An Invitation to Game Comonads, day 1: Overview, Syntax vs Semantics

Tomáš Jakl & Luca Reggio

8 August 2022

ESSLLI 2022, Galway

Overview

Motivation

Notoriously difficult problems:

Constraint Satisfaction Problem (CSP)

Input: finite structures *A*, *B*

Decide: is there a homomorphism $A \rightarrow B$?

Isomorphism Problem

Input: finite structures *A*, *B*

Decide: is $A \cong B$?

Difficult even with B fixed!

Approximations

Polynomial-time decidable \limits and pprox such that

$$\frac{A \to B}{A \leadsto B}$$
 and $\frac{A \cong B}{A \approx B}$

Examples: local consistency and Weisfeiler-Leman tests

where

First-Order Logic

In our case $\mathscr{L} \subseteq FO$ or $\mathscr{L} \subseteq ML$.

First-Order Logic (FO) in a relational signature $\sigma = \{R_1, \dots, R_t\}$ has

- atomic formulas: x = y, $R(x_1, ..., x_n)$ (for *n*-ary $R \in \sigma$)
- connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$
- quantifiers: $\forall x \varphi$, $\exists x \varphi$

Models: σ -structures A, given as tuples

$$(A, R_1^A, \dots, R_t^A)$$

where, for *n*-ary $R \in \sigma$,

$$R^A \subseteq A^n$$
.

Then, $A \models R(a_1, \ldots, a_n)$ iff $(a_1, \ldots, a_n) \in R^A$.

Modal Logic

A (multi)modal signature $\sigma = \{R_1, \dots, R_n, P_1, \dots, P_m\}$ is given by R_1, \dots, R_n binary and P_1, \dots, P_m unary relations.

Modal Logic (ML) in a modal signature σ has

- propositional letters: P (for unary $P \in \sigma$)
- connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$
- modalities: $\Box_R \varphi$, $\Diamond_R \varphi$ (for binary $R \in \sigma$)

Models: pointed σ -structures (A, a), i.e. $a \in A$

$$(A, a) \vDash P \iff a \in P^{A}$$

$$(A, a) \vDash \Box_{R} \varphi \iff \forall (a, b) \in R^{A} \ (A, b) \vDash \varphi$$

$$(A, a) \vDash \Diamond_{R} \varphi \iff \exists (a, b) \in R^{A} \ (A, b) \vDash \varphi$$

4

For certain $\mathscr{L}\subseteq FO$ there exists a (turn-based) game \mathscr{G} of two players

- **Spoiler** wants to show $A \ncong B$
- **Duplicator** wants to show $A \cong B$

and

$$A \equiv^{\mathscr{L}} B \stackrel{\text{(Thm)}}{\Longleftrightarrow}$$
 Duplicator has a winning strategy

Typically, $\mathscr L$ and $\mathscr G$ parametrised by a resource parameter k, e.g.

 $\begin{array}{lll} \text{quantifier rank} & \leftrightarrow & \text{number of rounds} \\ \text{variable count} & \leftrightarrow & \text{number of pebbles} \end{array}$

G(A) encoding Spoiler's possible moves on A such that

$$A \Rightarrow^{\mathscr{L}} B \quad \stackrel{(\mathsf{Thm})}{\Longleftrightarrow} \quad G(A) \to B$$
 $A \equiv^{\mathscr{I}} B \quad \stackrel{(\mathsf{Thm})}{\Longleftrightarrow} \quad G(A) \approx G(B)$

Giving approximations

$$rac{A o B}{G(A) o B}$$
 and $rac{A \cong B}{G(A) pprox G(B)}$

 $G(\cdot)$ is a **comonad**

 \Rightarrow new shiny tools from category theory!

Coalgebras for comonads reveal a structural connection between

Uniform proofs of

- Lovász-type homomorphism-counting theorems
- van Benthem-type theorems
- Feferman–Vaught–Mostowski theorems

A framework for more generic results

ullet <u>arboreal categories</u> (\Rightarrow homomorphism preservation thms)

Category Theory 101

Origins

Common patterns in mathematics

Objects of study	their structure-preserving mappings
sets	functions
vector spaces	linear maps
monoids	monoid homomorphisms
posets	monotone maps
topological spaces	continuous maps

Many properties and constructions of these structures are characterised by *universal properties* of their mappings.

