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Overview



Motivation

Notoriously difficult problems:

Constraint Satisfaction Problem (CSP)

Input: finite structures A, B

Decide: is there a homomorphism A — B ?

Isomorphism Problem

Input: finite structures A, B
Decide: is A= B ?

Difficult even with B fixed!



Approximations

Polynomial-time decidable ~» and = such that

Examples: local consistency and Weisfeiler-Leman tests

A—B and A=B
A=< B A=/ B

where
A=? B — VYoe Ak implies BE ¢
A= B = Vpc g Akyiff BEyp



First-Order Logic
In our case . C FO or . C ML.

First-Order Logic (FO) in a relational signature o = {R1,..., R}
has

e atomic formulas: x =y, R(xi,...,x,) (for n-ary R € o)
e connectives: ©AY, @V, -
e quantifiers: Vxp, Ixp

Models: o-structures A, given as tuples
(AR, ... RY)
where, for n-ary R € o,

RA C A",

Then, AE R(a1,...,a,) iff (a1,...,an) € RA.



Modal Logic

A (multi)modal signature o0 = {Ry,...,R,, P1,..., Pn} is given
by Ri,...,R, binary and Py, ..., Py, unary relations.

Modal Logic (ML) in a modal signature o has

e propositional letters: P (for unary P € o)
e connectives: p AY, @V, —p
e modalities: Ogre, Ore (for binary R € o)

Models: pointed o-structures (A, a), i.e. a€ A
(A, a)EP < acPA
(A,a)EDgry <= VY(a,b)c R* (Ab)E ¢
(A,a)EOry <= 3(a,b)c RA (A b)Ey



Model comparison games (day 2)

For certain .2 C FO there exists a (turn-based) game ¢ of two
players

¢ Spoiler wants to show A % B

e Duplicator wants to show A= B

and

(Thm)
<~

A=Y B Duplicator has a winning strategy

Typically, .Z and ¢ parametrised by a resource parameter k, e.g.

quantifier rank <> number of rounds
variable count <> number of pebbles



Semantic encoding of Duplicator winning strategies

G(A) encoding Spoiler’s possible moves on A such that

A=?B &% GA) =B
A=/ B £ G(A)~ G(B)
Giving approximations
A= B o A~ B
G(A) > B G(A) ~ G(B)

G(+) is a comonad

= new shiny tools from category theory!

(days 2 & 4)



Syntactic vs Combinatorial parameters

(day 3)

Coalgebras for comonads reveal a structural connection between

quantifier rank
variable count

modal depth
restricted conjunction

& variable count

guarded quantification

Tz

tree-depth
tree-width
unfolding depth

path-width

guarded decompositions



Categorified statements (day 5)

Uniform proofs of

o Lovasz-type homomorphism-counting theorems

e van Benthem-type theorems

e Feferman—Vaught—Mostowski theorems

A framework for more generic results

e arboreal categories (= homomorphism preservation thms)




Category Theory 101



Common patterns in mathematics

Objects of study | their structure-preserving mappings

sets | functions
vector spaces | linear maps
monoids | monoid homomorphisms
posets | monotone maps

topological spaces | continuous maps

Many properties and constructions of these structures are
characterised by universal properties of their mappings.

Category theory studies properties of mappings abstractly.
= Generic results that apply to many scenarios.



The main definition

A category % consists of

e a class of objects Ob(%)
e for A,B € Ob(%), a set of morphisms % (A, B), which we
designate by
fr:A—=B

e for A € Ob(%), identity morphism ida: A — A
e for A, B, C € Ob(%), a composition operation

o: € (B, C) x €(A B) = %(A,C)

Such that, whenever the compositions are defined:
foida="f
idgof=f
(fog)oh=fo(goh) 10



Examples of categories

Set

e objects: sets
e morphisms: functions
e identity morphisms: identity functions

e composition operation: function composition

Set,

e objects: pointed sets (X, x), with x € X,

e morphisms: (X, x) — (Y,y) are functions f: X — Y
such that f(x) = y.

11



Categories of relational structures

Str(o)

e objects: o-structures A
e morphisms: homomorphisms of o-structures f: A — B

(a1,...,an) ERY = (f(a1),...,f(an)) € RE

foran n-ary Re o

Stry,(0) = restriction of Str(o) to finite o-structures

Str.(0)

e objects: pointed o-structures (A, a) i.e. a€ A
e morphisms: (A, a) — (B, b) are o-structure homomorphisms
f: A— B such that f(a) = b.

