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Summary of Day 2

Was discussed:

� Model comparison games capture relationships in logic.

� Forth-only versions of some games modelled semantically as

G (A)→ B

� These constructions satisfies axioms of a comonad (G , ε, (·)∗):

ε∗A = idG(A) εB ◦ f ∗ = f (g ◦ f ∗)∗ = g∗ ◦ f ∗

Obvious questions:

� What can we use from the theory of (co)monads?

� Generic proofs by employing categorical tools?
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Functors (from day 1)

Recall, functors are “homomorphisms of categories”.

A functor F : C → D is given by

� a mapping on objects F : Ob(C )→ Ob(D)

� a mapping on morphisms, for every A,B ∈ C ,

F : C (A,B)→ D(F (A),F (B))

which preserves identities and compositions:

F (idA) = idF (A)

F (f ◦ g) = F (f ) ◦ F (g)
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Example: comonads extend to functors!

Given a comonad (G , ε, (·)∗) on C , define

f : A→ B 7−→ G (f ) : G (A)→ G (B)

G (f ) = (f ◦ εA)∗

G is a functor C → C as

G (idA) = (idA ◦ εA)∗ = (εA)
∗ = idG(A)

G (f ) ◦ G (g) = (f ◦ ε)∗ ◦ (g ◦ ε)∗ = (f ◦ ε ◦ (g ◦ ε)∗)∗

= (f ◦ g ◦ ε)∗ = G (f ◦ g)

Example

For h : A→ B in Str(σ), the functor Ek(h) : Ek(A)→ Ek(B)

maps [a1, . . . , an] to [h(a1), . . . , h(an)].

3



Eilenberg–Moore coalgebras

Given a comonad (G , ε, (·)∗) on C , for every A ∈ Ob(G ), define

the comultiplication

δA : G (A)→ G (G (A))

as the morphism (idG(A))
∗.

Then, a morphism α : A→ G (A) is a G -coalgebra on A if

A

G (A) A

α id

εA

A G (A)

G (A) G (G (A))

α

α

δA

G(α)

(i.e. εA ◦ α = id and δA ◦ α = G (α) ◦ α)
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Origins – Dual notions

Algebras as functions in Set

F (A)→ A

E.g. for signature Σ = {∨, ¬} and F (A) = (A× A) ⊎ A

functions (A× A) ⊎ A→ A ≈ Σ-algebras (A,∨,¬)

Correspondence (Σ signature, E equations) ←→ monads T

Alg(Σ, E) ∼=
{

T (A)
α−−→ A

∣∣ A T (A)

A

ηA

id
α and

T 2(A) T (A)

T (A) A

T (α)

µ α
α

}
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Example: List comonad

Define a comonad on Set

List : Ob(Set)→ Ob(Set), A 7→ { [a1, . . . , an] | ai ∈ A}

The counit is

εA : List(A)→ A, [a1, . . . , an] 7→ an

and, for a function f : List(A)→ B, define

f ∗ : List(A)→ List(B)

by [a1, . . . , an] 7→ [b1, . . . , bn] where bi = f ([a1, . . . , ai ])
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Example: List-coalgebras, the first axiom

A

List(A) A

α id

εA

imposes

a

a

[a1, . . . , an] an

α

id

εA
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Example: List-coalgebras, the second axiom

A List(A)

List(A) List(List(A))

α

α

δA

List(α)

imposes

a [a1, . . . , an]

[[a1], [a1, a2], . . . , [a1, . . . , an]]

[a1, . . . , an] [α(a1), . . . , α(an)]

α

α

δA

List(α)

Therefore

α(ai ) = [a1, . . . , ai ] 8



Example: List-coalgebras, the second axiom: forest order

For, w ,w ′ ∈ List(A), write

w ⊑ w ′ for w is a prefix of w ′

Consequently,

� If α(a) = [a1, . . . , an] then α(ai ) ⊑ α(aj) iff i ≤ j .