Category theory studies properties of mappings abstractly.

 \Rightarrow Generic results that apply to many scenarios.

The main definition

A category $\mathscr C$ consists of

- a class of objects $Ob(\mathscr{C})$
- for $A, B \in \mathrm{Ob}(\mathscr{C})$, a set of morphisms $\mathscr{C}(A, B)$, which we designate by

$$f: A \rightarrow B$$

- for $A \in \mathrm{Ob}(\mathscr{C})$, identity morphism $\mathrm{id}_A \colon A \to A$
- for $A, B, C \in Ob(\mathscr{C})$, a composition operation

$$\circ:\mathscr{C}(B,C)\times\mathscr{C}(A,B)\to\mathscr{C}(A,C)$$

Such that, whenever the compositions are defined:

$$f \circ \mathrm{id}_A = f$$
 $\mathrm{id}_A \circ f = f$
 $(f \circ g) \circ h = f \circ (g \circ h)$

Examples of categories

Set

- objects: sets
- morphisms: functions
- identity morphisms: identity functions
- composition operation: function composition

Set*

- objects: pointed sets (X, x), with $x \in X$,
- morphisms: $(X,x) \to (Y,y)$ are functions $f: X \to Y$ such that f(x) = y.

Categories of relational structures

$\mathsf{Str}(\sigma)$

- objects: σ-structures A
- morphisms: homomorphisms of σ -structures $f: A \rightarrow B$

$$(a_1,\ldots,a_n)\in R^A \implies (f(a_1),\ldots,f(a_n))\in R^B$$

for an *n*-ary $R \in \sigma$

 $\mathbf{Str}_{fin}(\sigma) = \mathbf{restriction}$ of $\mathbf{Str}(\sigma)$ to finite σ -structures

$\mathsf{Str}_*(\sigma)$

- objects: pointed σ -structures (A, a) i.e. $a \in A$
- morphisms: $(A, a) \rightarrow (B, b)$ are σ -structure homomorphisms $f: A \rightarrow B$ such that f(a) = b.

Functors = "homomorphisms of categories"

For categories \mathscr{C}, \mathscr{D} , a functor $F : \mathscr{C} \to \mathscr{D}$ is given by

- a mapping on objects $F : \mathrm{Ob}(\mathscr{C}) \to \mathrm{Ob}(\mathscr{D})$
- a mapping on morphisms, for every $A,B\in\mathscr{C}$,

$$F: \mathscr{C}(A,B) \to \mathscr{D}(F(A),F(B))$$

I.e. $f: A \to B$ is mapped to $F(f): F(A) \to F(B)$.

These must preserve the rest of the category structure:

$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$$

 $F(f \circ g) = F(f) \circ F(g)$

Examples of functors

For a category \mathscr{C} , the **identity functor** $\mathrm{Id}_{\mathscr{C}} \colon \mathscr{C} \to \mathscr{C}$ is given by

- the identity mapping on objects $\mathrm{Ob}(\mathscr{C}) o \mathrm{Ob}(\mathscr{C})$
- the identity mapping on morphisms $\mathscr{C}(A,B) \to \mathscr{C}(A,B)$

Forgetful functors:

- $(1) \quad \mathbf{Set}_* \to \mathbf{Set}$
 - on objects $(A, a) \mapsto A$
 - on morphisms $f \mapsto f$

- (2) $Str(\sigma) \rightarrow Set$
 - on objects $(A, R_1^A, \dots, R_t^A) \mapsto A$
 - on morphisms $f \mapsto f$

Exercise: Show that, for every relational signature σ , we have a functor $\mathbf{Set} \to \mathbf{Str}(\sigma)$ which maps a set A to (A, R_1^A, \dots, R_t^A) where $R_i^A = A^n$, for an n-ary $R_i \in \sigma$.

Syntax vs Semantics

Semantics to logic

For any fragment \mathscr{L}

$$\frac{A \cong B}{A \equiv^{\mathcal{L}} B}$$

But when do we get

$$\frac{A \to B}{A \Rightarrow^{\mathcal{L}} B}$$
?

