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Overview



Motivation

Notoriously difficult problems:

Constraint Satisfaction Problem (CSP)

Input: finite structures A,B

Decide: is there a homomorphism A→ B ?

Isomorphism Problem

Input: finite structures A,B

Decide: is A ∼= B ?

Difficult even with B fixed!
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Approximations

Polynomial-time decidable ⇝ and ≈ such that

A→ B

A⇝ B
and

A ∼= B

A ≈ B

Examples: local consistency and Weisfeiler-Leman tests

A→ B

A⇛L B
and

A ∼= B

A ≡J B

where

A⇛L B ⇐⇒ ∀φ ∈ L A ⊨ φ implies B ⊨ φ

A ≡J B ⇐⇒ ∀φ ∈J A ⊨ φ iff B ⊨ φ
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First-Order Logic

In our case L ⊆ FO or L ⊆ ML.

First-Order Logic (FO) in a relational signature σ = {R1, . . . ,Rt}
has

� atomic formulas: x = y , R(x1, . . . , xn) (for n-ary R ∈ σ)
� connectives: φ ∧ ψ, φ ∨ ψ, ¬φ
� quantifiers: ∀x φ, ∃x φ

Models: σ-structures A, given as tuples

(A,RA
1 , . . . ,R

A
t )

where, for n-ary R ∈ σ,
RA ⊆ An.

Then, A ⊨ R(a1, . . . , an) iff (a1, . . . , an) ∈ RA. 3



Modal Logic

A (multi)modal signature σ = {R1, . . . ,Rn,P1, . . . ,Pm} is given
by R1, . . . ,Rn binary and P1, . . . ,Pm unary relations.

Modal Logic (ML) in a modal signature σ has

� propositional letters: P (for unary P ∈ σ)
� connectives: φ ∧ ψ, φ ∨ ψ, ¬φ
� modalities: □R φ, ♢R φ (for binary R ∈ σ)

Models: pointed σ-structures (A, a), i.e. a ∈ A

(A, a) ⊨ P ⇐⇒ a ∈ PA

(A, a) ⊨ □R φ ⇐⇒ ∀(a, b) ∈ RA (A, b) ⊨ φ

(A, a) ⊨ ♢R φ ⇐⇒ ∃(a, b) ∈ RA (A, b) ⊨ φ
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Model comparison games (day 2)

For certain L ⊆ FO there exists a (turn-based) game G of two

players

� Spoiler wants to show A ̸∼= B

� Duplicator wants to show A ∼= B

and

A ≡L B
(Thm)⇐⇒ Duplicator has a winning strategy

Typically, L and G parametrised by a resource parameter k , e.g.

quantifier rank ↔ number of rounds

variable count ↔ number of pebbles
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Semantic encoding of Duplicator winning strategies (days 2 & 4)

G (A) encoding Spoiler’s possible moves on A such that

A⇛L B
(Thm)⇐⇒ G (A)→ B

A ≡J B
(Thm)⇐⇒ G (A) ≈ G (B)

Giving approximations

A→ B

G (A)→ B
and

A ∼= B

G (A) ≈ G (B)

G (·) is a comonad

⇒ new shiny tools from category theory!
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Syntactic vs Combinatorial parameters (day 3)

Coalgebras for comonads reveal a structural connection between

quantifier rank ↔ tree-depth

variable count ↔ tree-width

modal depth ↔ unfolding depth

restricted conjunction

& variable count
↔ path-width

guarded quantification ↔ guarded decompositions
...
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Categorified statements (day 5)

Uniform proofs of

� Lovász-type homomorphism-counting theorems

� van Benthem-type theorems

� Feferman–Vaught–Mostowski theorems

A framework for more generic results

� arboreal categories (⇒ homomorphism preservation thms)
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Category Theory 101



Origins

Common patterns in mathematics

Objects of study their structure-preserving mappings

sets functions

vector spaces linear maps

monoids monoid homomorphisms

posets monotone maps

topological spaces continuous maps

Many properties and constructions of these structures are

characterised by universal properties of their mappings.