12



Functors = “homomorphisms of categories”

For categories €, Z, a functor F: € — & is given by

e a mapping on objects F: Ob(%) — Ob(2)

e a mapping on morphisms, for every A, B € ¢,
F:%(A B)— 2(F(A), F(B))

l.e. f: A— B is mapped to F(f): F(A) — F(B).

These must preserve the rest of the category structure:

(ldA) ld,: (A)
F(fog)=F(f)oF(g)

13



Examples of functors

For a category ¥, the identity functor Idy: € — % is given by

e the identity mapping on objects Ob(%) — Ob(%)
e the identity mapping on morphisms %(A, B) — (A, B)

Forgetful functors:
2) St Set
(1) Set, — Set (2) Str(o) = Se

e on objects
e on objects (A,a) — A )

(A RA,...,RA) = A

* on morphisms £~ f e on morphisms f — f

Exercise: Show that, for every relational signature o, we have a functor
Set — Str(c) which maps a set A to (A, R, ..., R{) where RA = A",
for an n-ary R; € 0. 14



Syntax vs Semantics



Semantics to logic

For any fragment .

But when do we get

Recall

A=Y B

A= B
A=Y B

A— B
A=< B

Yoe. & AFE ¢ implies BF ¢

15



Primitive positive fragment

Primitive positive sentences PP C FO are formed by

e atomic formulas: t, R(x1,...,Xn) (for n-ary R € o)
e conjunctions: ¢ A Y

o existential quantifiers: dx

l.e. we do not allow equality x = y, disjunctions ¢ V 1),
negations —¢, universal quantifications Vx .

We have added the always true sentence t, which holds AF t in

every g-structure A.

16



Examples of PP sentences

(1) Valid PP sentence

Ixyz (R(x,y) A P(y) A S(y, 2))

in signature o = {R(+,-), P(-), S(-,-), T(-,~, )}

(2) Despite equivalence of
(3x. R(x,x))Vt and Ix. R(x, x)

The former is not PP!

17



Exercise

Given a o-structure A:

S

)

R 3 _ R
AN
1 lR 2
R\4/I;

in signature o = {R(+,-), S(+,-)}, and a PP sentence ¢:
Ix (Ely (R(x,y) A3z(R(y, 2) A R(z, x)))
A3z (S(z,2) A R(x72)))

Decide if AF ¢ .

18



Evaluating PP sentences, |

Step 1: Variable renaming in ¢
dxq (E]Xg (R(Xl,XQ) A E|X3(R(X2, X3) A R(X3, Xl)))
A Ixq (S(xa,xa) N\ R(x1,x1)))

Observation

If x does not occur freely in 1) then

Ix(pAy) and (Bx) Ay

are equivalent, in first-order logic.

Step 2: Rewrite ¢ into the prenex normal form

Ix1, x2, x3, Xa (R(x1,x2) A R(x2,x3) A R(x3,x1)

A S(xa,xa) N R(x1,xa))
19



Evaluating PP sentences, ||

Step 3: From the prenex normal form dxi, xo, x3, X4 o Where

wo(x1,x2,x3,xa) = R(x1,x2) A R(x2,x3) A R(x3, x1)

A S(xa,x4) N R(x1,xa)

we build a o-structure M(y) on universe {x1, x2, X3, x4 }

X
R 1
A

R
~
X3 R X4 D S
AN
R %
Observation: There is a bijection

) 1-1 .
homomorphisms M(¢) - A & assignments v: x; — a; such that

AFE po(v(x1), v(x2), v(x3), v(xa))

20



Approximating the homomorphism order

Theorem

For any ¢ € PP there is an M(p) € Strfp(0) such that
M(p) > A <= AEyp

for any o-structure A.

Corollary

For o-structures A, B,
A—B

A=PP B

Proof.

Fora ¢ € PP, if AE ¢ then M(y) - A — B.
Therefore, B E .

21



From finite structures to sentences

Conversely, for a finite A € Strg,(0), we construct a W(A) € PP
by listing everything true in A in a prenex normal form.

Example
Take A to be as follows

al —— a4

R| . IR

A = a ——— a5

R . IR

a3 —— dg
Set W(A) to be

Elev"'vXﬁ( /\ RX17XI+1 /\ SX17XI+3 )
i€{1,2,4,5} ie{1,2,3}

22



Approximating ="

Theorem

For any finite A € Str(c) there is a W(A) € PP such that
A—B << BEV(A)

for any o-structure B.

