
An Invitation to Game Comonads

Review of Category Theory

Tomáš Jakl

Luca Reggio

Department of Computer Science and Technology, Univer-
sity of Cambridge, UK

Email address: tomas.jakl@cl.cam.ac.uk
URL: https://tomas.jakl.one

Department of Computer Science, University College Lon-
don, UK

Email address: l.reggio@ucl.ac.uk
URL: https://lucareggio.github.io

Draft version compiled on 27th July 2022.

Contents

Note to the reader . ii

Chapter 1 Category theory . 1
1.1 Categories . 1
1.2 Reasoning with arrows . 5
1.3 Functors . 8
1.4 Natural transformations . 11
1.5 Monads and comonads . 14
1.6 Kleisli and Eilenberg–Moore categories for a comonad 18
1.7 Adjunctions . 22

i

Note to the reader

The purpose of these notes is to recall the basic notions of category the-
ory that will be used throughout the course on Game comonads at ESSLLI
2022. More details about the course can be found here:

https://tomas.jakl.one/teaching/2022-su-game-comonads

The main definitions and properties will be recalled in the lectures, how-
ever we warmly suggest reading these notes before the beginning of the
course. Especially for the students who are not familiar with basic category
theory, it can be useful to attempt to solve (some of) the exercises spread
out through the text.

More advanced exercises are marked with the symbol Ç, whereas the
symbol H denotes a paragraph or result whose content is not needed for the
course and can be safely skipped (sometimes, these can assume familiarity
with specific notions, such as elementary classes).

ii

https://tomas.jakl.one/teaching/2022-su-game-comonads

CHAPTER 1

Category theory

1.1. Categories

Definition 1.1. A category consists of:

• A class Ob(C) of objects, typically denoted by A,B,C.
• A class Mor(C) ofmorphisms (also called arrows), typically denoted
by f, g, h.

• Two functions

dom, cod: Mor(C) → Ob(C)

assigning to a morphism its domain and codomain, respectively.
We write f : A → B to indicate that f is a morphism with domain
A and codomain B. For each pair of objects A,B, we define the
associated hom-set to be the collection

C(A,B) := {f ∈ Mor(C) | f : A → B}.

• For any triple of objects A,B,C, a composition map

C(A,B)× C(B,C) → C(A,C), (f, g) 7→ g ◦ f.

• For each object A, an identity morphism idA : A → A.

The data above must satisfy the following equations for all arrows f, g, h
and all objects A,B, whenever the compositions are well-defined:

h ◦ (g ◦ f) = (h ◦ g) ◦ f (Associativity law)

f ◦ idA = f = idB ◦ f (Identity laws)

Remark 1.2. Properly speaking, the hom-sets C(A,B) need not be sets
and may be proper classes. Cf. Definition 1.25. ▲

Here is our first example of category:

• Set: the objects are sets and the morphisms are the functions
between them.

We can always produce a new category from an old one by selecting some
objects and taking all morphisms between them. For instance, we can define
the category

• Setfin: the objects are finite sets and the morphisms are the func-
tions between them.

1

1.1. CATEGORIES 2

In general, new categories can be obtained from old ones by restricting
either their arrows or objects, or both.

Definition 1.3. Suppose C is a category and consider collections Ob(D) ⊆
Ob(C) and, for all A,B ∈ Ob(D), D(A,B) ⊆ C(A,B). Then D is a subcat-
egory of C if

idA ∈ D(A,A)

for all A ∈ Ob(D) and, for all f ∈ D(A,B) and g ∈ D(B,C),

g ◦ f ∈ D(A,C).

If, moreover, D(A,B) = C(A,B) for all A,B ∈ Ob(D), then D is a full
subcategory of C.

For example, Setfin is a full subcategory of Set.

Exercise 1.4. Show that a subcategory D of C is itself a category, with
respect to the obvious composition maps and identity morphisms. ▲

In order to provide further examples of categories, we shall recall some
basic mathematical notions.

σ-Structures. Recall that a relational signature σ is a set of relation sym-
bols {Ri | i ∈ I} such that each Ri is assigned a positive integer ar(Ri),
called the arity of Ri. A σ-structure is given by a set A (the universe of
the structure) together with an interpretation of the relation symbols in σ.
That is, for each Ri ∈ σ of arity n we have a set of n-tuples

RA
i ⊆ An.

A homomorphisms of σ-structures (or σ-homomorphism, for short) from a
σ-structure A to a σ-structure B is a function f : A → B between their
universes that preserves the interpretations of the relations, i.e. for each
Ri ∈ σ of arity n and all (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA
i =⇒ (f(a1), . . . , f(an)) ∈ RB

i .

For any relational signature σ, we have a category

• Str(σ): the objects are σ-structures and the morphisms are the
σ-homomorphisms.

Restricting to the finite σ-structures, i.e. those σ-structures whose universe
is a finite set, we obtain the category

• Strfin(σ): the objects are finite σ-structures and the morphisms
are the σ-homomorphisms.

1.1. CATEGORIES 3

Relations. Let X,Y be any two sets. A relation from X to Y , written
X ↛ Y , is a subset R of the Cartesian product X×Y . If X = Y , we simply
refer to R as a (binary) relation on X. Given a pair (x, y) ∈ X × Y , we
sometimes write xRy instead of (x, y) ∈ R. The identity relation on a set
X is the diagonal relation

∆X := {(x, x) ∈ X ×X | x ∈ X},
and the composition of two relations R : X ↛ Y and S : Y ↛ Z is the
relation R;S : X ↛ Z defined by

R;S := {(x, z) ∈ X × Z | ∃y ∈ Y. xRy and ySz}.
These data define a category

• Rel: the objects are sets and the morphisms are relations.

Set is a subcategory of Rel, but not a full subcategory.