Category theory studies properties of mappings abstractly.

⇒ Generic results that apply to many scenarios.
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The main definition

A category C consists of

� a class of objects Ob(C )

� for A,B ∈ Ob(C ), a set of morphisms C (A,B), which we

designate by

f : A→ B

� for A ∈ Ob(C ), identity morphism idA : A→ A

� for A,B,C ∈ Ob(C ), a composition operation

◦ : C (B,C )× C (A,B)→ C (A,C )

Such that, whenever the compositions are defined:

f ◦ idA = f

idA ◦ f = f

(f ◦ g) ◦ h = f ◦ (g ◦ h) 10



Examples of categories

Set

� objects: sets

� morphisms: functions

� identity morphisms: identity functions

� composition operation: function composition

Set∗

� objects: pointed sets (X , x), with x ∈ X ,

� morphisms: (X , x)→ (Y , y) are functions f : X → Y

such that f (x) = y .
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Categories of relational structures

Str(σ)

� objects: σ-structures A

� morphisms: homomorphisms of σ-structures f : A→ B

(a1, . . . , an) ∈ RA =⇒ (f (a1), . . . , f (an)) ∈ RB

for an n-ary R ∈ σ

Strfin(σ) = restriction of Str(σ) to finite σ-structures

Str∗(σ)

� objects: pointed σ-structures (A, a) i.e. a ∈ A

� morphisms: (A, a)→ (B, b) are σ-structure homomorphisms

f : A→ B such that f (a) = b.
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Functors = “homomorphisms of categories”

For categories C ,D , a functor F : C → D is given by

� a mapping on objects F : Ob(C )→ Ob(D)

� a mapping on morphisms, for every A,B ∈ C ,

F : C (A,B)→ D(F (A),F (B))

I.e. f : A→ B is mapped to F (f ) : F (A)→ F (B).

These must preserve the rest of the category structure:

F (idA) = idF (A)

F (f ◦ g) = F (f ) ◦ F (g)
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Examples of functors

For a category C , the identity functor IdC : C → C is given by

� the identity mapping on objects Ob(C )→ Ob(C )

� the identity mapping on morphisms C (A,B)→ C (A,B)

Forgetful functors:

(1) Set∗ → Set

� on objects (A, a) 7→ A

� on morphisms f 7→ f

(2) Str(σ)→ Set

� on objects

(A,RA
1 , . . . ,R

A
t ) 7→ A

� on morphisms f 7→ f

Exercise: Show that, for every relational signature σ, we have a functor

Set→ Str(σ) which maps a set A to (A,RA
1 , . . . ,R

A
t ) where RA

i = An,

for an n-ary Ri ∈ σ. 14



Syntax vs Semantics



Semantics to logic

For any fragment L
A ∼= B

A ≡L B

But when do we get
A→ B

A⇛L B
?

Recall

A⇛L B ⇐⇒ ∀φ ∈ L A ⊨ φ implies B ⊨ φ
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Primitive positive fragment

Primitive positive sentences PP ⊆ FO are formed by

� atomic formulas: t, R(x1, . . . , xn) (for n-ary R ∈ σ)
� conjunctions: φ ∧ ψ
� existential quantifiers: ∃x φ

I.e. we do not allow equality x = y , disjunctions φ ∨ ψ,
negations ¬φ, universal quantifications ∀x φ.

We have added the always true sentence t, which holds A ⊨ t in

every σ-structure A.
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Examples of PP sentences

(1) Valid PP sentence

∃xyz (R(x , y) ∧ P(y) ∧ S(y , z))

in signature σ = {R(·, ·), P(·), S(·, ·), T (·, ·, ·)}.