Corollary

For o-structures A, B with A finite,

A=PP B
A— B

Proof.

From Ak W(A) and A=FP B we get B E V(A).
Therefore, A — B.

23



The Chandra—Merlin Correspondence [1977]

For finite A and B arbitrary,
A—-B = A='"B

And we have

such that
(Thm)

M(p) = A = AFyp <= VArlrop
In fact

Thep(A) = {9 € PP |AF ¢} = {9 € PP | V(A) - ¢} 24



Logic fragments



Logic restriction: quantifier rank

For a natural number k, define

FO, C FO
as the restriction to sentences ¢ of quantifier rank at most k,
that is, qrank(y) < k.

Quantifier rank is defined inductively

grank(A) = (for an atomic A)

qrank(—p) = qrank( )

qrank(p A 1) = qrank(y V 1) = max(qrank(p), grank(v))
)=

grank(Jx ¢) = qrank(Vx ¢) = qrank(p) + 1

] Define PP, = FO, N PP. \

25



Exercise
What is the quantifier rank of

Ixy (R(x,y) N3z S5(z,z,x) N3z S(x,y,z))

?

26



Bounded quantifier rank approximations

For every natural number k:

A— B A=B
and

A=PPc B A =FO« B

Both are polynomial-time decidable.

27



Logic restriction: number of variables

For a natural number k, define
FOK C FO

as the restriction to sentences ¢ which only use variables

from xq,..., Xk.

Define PPX = FOX N PP

28



Bounded variable count approximations

For every natural number k:

A— B A=B
PPk and —FOk
A= B A= B

Again, both are polynomial-time decidable.

29



Exercise

Is any of these true?

A=PPe B

A=PP B

A=PPpB

A 3}3}3;( B

30



Modal depth

Define MLy as the restriction of ML to formulas of modal depth
at most k, written as modep(y) < k.

Modal depth is defined inductively

modep(p) = (for a propositional letter p)

modep(—¢p) —modep( )

modep(y A 1)) =modep(p V ¢)) = max(modep(), modep(1)))
)=

modep([g ¢) = modep(Qr ) = modep(y) + 1

31



Logic extensions: Existential Positive fragment

Existential positive sentences EP C FO are formed by

e atomic formulas: t, x =y, R(x1,...,x,) (for n-ary R € o)
e logical connectives: p A1), @V ¥

e existential quantifiers:  3x (x)

Theorem (Los-Tarski-Lyndon, 1955 & 1959)
A first-order sentence is preserved by homomorphisms iff it is
equivalent to an existential positive sentence.

Consequently, since PP C EP,
A— B = A=EP B

(for a finite A)

32



Through Chandra—Merlin lenses

Lemma

Every EP sentence ¢ is equivalent to

p1 V-V

for some PP sentences 1, ..., @, (possibly with equalities).

Proof.
Follows from A E Ix (¢ V') < (3x ) V (Ix ).

Then,
AE ¢ <= M(p;) = A (for some i)

Define EP and EP* as earlier.

33



Restrictions of Modal logic

Primitive positive modal formulas are formed by

e propositional letters, true statement t, conjunctions A, and
modalities Op

Existential positive modal formulas are formed by

¢ (as above) + disjunctions V

34



We saw that

A-B — A='"B
However, for approximations we prefer

A=PPeB and APP B

Question: Can we express these relations as homomorphisms of
some sort?

Yes, we'll see tomorrow!

35






Bonus slides:
Restricting Chandra—Merlin



For
Fx =M[PP,] and F* = M[PP/]

by the Chandra—Merlin correspondence we have

A=3PPB  «— VCeF C— Aimplies C— B

A=FP B VYCeFk C— Aimplies C — B

In fact, the structures in Fx and F* have nice characterisations.

36



Characterising structures in F

Theorem
A finite o-structure A is in Fy iff there exists a binary relation <
on the universe of A such that

1. < is a partial order

2. Every set la= {x € A| x < a} has cardinality <k, and is
linearly ordered by <.

3. (a1y...,a0) € RA implies a; < aj or a; <a; (Vi,j).

37



Characterising structures in F*

Theorem

A finite o-structure A is in F¥ iff there exists a binary relation <
on the universe of A and a function p: A — {1,..., k} such that

1. < is a partial order
2. Every set a = {x € A| x < a} is finite and linearly ordered
by <.
3. (a1,...,an) € RA implies
o ai<a;ora<a (Yij)
o Vz aj<z<a = p(a)#p(z)

38
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