Difference between revisions of "Public:Known Game Comonads"

m (adding Pebble Relation Comonad)
m (adding GF Comonad)
Line 18: Line 18:
# $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B$$
# $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B$$
# $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B$$
# $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B$$
where $$\exists \Lk$$ is the existential-positive fragment of $$\Lk$$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.
where $$\exists \Lk$$ is the existential-positive fragment of a certain logic $$\Lk$$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.




Line 24: Line 24:
! '''Comonad'''
! '''Comonad'''
! $$\Ck$$
! $$\Ck$$
! '''Logic'''
! $$\Lk$$
! $$\leftrightarrows_k$$
! $$\leftrightarrows_k$$
! $$\leftrightarrow_k$$
! $$\leftrightarrow_k$$
Line 54: Line 54:
| synchronization tree<br>depth $${\leq} k$$
| synchronization tree<br>depth $${\leq} k$$
|-
|-
| Pebble Relation
| [[Pebble Relation Comonad|Pebble Relation]]
| $$\mathbb {PR}_k$$
| $$\mathbb {PR}_k$$
|
|
| ✓ wrt a fragment $$M^k$$ of $$\exists^+ FO^k$$
| ✓ wrt a fragment $$M^k$$ of $$\exists^+ \mathcal L^k$$
|
|
|
|
| path width $${\leq} k$$
| path width $${\leq} k$$
|-
| "Hella's game"
| $$\mathbb {PR}_{n,k}$$ [https://www.cst.cam.ac.uk/sites/www.cst.cam.ac.uk/files/_co_resources_online_workshop_game_comonads_generalised_quantifiers_2.pdf]
| extension of $$\mathcal L^k$$ with generalised quantifiers
| for $$\exists^+ \mathcal L^k(\mathbf Q_n^H)$$
| for $$\mathcal L^k(\mathbf Q_n^H)$$
| for $$\mathcal L^k_{\infty,\omega}(\mathbf Q_n^H)$$
| $$n$$-ary generalised tree width $${\leq} k$$
|-
| Guarded Fragment Modal (*)
| GF [https://www.cst.cam.ac.uk/sites/www.cst.cam.ac.uk/files/guards.pdf]
| modal depth $${\leq} k$$ fragment of ML
|
|
|
|
|}
|}



Revision as of 18:16, 15 May 2020

\( \newcommand\Ck{\mathbb C_k} \newcommand\Lk{\mathcal L_k} \newcommand\Hom{\mathrm{Hom}} \newcommand\qtq[1]{\quad\text{#1}\quad} \)

In this page we gather the list all comonads we've explored so far.

Convention:

  • $$A \leftrightarrows_k B$$ iff there exist homomorphisms $$\Ck A \to B$$ and $$\Ck B \to A$$
  • $$A \leftrightarrow_k B$$ iff there exist non-empty sets $$F\subseteq \Hom(\Ck A, B)$$ and $$G\subseteq \Hom(\Ck B, A)$$ which are locally invertible
  • $$A \cong_{\mathrm{Kl}(\Ck)} B$$ iff $$A$$ and $$B$$ are isomorphic in the coKleisly category for $$\Ck$$, i.e. there exist homomorphisms $$f\colon\Ck A \to B$$ and $$g\colon\Ck B \to A$$ such that both $$f^* g^*$$ and $$g^* f^*$$ are identities

Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that

  1. $$A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists \Lk} B$$
  2. $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B$$
  3. $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B$$

where $$\exists \Lk$$ is the existential-positive fragment of a certain logic $$\Lk$$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.


Comonad $$\Ck$$ Logic $$\leftrightarrows_k$$ $$\leftrightarrow_k$$ $$\cong_{\mathrm{Kl}(\Ck)}$$ Coalgebras
Pebbling $$\mathbb P_k$$ $$k$$-variable fragment of FO ✓ with
$$I$$-morphisms
✓ with
$$I$$-morphisms
tree width $${\leq} k$$
Ehrenfeucht-Fraissé $$\mathbb E_k$$ quantifier rank $${\leq} k$$ fragment of FO ✓ with
$$I$$-morphisms
✓ with
$$I$$-morphisms
tree depth $${\leq} k$$
Modal (*) $$\mathbb M_k$$ modal depth $${\leq} k$$ fragment of ML synchronization tree
depth $${\leq} k$$
Pebble Relation $$\mathbb {PR}_k$$ ✓ wrt a fragment $$M^k$$ of $$\exists^+ \mathcal L^k$$ path width $${\leq} k$$
"Hella's game" $$\mathbb {PR}_{n,k}$$ [1] extension of $$\mathcal L^k$$ with generalised quantifiers for $$\exists^+ \mathcal L^k(\mathbf Q_n^H)$$ for $$\mathcal L^k(\mathbf Q_n^H)$$ for $$\mathcal L^k_{\infty,\omega}(\mathbf Q_n^H)$$ $$n$$-ary generalised tree width $${\leq} k$$
Guarded Fragment Modal (*) GF [2] modal depth $${\leq} k$$ fragment of ML

The comonads marked with ``(*)`` denote the comonads over the category of pointed labeled graphs. The $$\leftrightarrows_k$$, $$\leftrightarrow_k$$, and $$\cong_{\mathrm{Kl}(\Ck)}$$ columns mark whether the equivalence in (1), (2), resp. (3) above holds.