Partial orders. A partial order on a set X is a binary relation on X
satisfying the following conditions for all x, y, z ∈ X:

x ≤ x (Reflexivity)

x ≤ y ∧ y ≤ z =⇒ x ≤ z (Transitivity)

x ≤ y ∧ y ≤ x =⇒ x = y. (Antisymmetry)

A partially ordered set (or poset, for short) is a pair (X,≤) where X is
a set and ≤ is a partial order on X. A monotone (or order-preserving) map
from a poset (X,≤X) to a poset (Y,≤Y) is a function f : X → Y such that
x1 ≤X x2 implies f(x1) ≤Y f(x2) for all x1, x2 ∈ X.

We obtain a category

• Pos: the objects are posets and the morphisms are monotone maps.

More generally, a relation that is reflexive and transitive—but not nec-
essarily antisymmetric—is a called a preorder. In the same spirit as above,
we can define a preordered set as a pair (X,≤) consisting of a set X and a
preorder ≤ on it. This yields a category

• PreOrd: the objects are preordered sets and the morphisms are
monotone maps.

Pos is a full subcategory of PreOrd.

Forests and trees. Let (X,≤) be a poset. A subset C ⊆ X is said to be a
linear order (or a chain) if, for all x, y ∈ C, either x ≤ y or y ≤ x. For any
element x ∈ X, let us write

↓x := {y ∈ X | y ≤ x}
for the downset of x.

A forest is a poset (X,≤) such that, for all x ∈ X, the downset ↓x is
a finite linear order. The roots of a forest are the minimal elements, i.e.
those elements that are not strictly above any other element. The covering

1.1. CATEGORIES 4

relation ≺ associated with the partial order ≤ is defined by x ≺ y if and only
if x < y (that is, x ≤ y and x ̸= y) and there is no z such that x < z < y.

A forest morphism from a forest (X,≤X) to a forest (Y,≤Y) is a function
f : X → Y that preserves roots and the covering relation. That is, for all
x1, x2 ∈ X, if x1 is a root of (X,≤X) then f(x1) is a root of (Y,≤Y), and if
x1 ≺ x2 then f(x1) ≺ f(x2). This defines a category

• Forests: the objects are forests and the arrows are forest mor-
phisms.

A forest with at most one root is a called a tree. Considering only those
objects of Forests that are (non-empty) trees, we obtain a new category

• Trees: the objects are non-empty trees and the arrows are forest
morphisms.

The category of trees is a full subcategory of the category of forests.

Monoids and groups. A monoid is a triple (M, ·, 1) where M is a set,

· : M ×M → M

is a binary operation on M (the multiplication of M), and 1 is an element
of M (the identity element), satisfying the equational axioms:

x · (y · z) = (x · y) · z (Associativity law)

x · 1 = x = 1 · x (Identity laws)

A monoid homomorphism from (M, ·M , 1M) to (N, ·N , 1N) is a function
f : M → N that preserves the multiplication and the identity element, i.e.
for all m1,m2 ∈ M

f(m1 ·M m2) = f(m1) ·N f(m2) and f(1M) = 1N .

We thus get a category

• Mon: the objects are monoids and the arrows are monoid homo-
morphisms.

Moreover, a group is a monoid (G, ·, 1) in which every element has an
inverse. That is, for all g ∈ G there is an element g−1 ∈ G such that

g · g−1 = 1 = g−1 · g.

A group homomorphism from a group (G, ·G, 1G) to a group (H, ·H , 1H)
is a function f : G → H that preserves the multiplication and the identity
element (i.e., is a monoid homomorphisms), as well as inverses: for all g ∈ G,
f(g)−1 = f(g−1). This yields a category

• Grp: the objects are groups and the arrows are group homomor-
phisms.

Exercise 1.5. Prove that Grp is a full subcategory of Mon. ▲

1.2. REASONING WITH ARROWS 5

Elementary classes.H Let T be a first-order theory in a signature τ (pos-
sibly containing both relation and function symbols). A τ -homomorphism
between τ -structures is a function that preserves all relation and function
symbols in τ . These data define a category

• Mod(T): the objects are models of T and the arrows are the τ -
homomorphisms between them.

Note that the categoriesPos, PreOrd andMon are of the formMod(T)
for an appropriate signature τ and theory T . The same holds for Grp, be-
cause every monoid homomorphism between two groups is a group homo-
morphism (see Exercise 1.5). On the other hand, Rel, Forests and Trees
are not of the form Mod(T) since the arrows in these categories are not all
“structure-preserving functions” between the appropriate objects.

Finally, every poset can be regarded as a category; this simple observa-
tion leads to a considerable source of examples for many categorical notions:

Example 1.6. Any partially ordered set (P,≤) can be seen as a category
in the following way: the objects are the elements of P and, for all x, y ∈ P ,
the hom-set P (x, y) is given by

P (x, y) :=

{
{⋆} if x ≤ y

∅ otherwise.

In particular, between any two objects there is at most one arrow.1 The
reflexivity law x ≤ x yields the identity morphisms, and the transitivity law
x ≤ y ≤ z ⇒ x ≤ z gives compositions of morphisms.

Note that we did not use the fact that posets satisfy the antisymmetry
law, hence this construction works more generally for preordered sets. ▲

1.2. Reasoning with arrows

In ordinary mathematics, based on set-theoretic foundations, we are used
to element-wise reasoning. In order to show that two functions f, g : X → Y
are distinct, we seek to find an element x ∈ X such that f(x) ̸= g(x). This
hinges on the observation that two functions (with the same domain and
codomain) are equal if, and only if, they coincide at each element of their
domain. Similarly for continuous maps between topological spaces, group
homomorphisms, linear maps between vector spaces, and so forth.

This simple principle, which is an intrinsic part of the “logic of sets”
(and is a consequence of the axiom of extensionality in set theory), does not
hold in all categories. In fact, the notion of element is not even available in

1This implies that any diagram in this category commutes!

1.2. REASONING WITH ARROWS 6

an arbitrary category. For this reason, it is important to learn to reason in
terms of arrows, rather than elements.2

A first useful observation is that, when comparing arrows, equations
can be rephrased in terms of commutative diagrams. Consider for instance
arrows f : A → B, g : B → D, h : A → C and i : C → D. Then the equation

g ◦ f = i ◦ h

holds if, and only if, the following diagram commutes:

A B

C D

f

h g

i

This sort of rephrasing is at the base of diagrammatic reasoning, which is
pervasive in category theory.

