Difference between revisions of "Public:Comonads"

m (Comonad morphism)
(Comonad morphism: adding a proposition about comonad morphisms)
Line 130: Line 130:


<div class="proposition">
<div class="proposition">
Let's assume we have a functor \(F\colon \mathcal B\to \mathcal A\) and comonads \(C\) and \(D\) on \(\mathcal A\) and \(\mathcal B\), respectively. Then, comonad morphisms \((F,\lambda)\colon D\to C\) are in a bijective correspondence with functors \(\widehat F\colon EM(D) \to EM(C)\) such that
Let's assume we have a functor \(F\colon \mathcal B\to \mathcal A\) and comonads \(C\) and \(D\) on \(\mathcal A\) and \(\mathcal B\), respectively. Then,
# comonad morphisms \((F,\lambda)\colon D\to C\) are in a bijective correspondence with functors \(\widehat F\colon EM(D) \to EM(C)\) such that \[
\[
\array{
\array{
EM(D) & \stackrel{\widehat{F}}{\to} & EM(C) \\
EM(D) & \stackrel{\widehat{F}}{\to} & EM(C) \\
Line 138: Line 138:
}
}
\]
\]
# If \(EM(D)\) has [https://ncatlab.org/nlab/show/reflexive+coequalizer equalisers of reflexive pairs] and \(F\) has a right adjoint, then any lifting \(\widehat F\) has a right adjoint.
# If \(T\) has a left adjoint and \(\lambda\colon D\to C\) is invertible, then the lifting \(\widehat T\) associated with \(\lambda\) has a left adjoint.
</div>
</div>
For details see Wisbauer's "Algebras versus Coalgebras" listed below.
For details see Wisbauer's "Algebras versus Coalgebras" listed below.

Revision as of 11:10, 9 April 2021

\( \require{HTML} \newcommand\seArrow{\style{display: inline-block; transform: rotate(45deg)}{\Rightarrow}} \newcommand\searrow{\style{display: inline-block; transform: rotate(45deg)}{\to}} \newcommand\seEq{\style{display: inline-block; transform: rotate(45deg)}{=}} \newcommand\Id{\mathrm{Id}} \newcommand\id{\mathrm{id}} \newcommand\fcmp{\mathbin{;}} \renewcommand\epsilon{\varepsilon} \)

UNDER CONSTRUCTION

Different representations

Recall that a comonad on a category \(\mathcal{A}\) is a triple \((C,\epsilon,\delta)\) such that

  1. \(C\colon \mathcal{A} \to \mathcal{A}\) is a functor,
  2. \(\epsilon\colon C \to \mathrm{Id}_\mathcal{A}\) is a natural transformation,
  3. \(\delta\colon C \to C^2\) is a natural transformation, and
  4. the following diagrams commute

\[ \begin{array}{rcl} C & \overset{\delta}\rightarrow & C^2 \\ {}_\delta\downarrow & & \downarrow {}_{\delta_C} \\ C^2 & \overset{C\delta}\rightarrow & C^3 \end{array} \qquad \qquad \begin{array}{rrl} C & \overset{\delta}\rightarrow & C^2 \\ & {}_{\id}\searrow & \downarrow {}_{\epsilon_C} \\ & & C \end{array} \qquad \qquad \begin{array}{rrl} C & \overset{\delta}\rightarrow & C^2 \\ & {}_{\mathrm{id}}\searrow & \downarrow {}_{C\epsilon} \\ & & C \end{array} \]

Equivalently, it can be represented as a Kleisli-Manes triple \((C, \epsilon, \overline{(-)})\) such that

  1. \(C\) is a mapping \(\mathrm{obj}(\mathcal{A}) \to \mathrm{obj}(\mathcal{A})\)
  2. \(\epsilon\) is a collection of morphisms \(\epsilon_A\colon C(A) \to A\), for every object \(A\in \mathcal A\)
  3. for every morphism \(f\colon C(A)\to B\) in \(\mathcal A\) we have a morphism \(\overline f\colon C(A)\to C(B)\) such that
    • (C1) \(\ \overline{\epsilon_A} = \id_{C(A)}\) for all objects \(A\in \mathcal{A}\)
    • (C2) \(\ \overline f \fcmp \epsilon_B = f\) for all morphisms \(f\colon C(A) \to B\)
    • (C3) \(\ \overline{\overline f \fcmp g} = \overline f \fcmp \overline g\) for all morphisms \(f\colon C(A) \to B\) and \(g\colon C(B) \to E\)

Here \(f \fcmp g\) is the diagramatic composition of arrows, equivalent to the more standard \(g \circ f\).