(2) Despite equivalence of

(∃x . R(x , x)) ∨ t and ∃x . R(x , x)

The former is not PP!
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Exercise

Given a σ-structure A:

3

1 2

4

R

RR

R

RR

S

in signature σ = {R(·, ·),S(·, ·)}, and a PP sentence φ:

∃x
(
∃y (R(x , y) ∧ ∃z(R(y , z) ∧ R(z , x)))

∧ ∃z (S(z , z) ∧ R(x , z))
)

Decide if A ⊨ φ .
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Evaluating PP sentences, I

Step 1: Variable renaming in φ

∃x1 (∃x2 (R(x1, x2) ∧ ∃x3(R(x2, x3) ∧ R(x3, x1)))

∧ ∃x4 (S(x4, x4) ∧ R(x1, x4)))

Observation

If x does not occur freely in ψ then

∃x (φ ∧ ψ) and (∃x φ) ∧ ψ

are equivalent, in first-order logic.

Step 2: Rewrite φ into the prenex normal form

∃x1, x2, x3, x4 (R(x1, x2) ∧ R(x2, x3) ∧ R(x3, x1)

∧ S(x4, x4) ∧ R(x1, x4))
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Evaluating PP sentences, II

Step 3: From the prenex normal form ∃x1, x2, x3, x4 φ0 where

φ0(x1, x2, x3, x4) = R(x1, x2) ∧ R(x2, x3) ∧ R(x3, x1)

∧ S(x4, x4) ∧ R(x1, x4)

we build a σ-structure M(φ) on universe {x1, x2, x3, x4}

x1

x3 x4

x2

R

RR

R

R

S

Observation: There is a bijection

homomorphisms M(φ)→ A
1−1←→ assignments v : xi 7→ ai such that

A ⊨ φ0(v(x1), v(x2), v(x3), v(x4))
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Approximating the homomorphism order

Theorem

For any φ ∈ PP there is an M(φ) ∈ Strfin(σ) such that

M(φ)→ A ⇐⇒ A ⊨ φ

for any σ-structure A.

Corollary

For σ-structures A,B,
A→ B

A⇛PP B

Proof.

For a φ ∈ PP, if A ⊨ φ then M(φ)→ A→ B.

Therefore, B ⊨ φ.
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From finite structures to sentences

Conversely, for a finite A ∈ Strfin(σ), we construct a Ψ(A) ∈ PP

by listing everything true in A in a prenex normal form.

Example

Take A to be as follows

a1 a4

a2 a5

a3 a6

A =

S

S

S

R

R

R

R

Set Ψ(A) to be

∃x1, . . . , x6 (
∧

i∈{1,2,4,5}

R(xi , xi+1) ∧
∧

i∈{1,2,3}

S(xi , xi+3) )
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Approximating ⇛PP

Theorem

For any finite A ∈ Str(σ) there is a Ψ(A) ∈ PP such that

A→ B ⇐⇒ B ⊨ Ψ(A)

for any σ-structure B.

Corollary

For σ-structures A,B with A finite,

A⇛PP B

A→ B

Proof.

From A ⊨ Ψ(A) and A⇛PP B we get B ⊨ Ψ(A).

Therefore, A→ B. 23



The Chandra–Merlin Correspondence [1977]

For finite A and B arbitrary,

A→ B ⇐⇒ A⇛PP B

And we have

Strfin(σ) PP

Ψ

M

such that

M(φ)→ A ⇐⇒ A ⊨ φ
(Thm)⇐⇒ Ψ(A) ⊢ φ

In fact

ThPP(A) = {φ ∈ PP | A ⊨ φ} = {φ ∈ PP | Ψ(A) ⊢ φ}
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Logic fragments



Logic restriction: quantifier rank

For a natural number k , define

FOk ⊆ FO

as the restriction to sentences φ of quantifier rank at most k ,

that is, qrank(φ) ≤ k.

Quantifier rank is defined inductively

qrank(A) = 0 (for an atomic A)

qrank(¬φ) = qrank(φ)

qrank(φ ∧ ψ) = qrank(φ ∨ ψ) = max(qrank(φ), qrank(ψ))

qrank(∃x φ) = qrank(∀x φ) = qrank(φ) + 1

Define PPk = FOk ∩ PP.
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Exercise

What is the quantifier rank of

∃xy (R(x , y) ∧ ∃z S(z , z , x) ∧ ∃z S(x , y , z)) ?
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Bounded quantifier rank approximations

For every natural number k:

A→ B

A⇛PPk B
and

A ∼= B

A ≡FOk B

Both are polynomial-time decidable.
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Logic restriction: number of variables

For a natural number k , define

FOk ⊆ FO

as the restriction to sentences φ which only use variables

from x1, . . . , xk .