Many mathematical notions that are usually defined in terms of elements
admit purely arrow-theoretic reformulations which can be used to generalise
these concepts to arbitrary categories. Take, for instance, the notion of
bijection: a function f : X → Y between sets is bijective if

∀y ∈ Y ∃!x ∈ X. f(x) = y.

We can avoid any reference to the elements of X and Y by noting that f is
a bijection precisely when there exists a function g : Y → X such that

g ◦ f = idX and f ◦ g = idY .

The latter property only mentions arrows and makes sense in any category.

Definition 1.7. An arrow f : A → B in a category C is an isomorphism if
there exists an arrow g : B → A such that

g ◦ f = idA and f ◦ g = idB.

If there exists an isomorphism A → B, we say that A is isomorphic to B
and write A ∼= B.

Exercise 1.8. Show that the isomorphisms in the categoryMon of monoids
are precisely the bijective monoid homomorphisms. ▲

Exercise 1.9. Prove that the isomorphisms in the category Str(σ), for any
relational signature σ, are precisely the σ-isomorphisms, i.e. the bijective
functions f : A → B such that, for each relation symbol R ∈ σ of arity n,

(a1, . . . , an) ∈ RA ⇐⇒ (f(a1), . . . , f(an)) ∈ RB.

2Having said that, (generalised) elements can be defined in a large class of categories,
and the question of whether a category has enough elements is of interest in several
contexts, such as topos theory or categorical logic. For example, Gödel’s Completeness
Theorem is equivalent to the statement that a certain category has enough elements.

1.2. REASONING WITH ARROWS 7

Give an example of a bijective σ-homomorphism that is not an isomorphism.
▲

Exercise 1.10. Describe the isomorphisms in the category Pos of posets.
▲

Note that every isomorphism f in a category satisfies the conditions

f ◦ g = f ◦ h =⇒ g = h

and

g ◦ f = h ◦ f =⇒ g = h

whenever the compositions are well defined. These cancellation laws define
two important classes of morphisms in any category:

Definition 1.11. Let f : A → B be an arrow in a category C. We say that

• f is monic (or a monomorphism) if, for all arrows g, h : C → A,

f ◦ g = f ◦ h =⇒ g = h.

• f is epic (or an epimorphism) if, for all arrows g, h : B → C,

g ◦ f = h ◦ f =⇒ g = h.

Exercise 1.12. Prove that, in Set, the monomorphisms and epimorphisms
coincide, respectively, with the injective and surjective functions. Conclude
that, in Set, a morphism that is both monic and epic is an isomorphism. ▲

Exercise 1.13. Give an example of a category admitting an arrow that is
both epic and monic, but not an isomorphism. ▲

Exercise 1.14.Ç Show that a morphism in Mon is monic if, and only if,
it is an injective monoid homomorphism. Is every epimorphism in Mon
surjective? ▲

Exercise 1.15. Prove that, in the categories Pos, Forests and Str(σ), the
monomorphisms and epimorphisms are those morphisms whose underlying
function is, respectively, injective and surjective. ▲

By definition, a morphism in a category has a domain and a codomain;
this is akin to the case of directed graphs, where edges have a source and a
target. Given an arbitrary category C, we can construct a new category Cop

by reversing the direction of arrows in C. That is, an arrow A → B in Cop

is defined to be an arrow B → A in C. Formally:

Definition 1.16. The opposite category Cop of a category C is defined by
Ob(Cop) := Ob(C) and, for all objects A,B of Cop, Cop(A,B) := C(B,A).
Identities in Cop are the same as in C, and the composition g ◦ f in Cop is
defined as f ◦ g in C.

1.3. FUNCTORS 8

For example, let (P,≤) be a poset regarded as a category as explained in
Example 1.6. Its opposite category can be identified with the poset (P,≤op)
obtained by turning the order of P upside down. That is, for all x, y ∈ P ,

x ≤op y ⇐⇒ y ≤ x.

The passage from a category to its opposite is a purely formal operation
but is at the heart of deep connections between e.g. algebra and geometry
(mathematics), syntax and semantics (logic), and observables and states
(physics). This is the subject of duality theory.

For now, it suffices to mention the following fact, sometimes referred to
as principle of duality : An arrow-theoretic statement φ holds in a category
C precisely when the dual statement (obtained from φ by reversing the
direction of arrows) holds in Cop.

Exercise 1.17. Prove that an arrow in a category C is monic (respectively,
epic) if, and only if, it is epic (respectively, monic) in Cop. ▲

1.3. Functors

At the heart of category theory is the idea that morphisms between
objects are as important as the object themselves. So, having defined the
notion of category, it is natural to ask what is a “morphism of categories”.

Definition 1.18. A functor F : C → D from a category C to a category D

consists of:

• A map Ob(C) → Ob(D) that assigns an object FA of D to every
object A of C.

• For all A,B ∈ Ob(C), a map C(A,B) → D(FA,FB) that assigns
an arrow Ff : FA → FB in D to every arrow f : A → B in C,
preserving compositions and identities:

F (g ◦ f) = Fg ◦ Ff and F (idA) = idFA.

Trivial examples of functors are obtained by considering a subcategory
C of a category D. Then there is a functor C → D that acts as the inclusion
on both the objects and arrows.

What is a functor from a poset P to a poset Q (regarded as categories)?
The object map is simply a function F : P → Q. On arrows, whenever x, y ∈
P satisfy x ≤ y, we must assign an arrow Ff : Fx → Fy to the unique arrow
x → y. But if there exists an arrow Fx → Fy, it is unique. So, this amounts
to saying that F is monotone. Note that the requirement that compositions
and identities be preserved is trivially satisfied, as any diagram in a poset
commutes. Therefore, functors between posets are precisely monotone maps.

Further examples of functors are presented in the following exercises.

Exercise 1.19. For any set X, denote its power-set by PX. Furthermore,
given a function f : X → Y between sets, let Pf : PX → PY be the direct
image map that sends a subset S ⊆ X to f [S] := {f(x) ∈ Y | x ∈ S}.

