morphisms: (A, a) — (B, 3) are morphisms f: A— B in ¢
such that
A—" 4B

| |

c(A) 29 6B

Exercise: Check that EM(G) is a category.
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Example: morphisms of List-coalgebras

Proposition
Given List-coalgebras (A, a), (B, 3) and a function f: A — B,
the following are equivalent:

e f is a coalgebra morphism (A,a) — (B, ), ie.

A—Tf B

| l

List(4) 2= List(B)
e f is a forest morphism (A, <,) — (B,<p) ie.

o f preserves roots (i.e. minimal elements)
e a<ad = f(a)<f(d)

where a < a' iffa< ad anda<z<a impliesa=zora = z.
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Example
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Theorem
The category EM(List) is isomorphic to the category of forest
orders and forest morphism.
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Coalgebras of E,, P, M,



[E.-coalgebras

Proposition
There is a bijection between coalgebras a.: A — Ex(A) and

compatible forest orders < on A of depth at most k
that is, relations < on A such that
(T1) < is a forest order

(T2) la has at most < k elements, for every a € A

(T3) (a1,...,a,) € RA implies a; < aj or aj<aj (vi,j)

(a1,...,an) € RA implies (a(ay), ..., a(a,)) € REA) je.
- a(a) Ea(a) or a(a)Ca(a) (Vi)
- (e(a(ar)), .- e(a(an))) = (a1,---,an) € RA  V (i) O
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Exercise

Given graphs

%

what are the minimal k such that they admit an [E,-coalgebra?

Answer

O —-—T-0—Q

1—2—3—4—5—6—7

\\//\\ A
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P,-coalgebras

Proposition

There is a bijection between coalgebras ac: A — Px(A) and
compatible k-pebble forest orders <,p on A

that is, relations < and pebbling functions p: A — {1,..., k}

satisfying

(T1) < is a forest order
(T3) (a1,...,an) € RA implies
e a;<a; ora<a (Vi7j)-
°Vz a<z<a = p(a)# p(2)
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Exercise
Given graphs

e—f—g—h—i—j—k

i

what are the minimal k such that they admit an Py-coalgebra?
Answer

4.d 0§
|
3,Cc
|

2.b
| .
1,a 2, f

1, e 19



M -coalgebras

Proposition
There is coalgebra a: (A, a) — My(A, a) iff
(A, a) is a synchronization tree of depth at most k

i.e., for every x € A, there is a unique path of length < k

Ry R> Rn
a—a — ... — X

In fact, synchronization trees are automatically forest ordered:

x <y <= (x,y) € R* fora (unique) binary R € ¢

20



Theorem (Abramsky—Shah, 2021)
EM(Ey) is isomorphic to the category with

e objects: o-structures with a compatible forest order of depth
at most k

e morphisms: homomorphisms of o-structures that are also
forest morphisms.

Theorem (Abramsky—Shah, 2021)
EM(Py) is isomorphic to the category with

e objects: o-structures with a compatible k-pebble forest order

e morphisms: homomorphisms of o-structures that are forest
morphisms and preserve the pebbling function.
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Theorem (Abramsky—Shah, 2021)
EM(My) is isomorphic to the category with

e objects: synchronization trees of depth at most k

e morphisms: homomorphisms of o-structures that are also
forest morphisms.
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Cofree coalgebras

For any comonad (G, ¢, (-)*) on € and A € Ob(%),

(G(A), G(A) 2 G(G(A)))

is a G-coalgebral

Example
For G = E, and a o-structure A, the compatible forest order <
on Ex(A) is

u<w <= uisa prefix of w

For G = Py, the forest order < is as above and the pebble
function p: P(A) — {1,..., k} is defined by

p([(p1; a1), -, (Pny an)]) = pa
23



Cofree functors

For any comonad (G, ¢, (-)*) on € there is a functor

FC: % — EM(G)
which sends A € Ob(%) to (G(A),d4) and a morphism f: A — B
in € to G(f).

Exercise

Verify that FC is a functor for G = E, P, and/or My, from the
concrete descriptions of EM(G).
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Combinatorial parameters



Coalgebra numbers

In general, G = (Gg)ken is an indexed comonad:
G17 G27 G37 G47

on a category %.

For an object A € ¥, define its G-coalgebra number

xC(A) = min{k | exists a coalgebra A — G,(A)}

Corollary
o k%(A) < k <= 3 compatible forest order on A of depth < k
o kP(A) < k <= 3 compatible k-pebble forest order on A
o kM(A a) < k <= (A, a) is a synch. tree of depth < k
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Tree—depth [Nesetril-Ossona de Mendez, 2006]

A forest cover of a graph G is a forest (T, <) and an injective
function f: G — T such that

if (v,w) € EC, then either f(v) < f(w) or f(w) < f(v).