Define PPk = FOk ∩ PP
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Bounded variable count approximations

For every natural number k:

A→ B

A⇛PPk
B

and
A ∼= B

A ≡FOk
B

Again, both are polynomial-time decidable.
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Exercise

Is any of these true?

A⇛PPk B

A⇛PPk
B

A⇛PPk
B

A⇛PPk B
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Modal depth

Define MLk as the restriction of ML to formulas of modal depth

at most k , written as modep(φ) ≤ k .

Modal depth is defined inductively

modep(p) = 0 (for a propositional letter p)

modep(¬φ) = modep(φ)

modep(φ ∧ ψ) = modep(φ ∨ ψ) = max(modep(φ), modep(ψ))

modep(□R φ) = modep(♢R φ) = modep(φ) + 1
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Logic extensions: Existential Positive fragment

Existential positive sentences EP ⊆ FO are formed by

� atomic formulas: t, x = y , R(x1, . . . , xn) (for n-ary R ∈ σ)
� logical connectives: φ ∧ ψ, φ ∨ ψ
� existential quantifiers: ∃x φ(x)

Theorem ( Loś–Tarski–Lyndon, 1955 & 1959)

A first-order sentence is preserved by homomorphisms iff it is

equivalent to an existential positive sentence.

Consequently, since PP ⊆ EP,

A→ B ⇐⇒ A⇛EP B

(for a finite A)
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Through Chandra–Merlin lenses

Lemma

Every EP sentence φ is equivalent to

φ1 ∨ · · · ∨ φn

for some PP sentences φ1, . . . , φn (possibly with equalities).

Proof.

Follows from A ⊨ ∃x (ψ ∨ ψ′)↔ (∃x ψ) ∨ (∃x ψ′).

Then,

A ⊨ φ ⇐⇒ M(φi )→ A (for some i)

Define EPk and EPk as earlier.
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Restrictions of Modal logic

Primitive positive modal formulas are formed by

� propositional letters, true statement t, conjunctions ∧, and
modalities ♢R

Existential positive modal formulas are formed by

� (as above) + disjunctions ∨
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We saw that

A→ B ⇐⇒ A⇛PP B

However, for approximations we prefer

A⇛PPk B and A⇛PPk
B

Question: Can we express these relations as homomorphisms of

some sort?

Yes, we’ll see tomorrow!
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Bonus slides:

Restricting Chandra–Merlin



For

Fk = M[PPk ] and Fk = M[PPk ]

by the Chandra–Merlin correspondence we have

A⇛PPk B ⇐⇒ ∀C ∈ Fk C → A implies C → B

A⇛PPk
B ⇐⇒ ∀C ∈ Fk C → A implies C → B

In fact, the structures in Fk and Fk have nice characterisations.
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Characterising structures in Fk

Theorem

A finite σ-structure A is in Fk iff there exists a binary relation ≤
on the universe of A such that

1. ≤ is a partial order

2. Every set ↓a = {x ∈ A | x ≤ a} has cardinality ≤ k, and is

linearly ordered by ≤.
3. (a1, . . . , an) ∈ RA implies ai ≤ aj or aj ≤ ai (∀i , j).
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Characterising structures in Fk

Theorem

A finite σ-structure A is in Fk iff there exists a binary relation ≤
on the universe of A and a function p : A→ {1, . . . , k} such that

1. ≤ is a partial order

2. Every set ↓a = {x ∈ A | x ≤ a} is finite and linearly ordered

by ≤.
3. (a1, . . . , an) ∈ RA implies

� ai ≤ aj or aj ≤ ai (∀i , j).
� ∀z ai < z ≤ aj =⇒ p(ai ) ̸= p(z)
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