1.3. FUNCTORS 9

Show that these assignments yield a functor P : Set → Set, known as the
(covariant) power-set functor. ▲

Exercise 1.20. Given a set X, let X∗ denote the monoid of all finite lists
(i.e., sequences) of elements of X. The monoid operation of X∗ is given
by concatenation of lists, and the identity element is the empty list. If
f : X → Y is a function between sets, then f∗ : X∗ → Y ∗ sends a list
[x1, . . . , xn] to [f(x1), . . . , f(xn)]. Show that this construction determines a
functor Set → Mon. ▲

Exercise 1.21. For any set X, let FX be the set of all non-empty finite
lists of elements of X. We equip FX with a partial order defined as follows:
for all s, t ∈ FX, s ≤ t if and only if s is a prefix of t. Any function
f : X → Y induces a map FX → FY that sends a (non-empty) sequence
[x1, . . . , xn] to [f(x1), . . . , f(xn)]. Prove that these data define a functor
Set → Forests. ▲

Exercise 1.22. Given a forest X, let X+ be the tree obtained by adding
a least element to X. Any forest morphism X → Y can be extended to a
forest morphism X+ → Y+ by sending the root of X+ to the root of Y+.
Check that this gives a functor Forests → Trees. ▲

Many examples of functors arise from “forgetting” part of the structure;
these are generally (and informally) referred as forgetful functors. For ex-
ample, given a group (G, ·G, 1G), we can forget its algebraic structure and
only retain the information about its underlying set G. Similarly, if f is a
group homomorphism from (G, ·G, 1G) to (H, ·H , 1H), we can simply regard
f as a function G → H. These assignments determine a forgetful functor

Grp → Set.

Likewise, we can define a functor Grp → Mon by only retaining the monoid
structure of groups and group homomorphisms.

In the same way that morphisms in a category can be composed (when-
ever the codomain of one matches the domain of the other), functors between
categories can be composed. If F : B → C and G : C → D are functors, then
there is a composite functor

GF : B → D

that sends an object A of B to the object GFA ofD, and an arrow f : A → B
in B to the arrow GFf : GFA → GFB in D.

Notation 1.23. Given a functor F : C → C, we sometimes denote the com-
posite FF : C → C by F 2. Similarly, F 3 stands for FFF , and so forth.

Moreover, any category C admits an identity functor

idC : C → C

that acts as the identity on both objects and morphisms. This suggests
that categories, together with functors between them, form themselves a

1.3. FUNCTORS 10

category. This is indeed the case, but a precise definition requires extra care
so as to avoid Russell’s paradox (“the set of all sets is not a set”).

Exercise 1.24. Define a chain of functors

Forests → Pos → PreOrd → Set

whose composition is the obvious forgetful functor Forests → Set. ▲

An important role is played by set-valued functors, i.e. functors C → Set.
If we regard the category of sets and functions as the “universe” where ordi-
nary (classical) mathematics is carried out, set-valued functors correspond
to interpretations (e.g. of theories) in this universe. This is the perspective
adopted in categorical logic, where models of a theory are defined as set-
valued functors satisfying appropriate properties. It is therefore pertinent
to ask if, for any category C, there are any functors C → Set. The answer
is yes—whenever C satisfies a mild set-theoretic “smallness condition”.

Definition 1.25. Let C be a category and suppose that, for all A,B ∈
Ob(C), the collection C(A,B) is a set (as opposed to a proper class). Then
C is said to be locally small.

Any object A of a locally small category C determines a hom-set functor

C(A,−) : C → Set

that sends an object B of C to the set C(A,B), and an arrow f : B → C in
C to the function

C(A, f) : C(A,B) → C(A,C), g 7→ f ◦ g.

Properties of functors. In the same way that we discussed properties of
arrows (e.g., being monic, epic, or an isomorphism), it is useful to consider
properties that a functor may, or may not, satisfy.

Definition 1.26. A functor F : C → D is said to be faithful (respectively,
full) if, for all objects A,B of C, the map

C(A,B) → D(FA,FB), f 7→ Ff

is injective (respectively, surjective).

Note that, if C is a subcategory of D, then the inclusion functor C → D

is always faithful, and is full precisely when C is a full subcategory of D (see
Definition 1.3).

Typically, forgetful functors are faithful but not full.

Exercise 1.27. Prove that the forgetful functors Mon → Set and Pos →
Set are faithful but not full. ▲

Exercise 1.28. Consider the functors Set → Mon and Set → Forests in-
troduced, respectively, in Exercise 1.20 and Exercise 1.21. Are they faithful?
Are they full? ▲

1.4. NATURAL TRANSFORMATIONS 11

Exercise 1.29. Show that every functor preserves isomorphisms, but need
not preserve monomorphisms nor epimorphisms. ▲

Note that the composition of faithful functors is again faithful, and the
composition of full functors is full (check this!).

Definition 1.30. A functor F : C → D is an isomorphism if there exists a
functor G : D → C such that

GF = idC and FG = idD.

If it exists, the functor G in the previous definition is unique and referred
to as the inverse of F .

Exercise 1.31. Prove that the functor Forests → Trees defined in Exer-
cise 1.22 is an isomorphism. Describe its inverse. ▲

If a functor is an isomorphism, then it is full and faithful (why?). How-
ever, the notion of isomorphism is typically too strong. This leads to the
weaker concept of equivalence which will be introduced in the next section
(see Definition 1.40).

1.4. Natural transformations

We have seen that categories consist of objects and morphisms between
them, and moreover there is an appropriate notion of morphism between
categories—namely, functors. One could go further and consider morphisms
of morphisms of categories, morphisms between the latter, etc. This is the
framework of higher category theory ; in the present notes we shall only take
one more step and discuss “morphisms between functors”.

Definition 1.32. A natural tranformation α : F → G between functors
F,G : C → D is a collection

{αA : FA → GA | A ∈ Ob(C)}
of arrows in D indexed by objects of C satisfying the following naturality
condition: For all arrows f : A → B in C, the following square commutes.