To transfer from the standard representation to the Kleisli-Manes we assign:

  • \((C,\epsilon,\delta) \mapsto (C, \epsilon, \overline{(-)}) \) where \(\overline f = \delta_A \fcmp C(f)\) for every \(f\colon C(A) \to B\)

And conversely:

  • \((C, \epsilon, \overline{(-)}) \mapsto (C,\epsilon,\delta)\) where, for a morphism \(f\colon A \to B\), the morphism \(C(f)\colon C(A) \to C(B)\) is \(\overline{\epsilon_A \fcmp f}\) and \(\delta_A\) is equal to \(\overline{\id_{C(A)}}\).

In fact, this is a bijective correspondence, cf. Proposition 1.6 in [Moggi91 [1]]

Relative comonads

TODO

Comonad morphism

Given comonads \(C\) and \(D\) on categories \(\mathcal A\) and \(\mathcal B\), respectively, a comonad morphism \((F,\lambda)\colon D \to C\) is given by a functor \(F\colon \mathcal B\to \mathcal A\) and a natural transformation \(\lambda\colon CF \to FD\) such that

\[ \begin{array}{rcl} CF & \stackrel{\lambda}{\to} & FD \\ & {}_{\epsilon^C_F}\searrow & \downarrow_{F\epsilon^D} \\ & & F \end{array} \qquad \qquad \begin{array}{rcl} CF & --- & -\stackrel{\lambda}{--} & \to & FD \\ {}_{\delta^C_F}\downarrow & & & & \downarrow {}_{F\delta^D} \\ C^2F & \stackrel{C(\lambda)}{\to} & CFD & \stackrel{\lambda_D}{\to} & FD^2 \end{array} \]

In particular, if the two comonads \(C,D\) are on the same category \(\mathcal A\) a comonad morphism \(\lambda\colon C\to D\) is required to make the two following diagrams commute \[ \begin{array}{rcl} C & \stackrel{\lambda}{\to} & D \\ & {}_{\epsilon^C}\searrow & \downarrow_{\epsilon^D} \\ & & \Id \end{array} \qquad \qquad \begin{array}{rcl} C & --- & -\stackrel{\lambda}{--} & \to & D \\ {}_{\delta^C}\downarrow & & & & \downarrow {}_{\delta^D} \\ C^2 & \stackrel{C(\lambda)}{\to} & C\circ D & \stackrel{\lambda_D}{\to} & D^2 \end{array} \]


Given two morphisms \((F,\lambda),(F',\lambda')\colon D\to C\) of comonads. A morphism of comonad morphisms \(\gamma\colon (F,\lambda) \Rightarrow (F',\lambda')\) is given by a natural transformation \(\gamma\colon F\to F'\) such that \[ \begin{array}{rcl} CF & \stackrel{C\gamma}{\to} & CF'\\ {}_{\lambda}\downarrow & & {}_{\lambda'}\downarrow \\ FD & \stackrel{\gamma_D}{\to} & F'D \end{array} \]

Let's assume we have a functor \(F\colon \mathcal B\to \mathcal A\) and comonads \(C\) and \(D\) on \(\mathcal A\) and \(\mathcal B\), respectively. Then,

  1. comonad morphisms \((F,\lambda)\colon D\to C\) are in a bijective correspondence with functors \(\widehat F\colon EM(D) \to EM(C)\) such that \[ \array{ EM(D) & \stackrel{\widehat{F}}{\to} & EM(C) \\ \downarrow & & \downarrow \\ \mathcal B & \stackrel{F}{\to} & \mathcal A } \]
  2. If \(EM(D)\) has equalisers of reflexive pairs and \(F\) has a right adjoint, then any lifting \(\widehat F\) has a right adjoint.
  3. If \(T\) has a left adjoint and \(\lambda\colon D\to C\) is invertible, then the lifting \(\widehat T\) associated with \(\lambda\) has a left adjoint.

For details see Wisbauer's "Algebras versus Coalgebras" listed below.

Distributive laws

Distributive laws with monads

References


TODO add more

Mentioned above:

  1. E. Moggi. “Notions of Computations and Monads”. In: Information and Computation 93.1 (1991), pp. 55–92.