Recall

$$A \Rrightarrow^{\mathscr{L}} B \quad \Longleftrightarrow \quad \forall \varphi \in \mathscr{L} \quad A \vDash \varphi \ \text{implies} \ B \vDash \varphi$$

Primitive positive fragment

Primitive positive sentences $PP \subseteq FO$ are formed by

- atomic formulas: \mathbf{t} , $R(x_1, \dots, x_n)$ (for *n*-ary $R \in \sigma$)
- conjunctions: $\varphi \wedge \psi$
- existential quantifiers: $\exists x \varphi$

I.e. we do not allow equality x=y, disjunctions $\varphi \vee \psi$, negations $\neg \varphi$, universal quantifications $\forall x \varphi$.

We have added the always true sentence \mathbf{t} , which holds $A \models \mathbf{t}$ in every σ -structure A.

Examples of PP sentences

(1) Valid PP sentence

$$\exists xyz (R(x,y) \land P(y) \land S(y,z))$$

in signature $\sigma = \{R(\cdot, \cdot), P(\cdot), S(\cdot, \cdot), T(\cdot, \cdot, \cdot)\}.$

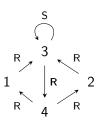
(2) Despite equivalence of

$$(\exists x. \ R(x,x)) \lor \mathbf{t}$$
 and $\exists x. \ R(x,x)$

The former is not PP!

Exercise

Given a σ -structure A:



in signature $\sigma = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$, and a PP sentence φ :

$$\exists x \left(\exists y \left(R(x,y) \land \exists z (R(y,z) \land R(z,x)) \right) \right.$$
$$\land \exists z \left(S(z,z) \land R(x,z) \right) \right)$$

Decide if $A \vDash \varphi$.

Evaluating PP sentences, I

Step 1: Variable renaming in φ

$$\exists x_1 (\exists x_2 (R(x_1, x_2) \land \exists x_3 (R(x_2, x_3) \land R(x_3, x_1))) \\ \land \exists x_4 (S(x_4, x_4) \land R(x_1, x_4)))$$

Observation

If x does not occur freely in ψ then

$$\exists x (\varphi \wedge \psi)$$
 and $(\exists x \varphi) \wedge \psi$

are equivalent, in first-order logic.

Step 2: Rewrite φ into the prenex normal form

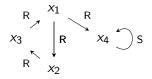
$$\exists x_1, x_2, x_3, x_4 (R(x_1, x_2) \land R(x_2, x_3) \land R(x_3, x_1) \\ \land S(x_4, x_4) \land R(x_1, x_4))$$

Evaluating PP sentences, II

Step 3: From the prenex normal form $\exists x_1, x_2, x_3, x_4 \varphi_0$ where

$$\varphi_0(x_1, x_2, x_3, x_4) = R(x_1, x_2) \wedge R(x_2, x_3) \wedge R(x_3, x_1) \\ \wedge S(x_4, x_4) \wedge R(x_1, x_4)$$

we build a σ -structure $\mathbf{M}(\varphi)$ on universe $\{x_1, x_2, x_3, x_4\}$



Observation: There is a bijection

homomorphisms
$$\mathbf{M}(\varphi) \to A \quad \stackrel{1-1}{\longleftrightarrow} \quad \text{assignments } v: x_i \mapsto a_i \text{ such that}$$

$$A \vDash \varphi_0(v(x_1), v(x_2), v(x_3), v(x_4))$$

Approximating the homomorphism order

Theorem

For any $\varphi \in \operatorname{PP}$ there is an $\mathbf{M}(\varphi) \in \operatorname{\mathbf{Str}}_{\mathit{fin}}(\sigma)$ such that

$$\mathbf{M}(\varphi) \to A \iff A \vDash \varphi$$

for any σ -structure A.

Corollary

For σ -structures A, B,

$$\frac{A \to B}{A \Rightarrow^{\mathrm{PP}} B}$$

Proof.

For a $\varphi \in \operatorname{PP}$, if $A \vDash \varphi$ then $\mathbf{M}(\varphi) \to A \to B$.

Therefore, $B \vDash \varphi$.

From finite structures to sentences

Conversely, for a finite $A \in \mathbf{Str}_{fin}(\sigma)$, we construct a $\Psi(A) \in \mathrm{PP}$ by listing everything true in A in a prenex normal form.