FA FB

GA GB

Ff

αA αB

Gf

The morphism αA is called the component of α at A.

Example 1.33. Consider the (covariant) power-set functor P : Set → Set
defined in Exercise 1.19, along with the identity functor idSet : Set → Set.
We show that there is a natural transformation

η : idSet → P
whose component at a set X is the function

ηX : X → PX, x 7→ {x}.

1.4. NATURAL TRANSFORMATIONS 12

To this end, we must verify that the following square commutes for all
functions f : X → Y between sets:

X Y

PX PY

f

ηX ηY

Pf

In turn, this follows by observing that, for all x ∈ X,

(ηY ◦ f)(x) = ηY (f(x)) = {f(x)} = Pf({x}) = (Pf ◦ ηX)(x). ▲

Exercise 1.34. As in the previous example, consider the (covariant) power-
set functor P : Set → Set. Show that there exists a natural transformation

µ : PP → P

whose component at a set X is the function

µX : PPX → PX, S 7→
⋃

S. ▲

Exercise 1.35. Let F : Set → Mon be the functor defined in Exercise 1.20,
and let U : Mon → Set be the forgetful functor. Recall that, for all sets
X, FX is the monoid of finite lists of elements of X, hence UFX is the
set of finite lists of elements of X. Denoting the composite functor by
T := UF : Set → Set, check that there is a natural transformation

η : idSet → T

whose component at a set X is the function

ηX : X → TX, x 7→ [x].

Moreover, show that there is a natural transformation

µ : TT → T

whose component at X is the flatten map

µX : TTX → TX,

[[x1,1, . . . , x1,n1], . . . , [xk,1, . . . , xk,nk
]] 7→ [x1,1, . . . , x1,n1 , . . . , xk,1, . . . , xk,nk

].

Note the similarity between these natural transformations and those
defined for the power-set functor P in Example 1.33 and Exercise 1.34.
These are two instances of the same concept, namely that of monad. See
Section 1.5. ▲

Exercise 1.36. Let F : Set → Forests be the functor defined in Exer-
cise 1.21, and consider the composite functor G := UF : Set → Set where
U : Forests → Set is the forgetful functor. For every set X, GX is the set
of all non-empty finite lists of elements of X. Verify that there is a natural
transformation

ε : G → idSet

1.4. NATURAL TRANSFORMATIONS 13

whose component at X is the map sending a list to its last element:

εX : GX → X, [x1, . . . , xn] → xn.

(Note that εX is well defined because FX consists of non-empty lists!)
Furthermore, show that there is a natural transformation

δ : F → GG

whose component at X sends a list to the list of its (non-empty) prefixes:

δX : GX → GGX, [x1, . . . , xn] 7→ [[x1], [x1, x2], . . . , [x1, . . . , xn]]. ▲

Functor categories.H To give a precise meaning to the assertion that nat-
ural transformations are morphisms of functors, we introduce the notion of
functor category. For any two categories C,D, there is a category

[C,D]

whose objects are functors F : C → D and whose arrows are natural trans-
formations. Given a functor F : C → D, its identity is the natural transfor-
mation α : F → F such that, for all objects A of C, αA = idFA. Natural
transformations can be composed in the obvious way: if α : F → G and
β : G → H are natural transformations, then their composite is the natural
transformation

βα : F → H, (β ◦ α)A := βA ◦ αA.

Exercise 1.37. Verify the statements in the previous paragraph and check
carefully that [C,D] is indeed a category. ▲

What are the isomorphisms in a functor category?

Definition 1.38. Let α : F → G be a natural transformation between func-
tors F,G : C → D. If all components of α are isomorphisms in D, then α is
called a natural isomorphism.

Exercise 1.39. Prove that the isomorphisms in a functor category [C,D]
are precisely the natural isomorphisms. ▲

We can use the notion of natural isomorphism to weaken the concept of
isomorphism between categories. This is akin to the passage from homeo-
morphism to homotopy equivalence in topology.

Definition 1.40. A functor F : C → D is an equivalence if there exists a
functor G : D → C and natural isomorphisms

α : GF → idC and β : FG → idD.

If there exists an equivalence C → D, we shall say that C is equivalent to D

and write C ≃ D.

When D = Set, the objects of [C,Set] are set-valued functors defined
on C. Likewise, one can consider the functor category [Cop,Set] of set-valued
functors defined on the opposite category Cop. These play a central role in
category theory and are called presheaves on C. The category of presheaves

1.5. MONADS AND COMONADS 14

on C is in general much larger than the original category C, yet it admits
a copy of C as a full subcategory. This is known as the Yoneda embedding,
which we recall below.

Exercise 1.41.Ç Let 2 denote a category with precisely two objects, their
identities, and two distinct parallel morphisms. This category can be de-
picted as follows (where we omit the identity arrows for convenience):

• •

Show that the functor category [2,Set] is isomorphic to the category of
simple, directed (multi)graphs and graph homomorphisms. ▲

Exercise 1.42.Ç Consider the ordered set (N,≤) of natural numbers as a
category (see Example 1.6). Prove that the category [Nop,Set] of presheaves
on N is equivalent to Forests. ▲

Recall the notion of hom-set functor defined on Page 10. Every object
of a locally small category C induces a presheaf

Cop(A,−) = C(−, A) : Cop → Set.

Further, any arrow f : A → B in C induces a natural transformation

C(−, A) → C(−, B)

whose component at an object C of C (equivalently, of Cop) is the function

C(C,A) → C(C,B), g 7→ f ◦ g.
(Check that this is indeed a natural transformation!) This determines a
functor C → [Cop,Set].

Theorem 1.43 (Yoneda embedding).H Let C be a locally small category.
The functor

C → [Cop,Set], A 7→ C(−, A) : Cop → Set

is full and faithful.