� The set {a1, . . . , an} is a chain in the ≤α-order where

a ≤α a′ ⇐⇒ α(a) ⊑ α(a′)

� ≤α defines a forest order:

� (A,≤α) is a poset

� ∀a ∈ A ↓a = {x ∈ A | x ≤α a} is a finite chain.
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Example: List-coalgebras, recovering from forest orders

For a poset (A,≤) where ≤ is a forest order, define

α≤ : A→ List(A)

by setting

α≤(a) = [a1, . . . , an]

where

↓a = {a1, . . . , an} is the chain a1 < · · · < an = a

Exercise

The mapping α≤ is a List-coalgebra.
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Example: List-coalgebras, finale

Proposition

For any set A ∈ Set, there is a bijective correspondence between

� coalgebras A→ List(A)

� forest orders ≤ on A

Proof.

It is enough to observe that α = α≤α and ≤ = ≤α≤ .
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Morphisms of G -coalgebras

G -coalgebras form a category

EM(G )

� Objects: (A, α) where α : A→ G (A) is a G -coalgebra

� Morphisms: (A, α)→ (B, β) are morphisms f : A→ B in C

such that

A B

G (A) G (B)

f

α β

G(f )

Exercise: Check that EM(G ) is a category.
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Example: morphisms of List-coalgebras

Proposition

Given List-coalgebras (A, α), (B, β) and a function f : A→ B,

the following are equivalent:

� f is a coalgebra morphism (A, α)→ (B, β), i.e.

A B

List(A) List(B)

f

α β

List(f )

� f is a forest morphism (A,≤α)→ (B,≤β) i.e.

� f preserves roots (i.e. minimal elements)

� a ≺ a′ =⇒ f (a) ≺ f (a′)

where a ≺ a′ iff a < a′ and a ≤ z ≤ a′ implies a = z or a′ = z.
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Example

a b c d

x y

r

3

2

1

0

f

f

f
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Theorem

The category EM(List) is isomorphic to the category of forest

orders and forest morphism.
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Coalgebras of Ek ,Pk ,Mk



Ek-coalgebras

Proposition

There is a bijection between coalgebras α : A→ Ek(A) and

compatible forest orders ≤ on A of depth at most k

that is, relations ≤ on A such that

(T1) ≤ is a forest order

(T2) ↓a has at most ≤ k elements, for every a ∈ A

(T3) (a1, . . . , an) ∈ RA implies ai ≤ aj or aj ≤ ai (∀i , j)

Proof.

(a1, . . . , an) ∈ RA implies (α(a1), . . . , α(an)) ∈ REk (A) i.e.

– α(ai ) ⊑ α(aj) or α(aj) ⊑ α(ai ) (∀i , j)

– (ε(α(a1)), . . . , ε(α(an))) = (a1, . . . , an) ∈ RA ✓ (always)
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Exercise

Given graphs

a b

c d

1 2 3 4 5 6 7

what are the minimal k such that they admit an Ek -coalgebra?

Answer

d

c

b

a

1 3 5 7

2 6

4
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Pk-coalgebras

Proposition

There is a bijection between coalgebras α : A→ Pk(A) and

compatible k-pebble forest orders ≤, p on A

that is, relations ≤ and pebbling functions p : A→ {1, . . . , k}
satisfying

(T1) ≤ is a forest order

(T3’) (a1, . . . , an) ∈ RA implies

� ai ≤ aj or aj ≤ ai (∀i , j).
� ∀z ai < z ≤ aj =⇒ p(ai ) ̸= p(z)
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Exercise

Given graphs

a b

c d

e f g h i j k

what are the minimal k such that they admit an Pk -coalgebra?

