Difference between revisions of "Public:Comonads"

m
m
Line 138: Line 138:
== References ==
== References ==


* Robert Wisbauer. [http://reh.math.uni-duesseldorf.de/~wisbauer/algebra-coalgebra.pdf Algebras versus coalgebras].
* Gabriella Böhm, Tomasz Brzeziński, Robert Wisbauer. [http://reh.math.uni-duesseldorf.de/~wisbauer/MonadComonad.pdf Monads and comonads on module categories]. Journal of Algebra 322.5 (2009): 1719-1747.
* Gabriella Böhm, Tomasz Brzeziński, Robert Wisbauer. [http://reh.math.uni-duesseldorf.de/~wisbauer/MonadComonad.pdf Monads and comonads on module categories]. Journal of Algebra 322.5 (2009): 1719-1747.
* Aura Bârdeş. [https://www.jstor.org/stable/43679292 Bimonads in a 2-category].
* Aura Bârdeş. [https://www.jstor.org/stable/43679292 Bimonads in a 2-category].



TODO add more
TODO add more

Revision as of 10:58, 9 April 2021

\( \require{HTML} \newcommand\seArrow{\style{display: inline-block; transform: rotate(45deg)}{\Rightarrow}} \newcommand\searrow{\style{display: inline-block; transform: rotate(45deg)}{\to}} \newcommand\seEq{\style{display: inline-block; transform: rotate(45deg)}{=}} \newcommand\Id{\mathrm{Id}} \newcommand\id{\mathrm{id}} \newcommand\fcmp{\mathbin{;}} \renewcommand\epsilon{\varepsilon} \)

UNDER CONSTRUCTION

Different representations

Recall that a comonad on a category \(\mathcal{A}\) is a triple \((C,\epsilon,\delta)\) such that

  1. \(C\colon \mathcal{A} \to \mathcal{A}\) is a functor,
  2. \(\epsilon\colon C \to \mathrm{Id}_\mathcal{A}\) is a natural transformation,
  3. \(\delta\colon C \to C^2\) is a natural transformation, and
  4. the following diagrams commute

\[ \begin{array}{rcl} C & \overset{\delta}\rightarrow & C^2 \\ {}_\delta\downarrow & & \downarrow {}_{\delta_C} \\ C^2 & \overset{C\delta}\rightarrow & C^3 \end{array} \qquad \qquad \begin{array}{rrl} C & \overset{\delta}\rightarrow & C^2 \\ & {}_{\id}\searrow & \downarrow {}_{\epsilon_C} \\ & & C \end{array} \qquad \qquad \begin{array}{rrl} C & \overset{\delta}\rightarrow & C^2 \\ & {}_{\mathrm{id}}\searrow & \downarrow {}_{C\epsilon} \\ & & C \end{array} \]

Equivalently, it can be represented as a Kleisli-Manes triple \((C, \epsilon, \overline{(-)})\) such that

  1. \(C\) is a mapping \(\mathrm{obj}(\mathcal{A}) \to \mathrm{obj}(\mathcal{A})\)
  2. \(\epsilon\) is a collection of morphisms \(\epsilon_A\colon C(A) \to A\), for every object \(A\in \mathcal A\)
  3. for every morphism \(f\colon C(A)\to B\) in \(\mathcal A\) we have a morphism \(\overline f\colon C(A)\to C(B)\) such that
    • (C1) \(\ \overline{\epsilon_A} = \id_{C(A)}\) for all objects \(A\in \mathcal{A}\)
    • (C2) \(\ \overline f \fcmp \epsilon_B = f\) for all morphisms \(f\colon C(A) \to B\)
    • (C3) \(\ \overline{\overline f \fcmp g} = \overline f \fcmp \overline g\) for all morphisms \(f\colon C(A) \to B\) and \(g\colon C(B) \to E\)

Here \(f \fcmp g\) is the diagramatic composition of arrows, equivalent to the more standard \(g \circ f\).


To transfer from the standard representation to the Kleisli-Manes we assign:

  • \((C,\epsilon,\delta) \mapsto (C, \epsilon, \overline{(-)}) \) where \(\overline f = \delta_A \fcmp C(f)\) for every \(f\colon C(A) \to B\)

And conversely:

  • \((C, \epsilon, \overline{(-)}) \mapsto (C,\epsilon,\delta)\) where, for a morphism \(f\colon A \to B\), the morphism \(C(f)\colon C(A) \to C(B)\) is \(\overline{\epsilon_A \fcmp f}\) and \(\delta_A\) is equal to \(\overline{\id_{C(A)}}\).

In fact, this is a bijective correspondence, cf. Proposition 1.6 in [Moggi91 [1]]

Relative comonads

TODO

Comonad morphism

Given comonads \(C\) and \(D\) on categories \(\mathcal A\) and \(\mathcal B\), respectively, a comonad morphism \((F,\lambda)\colon D \to C\) is given by a functor \(F\colon \mathcal B\to \mathcal A\) and a natural transformation \(\lambda\colon CF \to FD\) such that

\[ \begin{array}{rcl} CF & \stackrel{\lambda}{\to} & FD \\ & {}_{\epsilon^C_F}\searrow & \downarrow_{F\epsilon^D} \\ & & F \end{array} \qquad \qquad \begin{array}{rcl} CF & --- & -\stackrel{\lambda}{--} & \to & FD \\ {}_{\delta^C_F}\downarrow & & & & \downarrow {}_{F\delta^D} \\ C^2F & \stackrel{C(\lambda)}{\to} & CFD & \stackrel{\lambda_D}{\to} & FD^2 \end{array} \]

In particular, if the two comonads \(C,D\) are on the same category \(\mathcal A\) a comonad morphism \(\lambda\colon C\to D\) is required to make the two following diagrams commute \[ \begin{array}{rcl} C & \stackrel{\lambda}{\to} & D \\ & {}_{\epsilon^C}\searrow & \downarrow_{\epsilon^D} \\ & & \Id \end{array} \qquad \qquad \begin{array}{rcl} C & --- & -\stackrel{\lambda}{--} & \to & D \\ {}_{\delta^C}\downarrow & & & & \downarrow {}_{\delta^D} \\ C^2 & \stackrel{C(\lambda)}{\to} & C\circ D & \stackrel{\lambda_D}{\to} & D^2 \end{array} \]


Given two morphisms \((F,\lambda),(F',\lambda')\colon D\to C\) of comonads. A morphism of comonad morphisms \(\gamma\colon (F,\lambda) \Rightarrow (F',\lambda')\) is given by a natural transformation \(\gamma\colon F\to F'\) such that \[ \begin{array}{rcl} CF & \stackrel{C\gamma}{\to} & CF'\\ {}_{\lambda}\downarrow & & {}_{\lambda'}\downarrow \\ FD & \stackrel{\gamma_D}{\to} & F'D \end{array} \]

TODO

  • what do comonad morphisms give?

Distributive laws

Distributive laws with monads

References


TODO add more

Mentioned above:

  1. E. Moggi. “Notions of Computations and Monads”. In: Information and Computation 93.1 (1991), pp. 55–92.