1.5. Monads and comonads

Together with the notions of functor and natural transformation (and
that of adjunction, to be discussed in Section 1.7), the concept of monad is
one of the pillars of basic category theory. Its importance is in large part
due to the fact that it shows how a number of constructions throughout
mathematics are instances of the same abstract notion. Monads are perva-
sive in algebra, but appear also in topology, probability theory, functional
programming, and other areas. The dual notion, that of comonad, is equally
important but perhaps less familiar to many researchers. We shall present
both notions, but focus in particular on comonads as they play a key role
in relation with finite model theory.

Monads and comonads are functors of type C → C, i.e. from a category
to itself, satisfying appropriate properties. The intuitions are very different

1.5. MONADS AND COMONADS 15

though: whereas monads encode ways to combine distinct parts or elements,
comonads correspond to decompositions (or unravellings) of an object.

To make this idea more precise, let us look at the case of monads first.
Consider a monoid (M, ·, 1): the monoid operation · tells us how to combine
any two elements of M , and 1 is the identity element for this operation. In a
sense, monads are generalised monoids.3 As such, they come equipped with
a multiplication and an identity satisfying the usual monoid laws.

Definition 1.44. A monad on a category C is a tuple (T, µ, η) where

• T : C → C is a functor,
• µ : T 2 → T is a natural transformation, called multiplication,
• η : idC → T is a natural transformation, called unit,

such that the following diagrams commute for all objects A of C:

T 3A T 2A

T 2A TA

µTA

TµA µA

µA

TA T 2A

T 2A TA

ηTA

TηA idTA µA

µA

In the previous definition, T 2 denotes the composite functor TT , and
similarly for T 3; see Notation 1.23.

Example 1.45. Recall from Exercise 1.35 that there is a functor T : Set →
Set that assigns to a set X the set of all finite lists of elements of X, and it
comes equipped with natural transformations

µ : T 2 → T and η : idSet → T.

The components of µ are the flatten maps that transform a list of lists into
a list, e.g. [[x, y], [z], [y]] is sent to [x, y, z, y], and the components of η send
an element x to the one-element list [x].

The tuple (T, µ, η) is a monad on Set, called the free monoid monad.
This amounts to saying that the diagrams in Definition 1.49 commute for all
objects of Set. We give a “proof by example”; the formal proof follows the
same ideas (with some extra bookkeeping) and is left to the reader. Suppose
we have a set X = {x, y, z}. For the left-hand diagram in Definition 1.49,
we must consider an element of T 3X, i.e. a list of lists of lists of elements of
X. For instance,

[[[x], [x, y]], [[x, y, z]]].

Chasing this element around the diagram, we get:

[[[x], [x, y]], [[x, y, z]]] [[x], [x, y], [x, y, z]]

[[x, x, y], [x, y, z]] [x, x, y, x, y, z]

µTX

TµX µX

µX

3This is a small lie: the truth is that a monad is (a special case of) a monoid, namely
a monoid object in the functor category [C,C].

1.5. MONADS AND COMONADS 16

The right-hand diagram in Definition 1.49 is easier to check: given an ele-
ment of TX, say [z, y, y, x], we have:

[z, y, y, x] [[z, y, y, x]]

[[z], [y], [y], [x]] [z, y, y, x]

ηTX

TηX idTX µX

µX

▲

Exercise 1.46. Fill in the details of the proof in Example 1.45. ▲

It is instructive to look at what is a monad on a poset (regarded as a
category according to Example 1.6). Let (P,≤) be a poset, and let (T, µ, η)
be a monad on P . Then T : P → P is a monotone map (cf. the discussion
on Page 8), and for each x ∈ P the component of µ at x yields an arrow
µx : T

2x → Tx. That is,

T 2x ≤ Tx.

Similarly, the component of η at x yields an arrow ηx : x → Tx and so

x ≤ Tx.

By monotonicity, applying T to both sides of the latter inequation we obtain
Tx ≤ T 2x and therefore

T 2x = Tx.

In other words, T is a closure operator on P .

Definition 1.47. A closure operator on a poset P is a monotone map
t : P → P that is

(1) increasing, i.e. for all x ∈ P , x ≤ tx, and
(2) idempotent, i.e. for all x ∈ P , t2x = tx.

Exercise 1.48. Show that monads on posets are precisely the closure oper-
ators. That is, for any closure operator t : P → P there exist unique natural
transformations µ and η such that (t, µ, η) is a monad on P . ▲

Therefore, a monad on a poset is akin to the modality ♢ in modal logic,
and dually the modal operator □ is an instance of a comonad.

A comonad on a category C can be succinctly defined as a monad on the
opposite category Cop. More explicitly:

Definition 1.49. A comonad on a category C is a tuple (G, δ, ε) where

• G : C → C is a functor,
• δ : G → G2 is a natural transformation, called comultiplication,
• ε : G → idC is a natural transformation, called counit,

such that the following diagrams commute for all objects A of C:

1.5. MONADS AND COMONADS 17

GA G2A

G2A G3A

δA

δA δGA

GδA

GA G2A

G2A GA

δA

δA idGA εGA

GεA

When defining comonads (and similarly, monads), there are a number
of things to be verified: one should give a functor, two natural transforma-
tions, and check that the appropriate diagrams commute. We now recall an
equivalent description of comonads that allows us to reduce these verifica-
tions and is very useful in concrete cases; a similar description for monads
is of course available using the principle of duality.

Definition 1.50. A comonad in Kleisli–Manes form on a category C is
given by:

• an object map G : Ob(C) → Ob(C),
• a morphism εA : GA → A for every A ∈ Ob(A),
• a coextension operation associating with any morphism f : GA → B
a morphism f∗ : GA → GB.

These must satisfy the following equations for all morphisms f : GA → B
and g : GB → C:

ε∗A = idGA, εB ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗. (1.1)

Given a comonad in Kleisli–Manes form, we can extend the object map
G : Ob(C) → Ob(C) to a functor C → C by setting

Gf := (f ◦ εA)∗

for every morphism f : A → B. Furthermore, the arrows δA := id∗GA are
the components of a natural transformation δ : G → G2, the arrows εA are
the components of a natural transformation ε : G → idC, and (G, δ, ε) is a
comonad on C.