Write
td(G) < k
if there exists a forest cover (T, <) of G such that the size of | x is

at most k, for any x € T.

Theorem (Abramsky—Shah, 2018 & 2021)
x5(G) = td(G)
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Tree—Width [Robertson-Seymour, 1986]

A tree decomposition of a graph G is a function f: T — P(G),
from a tree (T, <) to subsets of G such that

e Vv € G 3Ix € T such that v € f(x),
e V(u,v) € E¢ 3x € T such that {u,v} C f(x), and
e if vef(x)Nf(y), then v € f(z) for all z on the unique path
between x and y in T.
Write
tw(G) < k,

if there exists a tree decomposition f: T — P(G) of such
that |f(x)| < k for every x € T.

Theorem (Abramsky—Dawar-Wang, 2017)
kP(G) = tw(G) +1
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Revisiting the Chandra—Merlin correspondence

Recall the construction
M: PP — Strg,(0)
transforming ¢ in steps
1. variable renaming = unique variable usage

2. prenex normal form = 3xy,...,x, (A1 A A Ap)
3. M(yp) on set {xi,...,x,} with relations as in Aj,...,Ap

Theorem
o kKE(A) <k <= A=M(p) for some ¢ € PPy
o KP(A) <k <<= A=M(p) for some ¢ € PP*

Proof idea.

Quantifier nesting <> tree order
Variable usage <> pebbling function [ 28



Applications



Applications in CSP and logic

Lemma

If tw(A) < k and Duplicator has a winning strategy in the
k-pebble forth-only game from A to B then there exists a
homomorphism A — B.

Proof.

1. tree-width < k gives a coalgebra A — Py (A)

2. a winning strategy gives Px(A) — B

3. we compose A — Py(A) — B

Observation: Works for arbitrary comonads!

29



Applications in CSP and logic

Lemma

If td(A) < k and Duplicator has a winning strategy in the
k-round Ehrenfeucht-Fraissé forth-only game from A to B then
there exists a homomorphism A — B.

Lemma

For a synchronisation tree (A, a) of depth < k, if Duplicator has a
winning strategy in the k-round simulation game from (A, a) to
(B, b) then there exists a homomorphism (A, a) — (B, b).

Although, these are not so difficult to prove directly from the definitions.
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Applications in combinatorics

There is a “comonad morphism” Ey, = Py, given by
A
Ex(A) = Pi(A)
[a1,...,an] —> [(1, 21),(2,a2),...,(n, an)]

Lemma
For every o-structure A, tw(A) + 1 < td(A).

Proof sketch.

Assume there is a coalgebra A % E,(A).

Then, the composition
A2 E(A) 24 Py(A)

is a coalgebra too, by the axioms of comonad morphisms.

31






Bonus slides:
Different presentations of comonads



Natural transformations

Natural transformations are “morphisms of functors”.

Given functors F: € — 2 and F': € — 2, a natural
transformation

a: F=F or € ﬂa 9
~
F/
is given by a collection of morphisms

{F(A) = F'(A)| A€ Ob(%)}

such that, for every h: A — B in ¥,
F(A) —= F'(A)
F(h)l lp(h) (i.e. F/(h)oan = ago F(h))

F(B) —“25 F/(B) .



Example: the identity natural transformations

For any functor F: € — &, the collection

{idr(ay: F(A) = F(A)| A€ Ob(%) }
is a natural transformation idg: F = F since
idra)
—

A A

F(f) F(f)
id
B % B
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Example: the counit natural transformation

For a comonad (G,¢,(-)*) on ¥,
{ea: G(A) > A| A€ Ob(?%) }

is a natural transformation €: G = Idg. That is, for any
f: A— B in %, we have

G(A) — A
G(f)l lf
G(B) - B

Which follows by

egoG(f)=cgo(foeca)*  =foen

34



Example: the comultiplication natural transformation

For every comonad (G, ¢, (-)*) there is a natural transformation
J: G= GG

The component §4 of § is obtained as the coextension
idZ(A): G(A) = GG(A) of idg(a): G(A) — G(A).

Exercise

Show that § is a natural transformation.

35



Two comonad presentations

For any comonad (G,¢,(-)*) on %,
e G: % — % is a functor.
e ¢: G = Idy is a natural transformation.

e 0: G = GG is a natural transformation.

e These satisfy

G G == GG
1% ﬂaw 5ﬂ ﬂac
G 66 == 6 66 22 G6e

Fact: The presentation that we use (G, ¢, (-)*) can be recovered

from the data (G, ¢, d), by defining (-)* as f* := G(f) o 0.
36
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