Example

Take A to be as follows

$$A = \begin{bmatrix} a_1 & \xrightarrow{S} & a_4 \\ R \downarrow & & \downarrow R \\ a_2 & \xrightarrow{S} & a_5 \\ R \downarrow & & \downarrow R \\ a_3 & \xrightarrow{S} & a_6 \end{bmatrix}$$

Set $\Psi(A)$ to be

$$\exists x_1,\ldots,x_6 \ (\bigwedge_{i\in\{1,2,4,5\}} R(x_i,x_{i+1}) \land \bigwedge_{i\in\{1,2,3\}} S(x_i,x_{i+3}))$$

Approximating \Rightarrow^{PP}

Theorem

For any finite $A \in \mathbf{Str}(\sigma)$ there is a $\Psi(A) \in \mathrm{PP}$ such that

$$A \rightarrow B \iff B \models \Psi(A)$$

for any σ -structure B.

Corollary

For σ -structures A, B with A finite,

$$\frac{A \Rightarrow^{\mathrm{PP}} B}{A \to B}$$

Proof.

From $A \models \Psi(A)$ and $A \Rightarrow^{PP} B$ we get $B \models \Psi(A)$.

Therefore, $A \rightarrow B$.

The Chandra-Merlin Correspondence [1977]

For finite A and B arbitrary,

$$A \to B \qquad \Longleftrightarrow \qquad A \Rightarrow^{\operatorname{PP}} B$$

And we have

$$\operatorname{\mathbf{Str}}_{\operatorname{fin}}(\sigma)$$
 PP

such that

$$\mathbf{M}(\varphi) o A \quad \Longleftrightarrow \quad A \vDash \varphi \quad \stackrel{(Thm)}{\Longleftrightarrow} \quad \Psi(A) \vdash \varphi$$

In fact

$$\mathsf{Th}_{\mathrm{PP}}(A) = \{ \varphi \in \mathrm{PP} \mid A \vDash \varphi \} = \{ \varphi \in \mathrm{PP} \mid \Psi(A) \vdash \varphi \}$$

Logic fragments

Logic restriction: quantifier rank

For a natural number k, define

$$FO_k \subseteq FO$$

as the restriction to sentences φ of **quantifier rank** at most k, that is, $\operatorname{qrank}(\varphi) \leq k$.

Quantifier rank is defined inductively

$$\begin{aligned} \operatorname{qrank}(A) &= 0 & (\text{for an atomic } A) \\ \operatorname{qrank}(\neg \varphi) &= \operatorname{qrank}(\varphi) \\ \operatorname{qrank}(\varphi \wedge \psi) &= \operatorname{qrank}(\varphi \vee \psi) = \max(\operatorname{qrank}(\varphi), \operatorname{qrank}(\psi)) \\ \operatorname{qrank}(\exists x \, \varphi) &= \operatorname{qrank}(\forall x \, \varphi) = \operatorname{qrank}(\varphi) + 1 \end{aligned}$$

Define $PP_k = FO_k \cap PP$.

Exercise

What is the quantifier rank of

$$\exists xy (R(x,y) \land \exists z S(z,z,x) \land \exists z S(x,y,z))$$
?

Bounded quantifier rank approximations

For every natural number k:

$$\frac{A \to B}{A \Rightarrow^{\mathrm{PP}_k} B} \quad \text{and} \quad \frac{A \cong B}{A \equiv^{\mathrm{FO}_k} B}$$

Both are polynomial-time decidable.

Logic restriction: number of variables

For a natural number k, define

$$FO^k \subseteq FO$$

as the restriction to sentences φ which only use variables from x_1, \ldots, x_k .

Define
$$PP^k = FO^k \cap PP$$

Bounded variable count approximations

For every natural number k:

$$\frac{A \to B}{A \Rightarrow^{\mathrm{PP}^k} B} \quad \text{and} \quad \frac{A \cong B}{A \equiv^{\mathrm{FO}^k} B}$$

Again, both are polynomial-time decidable.

Exercise

Is any of these true?

$$\begin{array}{ccc}
A \Rightarrow^{\operatorname{PP}_k} B & & A \Rightarrow^{\operatorname{PP}^k} B \\
A \Rightarrow^{\operatorname{PP}_k} B & & & A \Rightarrow^{\operatorname{PP}_k} B
\end{array}$$

Modal depth

Define ML_k as the restriction of ML to formulas of **modal depth** at most k, written as $\mathrm{modep}(\varphi) \leq k$.

