Difference between revisions of "Public:Known Game Comonads"

m (forgot to delete from copy-paste)
m (let's be more explicit about the logics)
Line 1: Line 1:
<div style="display:none;"><math>
<div style="display:none;"><math>
\newcommand\Ck{\mathbb C_k}
\newcommand\Ck{\mathbb C_k}
\newcommand\Lk{\mathcal L_k}
\newcommand\Hom{\mathrm{Hom}}
\newcommand\Hom{\mathrm{Hom}}
\newcommand\qtq[1]{\quad\text{#1}\quad}
\newcommand\qtq[1]{\quad\text{#1}\quad}
Line 15: Line 14:


Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that
Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that
# $$A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists \Lk} B$$
# $$A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists^+ \mathcal L} B$$
# $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B$$
# $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\mathcal L} B$$
# $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B$$
# $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\mathcal L^\#} B$$
where $$\exists \Lk$$ is the existential-positive fragment of a certain logic $$\Lk$$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.
where $$\exists^+ \mathcal L$$ is the existential-positive fragment of a certain logic $$\mathcal L$$ and $$\mathcal L^\#$$ is the extension of $$\mathcal L$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.




Line 24: Line 23:
! '''Comonad'''
! '''Comonad'''
! $$\Ck$$
! $$\Ck$$
! '''Logic'''
! '''Logic''' $$\mathcal L$$
! $$\leftrightarrows_k$$
! $$\leftrightarrows_k$$
! $$\leftrightarrow_k$$
! $$\leftrightarrow_k$$
Line 32: Line 31:
| Pebbling
| Pebbling
| $$\mathbb P_k$$
| $$\mathbb P_k$$
| $$k$$-variable fragment of FO
| $$k$$-variable fragment $$\mathcal L^k$$ of FO
| $$\exists^+ \mathcal L^k$$
| ✓
| with <br> $$I$$-morphisms
| $$\mathcal L^k$$ with <br> $$I$$-morphisms
| with <br> $$I$$-morphisms
| $$(\mathcal L^k)^\#$$ with <br> $$I$$-morphisms
| tree width $${\leq} k$$
| tree width $${\leq} k$$
|-
|-
| Ehrenfeucht-Fraissé
| Ehrenfeucht-Fraissé
| $$\mathbb E_k$$
| $$\mathbb E_k$$
| quantifier rank $${\leq} k$$ fragment of FO
| quantifier rank $${\leq} k$$ fragment $$\mathcal L_k$$ of FO
| $$\exists^+ \mathcal L_k$$
| ✓
| with <br> $$I$$-morphisms
| $$\mathcal L_k$$ with <br> $$I$$-morphisms
| with <br> $$I$$-morphisms
| $$(\mathcal L_k)^\#$$ with <br> $$I$$-morphisms
| tree depth $${\leq} k$$
| tree depth $${\leq} k$$
|-
|-
| Modal (*)
| Modal (*)
| $$\mathbb M_k$$
| $$\mathbb M_k$$
| modal depth $${\leq} k$$ fragment of ML
| modal depth $${\leq} k$$ fragment $$\mathcal M_k$$ of ML
| $$\exists^+ \mathcal M_k$$
| ✓
| $$\mathcal M_k$$
| ✓
| $$\mathcal M_k$$ + graded modalities
| ✓
| synchronization tree<br>depth $${\leq} k$$
| synchronization tree<br>depth $${\leq} k$$
|-
|-
Line 57: Line 56:
| $$\mathbb {PR}_k$$
| $$\mathbb {PR}_k$$
|
|
| ✓ wrt a fragment $$M^k$$ of $$\exists^+ \mathcal L^k$$
| a fragment $$M^k$$ of $$\exists^+ \mathcal L^k$$
|
|
|
|
Line 65: Line 64:
| $$\mathbb {PR}_{n,k}$$ [https://www.cst.cam.ac.uk/sites/www.cst.cam.ac.uk/files/_co_resources_online_workshop_game_comonads_generalised_quantifiers_2.pdf]
| $$\mathbb {PR}_{n,k}$$ [https://www.cst.cam.ac.uk/sites/www.cst.cam.ac.uk/files/_co_resources_online_workshop_game_comonads_generalised_quantifiers_2.pdf]
| extension of $$\mathcal L^k$$ with generalised quantifiers
| extension of $$\mathcal L^k$$ with generalised quantifiers
| for $$\exists^+ \mathcal L^k(\mathbf Q_n^H)$$
| $$\exists^+ \mathcal L^k(\mathbf Q_n^H)$$
| for $$\mathcal L^k(\mathbf Q_n^H)$$
| $$\mathcal L^k(\mathbf Q_n^H)$$
| for $$\mathcal L^k_{\infty,\omega}(\mathbf Q_n^H)$$
| $$\mathcal L^k_{\infty,\omega}(\mathbf Q_n^H)$$
| $$n$$-ary generalised tree width $${\leq} k$$
| $$n$$-ary generalised tree width $${\leq} k$$
|-
|-
Line 79: Line 78:
|}
|}


