An Invitation to Game Comonads, day 3: Coalgebras and Combinatorial Parameters

Tomáš Jakl & Luca Reggio

10 August 2022

ESSLLI 2022, Galway

Summary of Day 2

Was discussed:

- Model comparison games capture relationships in logic.
- Forth-only versions of some games modelled semantically as

$$G(A) \rightarrow B$$

• These constructions satisfies axioms of a comonad $(G, \varepsilon, (\cdot)^*)$:

$$\varepsilon_A^* = \mathrm{id}_{G(A)}$$
 $\varepsilon_B \circ f^* = f$ $(g \circ f^*)^* = g^* \circ f^*$

Obvious questions:

- What can we use from the theory of (co)monads?
- Generic proofs by employing categorical tools?

1

Recall, functors are "homomorphisms of categories".

A functor $F:\mathscr{C}\to\mathscr{D}$ is given by

- a mapping on objects $F : \mathrm{Ob}(\mathscr{C}) \to \mathrm{Ob}(\mathscr{D})$
- a mapping on morphisms, for every $A, B \in \mathscr{C}$,

$$F: \mathscr{C}(A,B) \to \mathscr{D}(F(A),F(B))$$

which preserves identities and compositions:

$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$$

$$F(f \circ g) = F(f) \circ F(g)$$

Example: comonads extend to functors!

Given a comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} , define

$$f: A \to B \quad \longmapsto \quad G(f): G(A) \to G(B)$$

$$G(f) = (f \circ \varepsilon_A)^*$$

G is a functor $\mathscr{C} \to \mathscr{C}$ as

$$G(\mathrm{id}_A) = (\mathrm{id}_A \circ \varepsilon_A)^* = (\varepsilon_A)^* = \mathrm{id}_{G(A)}$$

$$G(f) \circ G(g) = (f \circ \varepsilon)^* \circ (g \circ \varepsilon)^* = (f \circ \varepsilon \circ (g \circ \varepsilon)^*)^*$$
$$= (f \circ g \circ \varepsilon)^* = G(f \circ g)$$

Example

For $h: A \to B$ in $\mathbf{Str}(\sigma)$, the functor $\mathbb{E}_k(h): \mathbb{E}_k(A) \to \mathbb{E}_k(B)$ maps $[a_1, \ldots, a_n]$ to $[h(a_1), \ldots, h(a_n)]$.

Eilenberg-Moore coalgebras

Given a comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} , for every $A \in \mathrm{Ob}(G)$, define the **comultiplication**

$$\delta_A \colon G(A) \to G(G(A))$$

as the morphism $(id_{G(A)})^*$.

Then, a morphism $\alpha \colon A \to G(A)$ is a *G*-coalgebra on *A* if

(i.e.
$$\varepsilon_A \circ \alpha = \mathrm{id}$$
 and $\delta_A \circ \alpha = G(\alpha) \circ \alpha$)

Origins – Dual notions

Algebras as functions in **Set**

$$F(A) \rightarrow A$$

E.g. for signature
$$\Sigma = \{\lor, \neg\}$$
 and $F(A) = (A \times A) \uplus A$
functions $(A \times A) \uplus A \to A \approx \Sigma$ -algebras (A, \lor, \neg)

Correspondence (Σ signature, $\mathcal E$ equations) \longleftrightarrow monads $\mathcal T$

$$\mathbf{Alg}(\Sigma, \mathcal{E}) \cong \left\{ \begin{array}{ccc} T(A) \stackrel{\alpha}{\longrightarrow} A & | & A \stackrel{\eta_A}{\longrightarrow} T(A) & T^2(A) \stackrel{T(\alpha)}{\longrightarrow} T(A) \\ \downarrow \alpha & \text{and} & \mu \downarrow & \downarrow \alpha \\ A & T(A) \stackrel{\alpha}{\longrightarrow} A \end{array} \right\}$$

5

Example: List comonad

Define a comonad on **Set**

$$\texttt{List} \colon \operatorname{Ob}(\mathbf{Set}) \to \operatorname{Ob}(\mathbf{Set}), \quad A \mapsto \{ [a_1, \dots, a_n] \mid a_i \in A \}$$