Exercise 1.51.Ç Prove that, conversely, every comonad on C induces a comonad
in Kleisli–Manes form, and the two assignments are inverse to each other.
(Hint: define the coextension of f : GA → B as f∗ := Gf ◦ δA.) ▲

Example 1.52. We define a comonad on Set using the Kleisli–Manes form.
The object map

G : Ob(Set) → Ob(Set)

sends a set X to the set of all non-empty finite lists of elements of X. For
each set X,

εX : GX → X, [x1, . . . , xn] 7→ xn

is the function sending a list to its last element. Finally, the coextension
operation sends a function f : GX → Y to the function

f∗ : GX → GY, [x1, . . . , xn] 7→ [f([x1]), f([x1, x2]), . . . , f([x1, . . . , xn])].

1.6. KLEISLI AND EILENBERG–MOORE CATEGORIES FOR A COMONAD 18

It remains to show that the equations

ε∗X = idGX , εY ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗

are satisfied for all functions f : GX → Y and g : GY → Z. So, we fix an
arbitrary element [x1, . . . , xn] ∈ GX and compute:

ε∗X([x1, . . . , xn]) = [εX([x1]), εX([x1, x2]), . . . , εX([x1, . . . , xn])]

= [x1, . . . , xn],

(εY ◦ f∗)([x1, . . . , xn]) = εY ([f([x1]), . . . , f([x1, . . . , xn])])

= f([x1, . . . , xn]),

(g ◦ f∗)∗([x1, . . . , xn]) = [(g ◦ f∗)([x1]), . . . , (g ◦ f∗)([x1, . . . , xn])]

= [g([f(x1)]), . . . , g([f([x1]), . . . , f([x1, . . . , xn])])]

= g∗([f([x1]), . . . , f([x1, . . . , xn])])

= (g∗ ◦ f∗)([x1, . . . , xn]).

The associated comonad (G, δ, ε) is the one described in Exercise 1.36
(check this!). ▲

Exercise 1.53. Prove that comonads on a poset P are precisely the interior
operators on P , i.e. the monotone maps g : P → P that are

(1) decreasing, i.e. gx ≤ x for all x ∈ P , and
(2) idempotent, i.e. g2x = gx for all x ∈ P .

Either give a direct proof or use Exercise 1.48 combined with the principle
of duality. ▲

1.6. Kleisli and Eilenberg–Moore categories for a comonad

Monads and comonads induce, respectively, categories of algebras and
categories of coalgebras. For example, algebras for monads over Set essen-
tially correspond to varieties of algebras in the sense of universal algebra.4

In this section, we shall focus exclusively on coalgebras for comonads, as
these are relevant in connection with finite model theory.

Given a comonad, there are two categories of coalgebras that are worth
looking at: the Kleisli category is the “minimal” one and consists only of the
co-free coalgebras, whereas the Eilenberg–Moore category is the “maximal”
one and consists of all coalgebras. The former is easier to describe, but
some constructions require working in the latter category. Let us start by
introducing the Kleisli category of a comonad:

Definition 1.54. LetG be a comonad (in Kleisli–Manes form) on a category
C. The Kleisli category of G, denoted by K(G), is defined as follows:

• Ob(K(G)) = Ob(C).

4To make the statement precise, one should restrict to those monads on Set that are
finitary, i.e. that preserve so-called directed colimits.

1.6. KLEISLI AND EILENBERG–MOORE CATEGORIES FOR A COMONAD 19

• For all A,B ∈ Ob(C), K(G)(A,B) = C(GA,B).

For any two arrows f ∈ K(G)(A,B) and g ∈ K(G)(B,C), their composite
is defined as the following composition in C:

GA GB C.
f∗ g

The identity idA ∈ K(G)(A,A) is the arrow εA : GA → A in C.

Exercise 1.55. Verify that K(G) is a category. That is, the composition
operation is associative and the identity arrows are identities for the com-
position operation. ▲

To get a better intuition of the Kleisli category, it is useful to compare
it to the Eilenberg–Moore category.

Definition 1.56. Le G be a comonad on a category C. An Eilenberg–Moore
coalgebra for G is a pair (A,α) such that A ∈ Ob(C), α ∈ C(A,GA), and
the following diagrams commute.

A GA

A

α

idA
εA

A GA

GA G2A

α

α δA

Gα

The arrow α is called the structure map of the coalgebra. A morphism of
Eilenberg–Moore coalgebras (A,α) → (B, β) is an arrow f ∈ C(A,B) com-
patible with the structures maps, i.e. making the following square commute.

A B

GA GB

f

α β

Gf

Definition 1.57. Let G be a comonad on a category C. The Eilenberg–
Moore category of G, denoted by EM(G), consists of the Eilenberg–Moore
coalgebras for G and their morphisms. Compositions and identities are the
obvious ones.

For any comonad G, there is a functor

∇ : K(G) → EM(G).

At the level of objects, ∇ sends A ∈ Ob(K(G)) = Ob(C) to (GA, δA). With
regards to morphisms, ∇ assigns to an arrow f ∈ C(GA,B) the arrow f∗.

Proposition 1.58. Let G be a comonad on a category C. Then

∇ : K(G) → EM(G)

is a full and faithful functor.

Proof. We first check that ∇ is well defined. Let A be an arbitrary
object of K(G). To show that (GA, δA) is an Eilenberg–Moore coalgebra,
we must prove that the following diagrams commute.

1.6. KLEISLI AND EILENBERG–MOORE CATEGORIES FOR A COMONAD 20

GA G2A

GA

δA

idGA

εGA

GA G2A

G2A G3A

δA

δA δGA

GδA

In turn, this follows at once from the fact that G is a comonad (see Defini-
tion 1.49).

Now, fix an arbitrary arrow f in K(G), i.e. f ∈ C(GA,B). To see that
f∗ : GA → GB is a morphism of Eilenberg–Moore coalgebras, we must check
that the following square commutes.