Modal depth is defined inductively

$$\begin{split} \operatorname{modep}(p) &= 0 \qquad \qquad \text{(for a propositional letter p)} \\ \operatorname{modep}(\neg\varphi) &= \operatorname{modep}(\varphi) \\ \operatorname{modep}(\varphi \wedge \psi) &= \operatorname{modep}(\varphi \vee \psi) = \operatorname{max}(\operatorname{modep}(\varphi), \operatorname{modep}(\psi)) \\ \operatorname{modep}(\Box_R \varphi) &= \operatorname{modep}(\Diamond_R \varphi) = \operatorname{modep}(\varphi) + 1 \end{split}$$

Logic extensions: Existential Positive fragment

Existential positive sentences $EP \subseteq FO$ are formed by

- atomic formulas: \mathbf{t} , x = y, $R(x_1, \dots, x_n)$ (for *n*-ary $R \in \sigma$)
- logical connectives: $\varphi \wedge \psi$, $\varphi \vee \psi$
- existential quantifiers: $\exists x \varphi(x)$

Theorem (Łoś-Tarski-Lyndon, 1955 & 1959)

A first-order sentence is preserved by homomorphisms iff it is equivalent to an existential positive sentence.

Consequently, since $PP \subseteq EP$,

$$A \to B \iff A \Rightarrow^{EP} B$$

(for a finite A)

Through Chandra-Merlin lenses

Lemma

Every EP sentence φ is equivalent to

$$\varphi_1 \vee \cdots \vee \varphi_n$$

for some PP sentences $\varphi_1, \ldots, \varphi_n$ (possibly with equalities).

Proof.

Follows from
$$A \models \exists x (\psi \lor \psi') \leftrightarrow (\exists x \psi) \lor (\exists x \psi')$$
.

Then,

$$A \vDash \varphi \iff \mathbf{M}(\varphi_i) \to A$$
 (for some i)

Define EP_k and EP^k as earlier.

Restrictions of Modal logic

Primitive positive modal formulas are formed by

• propositional letters, true statement \mathbf{t} , conjunctions \wedge , and modalities \Diamond_R

Existential positive modal formulas are formed by

(as above) + disjunctions ∨

We saw that

$$A \rightarrow B \iff A \Rightarrow^{PP} B$$

However, for approximations we prefer

$$A \Rightarrow^{\operatorname{PP}_k} B$$
 and $A \Rightarrow^{\operatorname{PP}^k} B$

Question: Can we express these relations as homomorphisms of some sort?

Yes, we'll see tomorrow!

Restricting Chandra-Merlin

Bonus slides:

For

$$\mathcal{F}_k = \mathbf{M}[PP_k]$$
 and $\mathcal{F}^k = \mathbf{M}[PP^k]$

by the Chandra-Merlin correspondence we have

$$A \Rightarrow^{\operatorname{PP}_k} B \iff \forall C \in \mathcal{F}_k \ C \to A \text{ implies } C \to B$$

$$A \Rightarrow^{\mathrm{PP}^k} B \iff \forall C \in \mathcal{F}^k \ C \to A \text{ implies } C \to B$$

In fact, the structures in \mathcal{F}_k and \mathcal{F}^k have nice characterisations.

Characterising structures in \mathcal{F}_k

Theorem

A finite σ -structure A is in \mathcal{F}_k iff there exists a binary relation \leq on the universe of A such that

- 1. \leq is a partial order
- 2. Every set $\downarrow a = \{x \in A \mid x \le a\}$ has cardinality $\le k$, and is linearly ordered by \le .
- 3. $(a_1, \ldots, a_n) \in R^A$ implies $a_i \leq a_j$ or $a_j \leq a_i$ $(\forall i, j)$.

Characterising structures in \mathcal{F}^k

Theorem

A finite σ -structure A is in \mathcal{F}^k iff there exists a binary relation \leq on the universe of A and a function $p \colon A \to \{1, \dots, k\}$ such that

- 1. \leq is a partial order
- 2. Every set $\downarrow a = \{x \in A \mid x \le a\}$ is finite and linearly ordered by \le .
- 3. $(a_1,\ldots,a_n)\in R^A$ implies
 - $a_i \leq a_j$ or $a_j \leq a_i$ $(\forall i, j)$.
 - $\forall z \quad a_i < z \leq a_j \implies p(a_i) \neq p(z)$