The counit is

$$\varepsilon_A$$
: List $(A) \to A$, $[a_1, \ldots, a_n] \mapsto a_n$

and, for a function $f: List(A) \rightarrow B$, define

$$f^* : \mathtt{List}(A) \to \mathtt{List}(B)$$

by
$$[a_1,\ldots,a_n]\mapsto [b_1,\ldots,b_n]$$
 where $b_i=f([a_1,\ldots,a_i])$

Example: List-coalgebras, the first axiom

Example: List-coalgebras, the second axiom

imposes

$$\begin{array}{c} \textbf{a} & \longmapsto^{\alpha} & [a_1, \dots, a_n] \\ \downarrow^{\alpha} & & \downarrow^{\delta_A} \\ \downarrow & & [[a_1], [a_1, a_2], \dots, [a_1, \dots, a_n]] \\ [a_1, \dots, a_n] & \longmapsto^{\text{List}(\alpha)} & [\alpha(a_1), \dots, \alpha(a_n)] \end{array}$$

Therefore

$$\alpha(a_i)=[a_1,\ldots,a_i]$$

Example: List-coalgebras, the second axiom: forest order

For, $w, w' \in \text{List}(A)$, write

$$w \sqsubseteq w'$$
 for w is a prefix of w'

Consequently,

- If $\alpha(a) = [a_1, \ldots, a_n]$ then $\alpha(a_i) \sqsubseteq \alpha(a_j)$ iff $i \leq j$.
- The set $\{a_1,\ldots,a_n\}$ is a <u>chain</u> in the \leq_{α} -order where

$$a \leq_{\alpha} a' \iff \alpha(a) \sqsubseteq \alpha(a')$$

- \leq_{α} defines a **forest order**:
 - (A, \leq_{α}) is a poset
 - $\forall a \in A$ $\downarrow a = \{x \in A \mid x \leq_{\alpha} a\}$ is a finite chain.

Example: List-coalgebras, recovering from forest orders

For a poset (A, \leq) where \leq is a forest order, define

$$\alpha_{\leq} \colon A \to \mathtt{List}(A)$$

by setting

$$\alpha_{\leq}(a)=[a_1,\ldots,a_n]$$

where

$$\downarrow a = \{a_1, \dots, a_n\}$$
 is the chain $a_1 < \dots < a_n = a$

Exercise

The mapping α_{\leq} is a List-coalgebra.

Example: List-coalgebras, finale

Proposition

For any set $A \in \mathbf{Set}$, there is a bijective correspondence between

- coalgebras $A \rightarrow \text{List}(A)$
- forest orders ≤ on A

Proof.

It is enough to observe that $\alpha = \alpha_{\leq_{\alpha}}$ and $\leq = \leq_{\alpha_{\leq}}$.

Morphisms of *G*-coalgebras

G-coalgebras form a category

- Objects: (A, α) where $\alpha: A \to G(A)$ is a G-coalgebra
- Morphisms: $(A, \alpha) \to (B, \beta)$ are morphisms $f: A \to B$ in $\mathscr C$ such that

Exercise: Check that EM(G) is a category.

Example: morphisms of List-coalgebras

Proposition

Given List-coalgebras (A, α) , (B, β) and a function $f: A \to B$, the following are equivalent:

• f is a coalgebra morphism $(A, \alpha) \rightarrow (B, \beta)$, i.e.

- f is a forest morphism $(A, \leq_{\alpha}) \to (B, \leq_{\beta})$ i.e.
 - f preserves roots (i.e. minimal elements)
 - $a \prec a' \implies f(a) \prec f(a')$

where $a \prec a'$ iff a < a' and $a \le z \le a'$ implies a = z or a' = z.

Example

Theorem

The category **EM**(List) is isomorphic to the category of forest orders and forest morphism.

Coalgebras of $\mathbb{E}_k, \mathbb{P}_k, \mathbb{M}_k$

\mathbb{E}_k -coalgebras

Proposition

There is a bijection between coalgebras $\alpha \colon A \to \mathbb{E}_k(A)$ and compatible forest orders \leq on A of depth at most k that is, relations \leq on A such that

- $(T1) \leq is \ a \ forest \ order$
- $(T2) \downarrow a$ has at most $\leq k$ elements, for every $a \in A$
- (T3) $(a_1, \ldots, a_n) \in R^A$ implies $a_i \le a_j$ or $a_j \le a_i$ $(\forall i, j)$

Proof.

$$(a_1,\ldots,a_n)\in R^A$$
 implies $(\alpha(a_1),\ldots,\alpha(a_n))\in R^{\mathbb{E}_k(A)}$ i.e.