GA GB

G2A G2B

f∗

δA δB

Gf∗

To this end, recall that

f∗ = Gf ◦ δA (1.2)

for all arrows f : GA → B (see Exercise 1.51). In particular, id∗GA = δA.
Thus,

Gf∗ ◦ δA = f∗∗ Eq. (1.2)

= (idGB ◦ f∗)∗

= id∗GB ◦ f∗ 3rd equation in Eq. (1.1)

= δB ◦ f∗.

The fact that ∇ preserves compositions and identities is an immediate
consequence of the third and first equations, respectively, for a comonad in
Kleisli–Manes form (check the details!).

It remains to show that ∇ is full and faithful. Faithfulness is clear: just
observe that, for all f, g ∈ C(GA,B), f∗ = g∗ implies

f = εB ◦ f∗ = εB ◦ g∗ = g

by virtue of the second equation for a comonad in Kleisli–Manes form.
To establish fullness of ∇, let g : (GA, δA) → (GB, δB) be a morphism of
Eilenberg–Moore coalgebras. We have

(εB ◦ g)∗ = G(εB ◦ g) ◦ δA Eq. (1.2)

= GεB ◦Gg ◦ δA G is a functor

= GεB ◦ δB ◦ g g coalgebra morphism

= ε∗B ◦ g, Eq. (1.2)

which coincides with g by the first equation for comonads in Kleisli–Manes
form. Note that εB ◦ g ∈ C(GA,B) = K(G)(A,B), hence ∇ is full. □

1.6. KLEISLI AND EILENBERG–MOORE CATEGORIES FOR A COMONAD 21

Let us look at an example. Consider the comonad G on Set defined in
Example 1.52. Recall that, for any set X, GX is the set of non-empty finite
lists of elements of X, and a function f : X → Y is sent to the function

Gf : GX → GY, [x1, . . . , xn] 7→ [fx1, . . . , fxn].

We claim that there is an isomorphism of categories

EM(G) ∼= Forests.

Suppose (X,α) is an Eilenberg–Moore coalgebra for G. The set GX
carries a natural forest order, namely the prefix order. The commutativity
of the first diagram in Definition 1.56 tells us that εX ◦ α = idX and so
the structure map α : X → GX is injective. Hence the forest order on GX
induces a partial order on X given by

x ≤ y ⇐⇒ α(x) ≤ α(y)

for all x, y ∈ X. To show that this is a forest order on X, it suffices to show
that the image of α is a downwards closed subset of GX (why?). That is,
any element of GX that is below some element in the image of α is also in
the image of α.

Fix an arbitrary x ∈ X and suppose that α(x) is of the form [x1, . . . , xn]
(incidentally, note that xn = x because εX ◦ α = idX). The commutativity
of the second diagram in Definition 1.56 implies that

[α(x1), . . . , α(xn)] = [[x1], . . . , [x1, . . . , xn]].

But any element that is below α(x) in the prefix order of GX is of the form
[x1, . . . , xj] for some j ∈ {1, . . . , n}, and in view of the previous equation all
these elements are in the image of α.

Therefore, any structure map α : X → GX defines a forest order on X.
Further, the coalgebra morphisms preserve these forest orders. To see this,
suppose that f : (X,α) → (Y, β) is a morphism of coalgebras, i.e. the follow-
ing square commutes.

X Y

GX GY

f

α β

Gf

An element x ∈ X is a root precisely when α(x) = [x] (why?), and similarly
for elements of Y . Thus, f preserves roots because α(x) = [x] entails

β(fx) = [fx].

To see that f preserves the covering relation, suppose that x, x′ ∈ X satisfy
x ≺ x′ and α(x′) = [x1, . . . , xn]. Observe that x ≺ x′ if and only if fx ≺ fx′

(why?), and so α(x) = [x1, . . . , xn−1]. The commutativity of the previous
square yields

β(fx) = [fx1, . . . , fxn−1] and β(fx′) = [fx1, . . . , fxn]

which shows that β(fx) ≺ β(fx′).

1.7. ADJUNCTIONS 22

It is straightforward to check that compositions and identities are pre-
served, hence this construction of a forest order from a structure map gives
a functor

EM(G) → Forests.

Conversely, given a forest order (X,≤), let α : X → GX be the function
that sends x ∈ X to the list [x1, . . . , xn] of (non-strict) predecessors of x.
That is, x1 is a root and

x1 ≺ · · · ≺ xn = x.

The first diagram in Definition 1.56 commutes simply because the last ele-
ment of the list α(x) is x, and the second diagram commutes by definition
of α (check this!). In other words, (X,α) is an Eilenberg–Moore coalgebra.
Furthermore, any forest morphism f : (X,≤) → (Y,≤) preserves the corre-
sponding structure maps because, for all x ∈ X, if the predecessors of x are
x1 ≺ · · · ≺ x then the predecessors of fx are fx1 ≺ · · · ≺ fx (spell out the
details of this argument!).

Again, it is clear that compositions and identities are preserved, so we
obtain a functor

Forests → EM(G).

Exercise 1.59. Prove that the functors EM(G) ⇆ Forests defined above
are inverse to each other. ▲

What is the Kleisli category K(G) of the comonad G? By Proposi-
tion 1.58, combined with the previous discussion, it can be identified with
the full subcategory of Forests defined by the forests of the form GX (en-
dowed with the prefix order).

1.7. Adjunctions

Note. This section will appear in due course. Familiarity with adjunc-
tions is not necessary for most of the material in the course, and this notion
will be recalled in the lectures when needed.

Adjunctions are a fundamental notion in category theory and provide a
vast generalisation of free constructions such as free groups, free modules,
etc. This is related to the fact that every adjunction induces a monad—and
every monad arises from an adjunction (not a unique one, though).

Importantly, adjunctions have a symmetric nature. In fact, every ad-
junction induces not only a monad but also a comonad, and every comonad
arises from some adjunction.

	Note to the reader
	Chapter 1. Category theory
	1.1. Categories
	1.2. Reasoning with arrows
	1.3. Functors
	1.4. Natural transformations
	1.5. Monads and comonads
	1.6. Kleisli and Eilenberg–Moore categories for a comonad
	1.7. Adjunctions