Answer

4,d

3,c

2,b

1,a

1, k

2, j

1, i

2, h

1, g

2, f

1, e 19



Mk-coalgebras

Proposition

There is coalgebra α : (A, a)→Mk(A, a) iff

(A, a) is a synchronization tree of depth at most k

i.e., for every x ∈ A, there is a unique path of length ≤ k

a
R1−→ a1

R2−→ . . .
Rn−→ x

In fact, synchronization trees are automatically forest ordered:

x ≺ y ⇐⇒ (x , y) ∈ RA for a (unique) binary R ∈ σ
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Theorem (Abramsky–Shah, 2021)

EM(Ek) is isomorphic to the category with

� objects: σ-structures with a compatible forest order of depth

at most k

� morphisms: homomorphisms of σ-structures that are also

forest morphisms.

Theorem (Abramsky–Shah, 2021)

EM(Pk) is isomorphic to the category with

� objects: σ-structures with a compatible k-pebble forest order

� morphisms: homomorphisms of σ-structures that are forest

morphisms and preserve the pebbling function.
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Theorem (Abramsky–Shah, 2021)

EM(Mk) is isomorphic to the category with

� objects: synchronization trees of depth at most k

� morphisms: homomorphisms of σ-structures that are also

forest morphisms.
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Cofree coalgebras

For any comonad (G , ε, (·)∗) on C and A ∈ Ob(C ),

(G (A), G (A)
δA−→ G (G (A)) )

is a G -coalgebra!

Example

For G = Ek and a σ-structure A, the compatible forest order ≤
on Ek(A) is

u ≤ w ⇐⇒ u is a prefix of w

For G = Pk , the forest order ≤ is as above and the pebble

function p : Pk(A)→ {1, . . . , k} is defined by

p([(p1, a1), . . . , (pn, an)]) = pn
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Cofree functors

For any comonad (G , ε, (·)∗) on C there is a functor

FG : C → EM(G )

which sends A ∈ Ob(C ) to (G (A), δA) and a morphism f : A→ B

in C to G (f ).

Exercise

Verify that FG is a functor for G = Ek ,Pk and/or Mk , from the

concrete descriptions of EM(G ).
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Combinatorial parameters



Coalgebra numbers

In general, G = (Gk)k∈N is an indexed comonad:

G1, G2, G3, G4, . . .

on a category C .

For an object A ∈ C , define its G -coalgebra number

κG (A) = min{k | exists a coalgebra A→ Gk(A)}

Corollary

� κE(A) ≤ k ⇐⇒ ∃ compatible forest order on A of depth ≤ k

� κP(A) ≤ k ⇐⇒ ∃ compatible k-pebble forest order on A

� κM(A, a) ≤ k ⇐⇒ (A, a) is a synch. tree of depth ≤ k
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Tree-depth [Nesetril–Ossona de Mendez, 2006]

A forest cover of a graph G is a forest (T ,≤) and an injective

function f : G → T such that

if (v ,w) ∈ EG , then either f (v) ≤ f (w) or f (w) ≤ f (v).

Write

td(G ) ≤ k

if there exists a forest cover (T ,≤) of G such that the size of ↓x is

at most k , for any x ∈ T .

Theorem (Abramsky–Shah, 2018 & 2021)

κE(G ) = td(G )
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Tree-width [Robertson–Seymour, 1986]

A tree decomposition of a graph G is a function f : T → P(G ),

from a tree (T ,≤) to subsets of G such that

� ∀v ∈ G ∃x ∈ T such that v ∈ f (x),

� ∀(u, v) ∈ EG ∃x ∈ T such that {u, v} ⊆ f (x), and

� if v ∈ f (x) ∩ f (y), then v ∈ f (z) for all z on the unique path

between x and y in T .

Write

tw(G ) < k ,

if there exists a tree decomposition f : T → P(G ) of such

that |f (x)| ≤ k for every x ∈ T .

Theorem (Abramsky–Dawar–Wang, 2017)

κP(G ) = tw(G ) + 1
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Revisiting the Chandra–Merlin correspondence

Recall the construction

M : PP→ Strfin(σ)

transforming φ in steps

1. variable renaming ⇒ unique variable usage

2. prenex normal form ⇒ ∃x1, . . . , xn (A1 ∧ · · · ∧ Am)

3. M(φ) on set {x1, . . . , xn} with relations as in A1, . . . ,Am

Theorem

� κE(A) ≤ k ⇐⇒ A ∼= M(φ) for some φ ∈ PPk

� κP(A) ≤ k ⇐⇒ A ∼= M(φ) for some φ ∈ PPk

Proof idea.