- $\alpha(a_i) \sqsubseteq \alpha(a_j) \quad \text{or} \quad \alpha(a_j) \sqsubseteq \alpha(a_i) \qquad (\forall i, j)$
- $(\varepsilon(\alpha(a_1)), \dots, \varepsilon(\alpha(a_n))) = (a_1, \dots, a_n) \in R^A \quad \checkmark \text{ (always)}$

Exercise

Given graphs

$$1 - 2 - 3 - 4 - 5 - 6 - 7$$

what are the minimal k such that they admit an \mathbb{E}_k -coalgebra?

Answer

\mathbb{P}_k -coalgebras

Proposition

There is a bijection between coalgebras $\alpha \colon A \to \mathbb{P}_k(A)$ and compatible k-pebble forest orders \leq, p on A that is, relations \leq and pebbling functions $p \colon A \to \{1, \dots, k\}$ satisfying

- $(\top 1) \leq is \ a \ forest \ order$
- (T3') $(a_1, \ldots, a_n) \in R^A$ implies
 - $a_i \leq a_j$ or $a_j \leq a_i$ $(\forall i, j)$.
 - $\forall z \quad a_i < z \leq a_j \implies p(a_i) \neq p(z)$

Exercise

Given graphs

what are the minimal k such that they admit an \mathbb{P}_k -coalgebra?

Answer

\mathbb{M}_k -coalgebras

Proposition

There is coalgebra $\alpha \colon (A, a) \to \mathbb{M}_k(A, a)$ iff

(A, a) is a synchronization tree of depth at most k i.e., for every $x \in A$, there is a unique path of length $\leq k$

$$a \xrightarrow{R_1} a_1 \xrightarrow{R_2} \dots \xrightarrow{R_n} x$$

In fact, synchronization trees are automatically forest ordered:

$$x \prec y \iff (x,y) \in R^A$$
 for a (unique) binary $R \in \sigma$

Theorem (Abramsky–Shah, 2021)

 $\mathsf{EM}(\mathbb{E}_k)$ is isomorphic to the category with

- <u>objects:</u> σ -structures with a compatible forest order of depth at most k
- morphisms: homomorphisms of σ -structures that are also forest morphisms.

Theorem (Abramsky–Shah, 2021)

 $\mathsf{EM}(\mathbb{P}_k)$ is isomorphic to the category with

- ullet objects: σ -structures with a compatible k-pebble forest order
- morphisms: homomorphisms of σ -structures that are forest morphisms and preserve the pebbling function.

Theorem (Abramsky–Shah, 2021)

 $\mathsf{EM}(\mathbb{M}_k)$ is isomorphic to the category with

- objects: synchronization trees of depth at most k
- morphisms: homomorphisms of σ -structures that are also forest morphisms.

Cofree coalgebras

For any comonad $(G, \varepsilon, (\cdot)^*)$ on $\mathscr C$ and $A \in \mathrm{Ob}(\mathscr C)$,

$$(G(A), G(A) \xrightarrow{\delta_A} G(G(A)))$$

is a *G*-coalgebra!

Example

For $G = \mathbb{E}_k$ and a σ -structure A, the compatible forest order \leq on $\mathbb{E}_k(A)$ is

$$u \le w \iff u \text{ is a prefix of } w$$

For $G = \mathbb{P}_k$, the forest order \leq is as above and the pebble function $p \colon \mathbb{P}_k(A) \to \{1, \dots, k\}$ is defined by

$$p([(p_1, a_1), \ldots, (p_n, a_n)]) = p_n$$

Cofree functors

For any comonad $(G, \varepsilon, (\cdot)^*)$ on $\mathscr C$ there is a functor

$$F^G:\mathscr{C}\to \mathbf{EM}(G)$$

which sends $A \in \mathrm{Ob}(\mathscr{C})$ to $(G(A), \delta_A)$ and a morphism $f : A \to B$ in \mathscr{C} to G(f).

Exercise

Verify that F^G is a functor for $G = \mathbb{E}_k, \mathbb{P}_k$ and/or \mathbb{M}_k , from the concrete descriptions of $\mathbf{EM}(G)$.