Quantifier nesting ↔ tree order

Variable usage ↔ pebbling function 28
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Applications in CSP and logic

Lemma

If tw(A) < k and Duplicator has a winning strategy in the

k-pebble forth-only game from A to B then there exists a

homomorphism A→ B.

Proof.

1. tree-width < k gives a coalgebra A→ Pk(A)

2. a winning strategy gives Pk(A)→ B

3. we compose A→ Pk(A)→ B

Observation: Works for arbitrary comonads!
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Applications in CSP and logic

Lemma

If td(A) ≤ k and Duplicator has a winning strategy in the

k-round Ehrenfeucht-Fräıssé forth-only game from A to B then

there exists a homomorphism A→ B.

Lemma

For a synchronisation tree (A, a) of depth ≤ k, if Duplicator has a

winning strategy in the k-round simulation game from (A, a) to

(B, b) then there exists a homomorphism (A, a)→ (B, b).

Although, these are not so difficult to prove directly from the definitions.
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Applications in combinatorics

There is a “comonad morphism” Ek ⇒ Pk , given by

Ek(A)
λA−→ Pk(A)

[a1, . . . , an] 7−→ [(1, a1), (2, a2), . . . , (n, an)]

Lemma

For every σ-structure A, tw(A) + 1 ≤ td(A).

Proof sketch.

Assume there is a coalgebra A
α−→ Ek(A).

Then, the composition

A
α−→ Ek(A)

λA−→ Pk(A)

is a coalgebra too, by the axioms of comonad morphisms. 31





Bonus slides:

Different presentations of comonads



Natural transformations

Natural transformations are “morphisms of functors”.

Given functors F : C → D and F ′ : C → D , a natural

transformation

α : F ⇒ F ′ or C D

F

F ′

α

is given by a collection of morphisms

{F (A) αA−→ F ′(A) | A ∈ Ob(C )}

such that, for every h : A→ B in C ,

F (A) F ′(A)

F (B) F ′(B)

αA

F (h) F ′(h)

αB

(i.e. F ′(h) ◦ αA = αB ◦ F (h))
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Example: the identity natural transformations

For any functor F : C → D , the collection

{ idF (A) : F (A)→ F (A) | A ∈ Ob(C ) }

is a natural transformation idF : F ⇒ F since

A A

B B

idF (A)

F (f ) F (f )

idF (B)
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Example: the counit natural transformation

For a comonad (G , ε, (·)∗) on C ,

{ εA : G (A)→ A | A ∈ Ob(C ) }

is a natural transformation ε : G ⇒ IdC . That is, for any

f : A→ B in C , we have

G (A) A

G (B) B

εA

G(f ) f

εB

Which follows by

εB ◦ G (f ) = εB ◦ (f ◦ εA)∗ = f ◦ εA
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Example: the comultiplication natural transformation

For every comonad (G , ε, (·)∗) there is a natural transformation

δ : G ⇒ GG

The component δA of δ is obtained as the coextension

id∗G(A) : G (A)→ GG (A) of idG(A) : G (A)→ G (A).

Exercise

Show that δ is a natural transformation.
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Two comonad presentations

For any comonad (G , ε, (·)∗) on C ,

� G : C → C is a functor.

� ε : G ⇒ IdC is a natural transformation.

� δ : G ⇒ GG is a natural transformation.

� These satisfy

G

G GG G

δ
idG idG

εGG(ε)

G GG

GG GGG

δ

δ δG
G(δ)

Fact: The presentation that we use (G , ε, (·)∗) can be recovered

from the data (G , ε, δ), by defining (·)∗ as f ∗ := G (f ) ◦ δ.
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