Combinatorial parameters

Coalgebra numbers

In general, $G = (G_k)_{k \in \mathbb{N}}$ is an **indexed comonad**:

$$G_1, G_2, G_3, G_4, \ldots$$

on a category \mathscr{C} .

For an object $A \in \mathcal{C}$, define its G-coalgebra number

$$\kappa^{G}(A) = \min\{k \mid \text{ exists a coalgebra } A \to G_k(A)\}$$

Corollary

- $\kappa^{\mathbb{E}}(A) \leq k \iff \exists$ compatible forest order on A of depth $\leq k$
- $\kappa^{\mathbb{P}}(A) \leq k \iff \exists$ compatible k-pebble forest order on A
- $\kappa^{\mathbb{M}}(A, a) \leq k \iff (A, a)$ is a synch. tree of depth $\leq k$

A **forest cover** of a graph G is a <u>forest</u> (T, \leq) and an injective function $f: G \to T$ such that

if
$$(v, w) \in E^G$$
, then either $f(v) \le f(w)$ or $f(w) \le f(v)$.

Write

$$td(G) \leq k$$

if there exists a forest cover (T, \leq) of G such that the size of $\downarrow x$ is at most k, for any $x \in T$.

Theorem (Abramsky-Shah, 2018 & 2021)

$$\kappa^{\mathbb{E}}(\mathsf{G}) = \operatorname{td}(\mathsf{G})$$

A **tree decomposition** of a graph G is a function $f: T \to \mathcal{P}(G)$, from a <u>tree</u> (T, \leq) to subsets of G such that

- $\forall v \in G \quad \exists x \in T \text{ such that } v \in f(x)$,
- $\forall (u, v) \in E^G \quad \exists x \in T \text{ such that } \{u, v\} \subseteq f(x), \text{ and }$
- if $v \in f(x) \cap f(y)$, then $v \in f(z)$ for all z on the unique path between x and y in T.

Write

$$tw(G) < k$$
,

if there exists a tree decomposition $f: T \to \mathcal{P}(G)$ of such that $|f(x)| \leq k$ for every $x \in T$.

Theorem (Abramsky-Dawar-Wang, 2017)

$$\kappa^{\mathbb{P}}(G) = \operatorname{tw}(G) + 1$$

Revisiting the Chandra-Merlin correspondence

Recall the construction

$$M : PP \rightarrow Str_{fin}(\sigma)$$

transforming φ in steps

- 1. variable renaming \Rightarrow unique variable usage
- 2. prenex normal form $\Rightarrow \exists x_1, \dots, x_n (A_1 \land \dots \land A_m)$
- 3. $\mathbf{M}(\varphi)$ on set $\{x_1,\ldots,x_n\}$ with relations as in A_1,\ldots,A_m

Theorem

- $\kappa^{\mathbb{E}}(A) \leq k \iff A \cong \mathbf{M}(\varphi) \text{ for some } \varphi \in \mathrm{PP}_k$
- $\kappa^{\mathbb{P}}(A) \leq k \iff A \cong \mathbf{M}(\varphi) \text{ for some } \varphi \in \mathrm{PP}^k$

Proof idea.

Quantifier nesting $\ \leftrightarrow$ tree order

Variable usage $\ \leftrightarrow$ pebbling function $\ \square$

Applications

Applications in CSP and logic

Lemma

If tw(A) < k and Duplicator has a winning strategy in the k-pebble forth-only game from A to B then there exists a homomorphism $A \to B$.

Proof.

- 1. tree-width < k gives a coalgebra $A \to \mathbb{P}_k(A)$
- 2. a winning strategy gives $\mathbb{P}_k(A) \to B$
- 3. we compose $A \to \mathbb{P}_k(A) \to B$

Observation: Works for arbitrary comonads!

Applications in CSP and logic

Lemma

If $td(A) \le k$ and Duplicator has a winning strategy in the k-round Ehrenfeucht-Fraissé forth-only game from A to B then there exists a homomorphism $A \to B$.

Lemma

For a synchronisation tree (A, a) of depth $\leq k$, if Duplicator has a winning strategy in the k-round simulation game from (A, a) to (B, b) then there exists a homomorphism $(A, a) \rightarrow (B, b)$.

Although, these are not so difficult to prove directly from the definitions.

Applications in combinatorics

There is a "comonad morphism" $\mathbb{E}_k \Rightarrow \mathbb{P}_k$, given by

$$\mathbb{E}_k(A) \xrightarrow{\lambda_A} \mathbb{P}_k(A)$$

$$[a_1, \ldots, a_n] \longmapsto [(1, a_1), (2, a_2), \ldots, (n, a_n)]$$

Lemma

For every σ -structure A, $tw(A) + 1 \le td(A)$.

Proof sketch.

Assume there is a coalgebra $A \xrightarrow{\alpha} \mathbb{E}_k(A)$.

Then, the composition

$$A \xrightarrow{\alpha} \mathbb{E}_k(A) \xrightarrow{\lambda_A} \mathbb{P}_k(A)$$

is a coalgebra too, by the axioms of comonad morphisms.

Bonus slides:

Different presentations of comonads

Natural transformations

Natural transformations are "morphisms of functors".

Given functors $F:\mathscr{C}\to\mathscr{D}$ and $F':\mathscr{C}\to\mathscr{D}$, a **natural** transformation

$$\alpha \colon F \Rightarrow F'$$
 or $\mathscr{C} \underbrace{ \downarrow \alpha}_{F'} \mathscr{D}$

is given by a collection of morphisms

$$\{F(A) \xrightarrow{\alpha_A} F'(A) \mid A \in \mathrm{Ob}(\mathscr{C})\}\$$

such that, for every $h: A \to B$ in \mathscr{C} ,

$$F(A) \xrightarrow{\alpha_A} F'(A)$$

$$F(h) \downarrow \qquad \qquad \downarrow F'(h) \qquad \text{(i.e. } F'(h) \circ \alpha_A = \alpha_B \circ F(h))$$

$$F(B) \xrightarrow{\alpha_B} F'(B)$$

Example: the identity natural transformations

For any functor $F: \mathscr{C} \to \mathscr{D}$, the collection

$$\{\operatorname{id}_{F(A)}\colon F(A)\to F(A)\mid A\in\operatorname{Ob}(\mathcal{C})\}$$

is a natural transformation $id_F: F \Rightarrow F$ since

$$\begin{array}{ccc}
A & \xrightarrow{\mathrm{id}_{F(A)}} & A \\
F(f) \downarrow & & \downarrow F(f) \\
B & \xrightarrow{\mathrm{id}_{F(B)}} & B
\end{array}$$

Example: the counit natural transformation

For a comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} ,

$$\{ \varepsilon_A \colon G(A) \to A \mid A \in \mathrm{Ob}(\mathscr{C}) \}$$

is a natural transformation $\varepsilon \colon G \Rightarrow \mathrm{Id}_{\mathscr{C}}$. That is, for any $f \colon A \to B$ in \mathscr{C} , we have

$$G(A) \xrightarrow{\varepsilon_A} A$$

$$G(f) \downarrow \qquad \qquad \downarrow f$$

$$G(B) \xrightarrow{\varepsilon_B} B$$

Which follows by

$$\varepsilon_B \circ G(f) = \varepsilon_B \circ (f \circ \varepsilon_A)^* = f \circ \varepsilon_A$$

Example: the comultiplication natural transformation

For every comonad $(G, \varepsilon, (\cdot)^*)$ there is a natural transformation

$$\delta \colon G \Rightarrow GG$$

The component δ_A of δ is obtained as the coextension $\mathrm{id}_{G(A)}^*\colon G(A)\to GG(A)$ of $\mathrm{id}_{G(A)}\colon G(A)\to G(A)$.

Exercise

Show that δ is a natural transformation.

Two comonad presentations

For any comonad $(G, \varepsilon, (\cdot)^*)$ on \mathscr{C} ,

- $G: \mathscr{C} \to \mathscr{C}$ is a functor.
- $\varepsilon \colon G \Rightarrow \mathrm{Id}_{\mathscr{C}}$ is a natural transformation.
- $\delta: G \Rightarrow GG$ is a natural transformation.
- These satisfy

Fact: The presentation that we use $(G, \varepsilon, (\cdot)^*)$ can be recovered from the data (G, ε, δ) , by defining $(\cdot)^*$ as $f^* := G(f) \circ \delta$.