The comonads marked with ``(*)`` denote the comonads over the category of pointed labeled graphs. The $$\leftrightarrows_k$$, $$\leftrightarrow_k$$, and $$\cong_{\mathrm{Kl}(\Ck)}$$ columns mark whether the equivalence in (1), (2), resp. (3) above holds.
The comonads marked with ``(*)`` denote the comonads over the category of pointed labeled graphs. Note that $$\exists^+ \mathcal M_k$$ denotes the positive $$\Box$$-free fragment of $$\mathcal M_k$$. The $$\leftrightarrows_k$$, $$\leftrightarrow_k$$, and $$\cong_{\mathrm{Kl}(\Ck)}$$ columns mark logic $\mathcal L$ such that they correspond to $\equiv^{\mathcal L}$ of that logic.

Revision as of 18:35, 15 May 2020

\( \newcommand\Ck{\mathbb C_k} \newcommand\Hom{\mathrm{Hom}} \newcommand\qtq[1]{\quad\text{#1}\quad} \)

In this page we gather the list all comonads we've explored so far.

Convention:

  • $$A \leftrightarrows_k B$$ iff there exist homomorphisms $$\Ck A \to B$$ and $$\Ck B \to A$$
  • $$A \leftrightarrow_k B$$ iff there exist non-empty sets $$F\subseteq \Hom(\Ck A, B)$$ and $$G\subseteq \Hom(\Ck B, A)$$ which are locally invertible
  • $$A \cong_{\mathrm{Kl}(\Ck)} B$$ iff $$A$$ and $$B$$ are isomorphic in the coKleisly category for $$\Ck$$, i.e. there exist homomorphisms $$f\colon\Ck A \to B$$ and $$g\colon\Ck B \to A$$ such that both $$f^* g^*$$ and $$g^* f^*$$ are identities

Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that

  1. $$A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists^+ \mathcal L} B$$
  2. $$A \leftrightarrow_k B \qtq{iff} A \equiv^{\mathcal L} B$$
  3. $$A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\mathcal L^\#} B$$

where $$\exists^+ \mathcal L$$ is the existential-positive fragment of a certain logic $$\mathcal L$$ and $$\mathcal L^\#$$ is the extension of $$\mathcal L$$ by adding counting quantifiers $$\exists_{{\geq} n}$$ and $$\exists_{{\leq} n}$$.


Comonad $$\Ck$$ Logic $$\mathcal L$$ $$\leftrightarrows_k$$ $$\leftrightarrow_k$$ $$\cong_{\mathrm{Kl}(\Ck)}$$ Coalgebras
Pebbling $$\mathbb P_k$$ $$k$$-variable fragment $$\mathcal L^k$$ of FO $$\exists^+ \mathcal L^k$$ $$\mathcal L^k$$ with
$$I$$-morphisms
$$(\mathcal L^k)^\#$$ with
$$I$$-morphisms
tree width $${\leq} k$$
Ehrenfeucht-Fraissé $$\mathbb E_k$$ quantifier rank $${\leq} k$$ fragment $$\mathcal L_k$$ of FO $$\exists^+ \mathcal L_k$$ $$\mathcal L_k$$ with
$$I$$-morphisms
$$(\mathcal L_k)^\#$$ with
$$I$$-morphisms
tree depth $${\leq} k$$
Modal (*) $$\mathbb M_k$$ modal depth $${\leq} k$$ fragment $$\mathcal M_k$$ of ML $$\exists^+ \mathcal M_k$$ $$\mathcal M_k$$ $$\mathcal M_k$$ + graded modalities synchronization tree
depth $${\leq} k$$
Pebble Relation $$\mathbb {PR}_k$$ a fragment $$M^k$$ of $$\exists^+ \mathcal L^k$$ path width $${\leq} k$$
"Hella's game" $$\mathbb {PR}_{n,k}$$ [1] extension of $$\mathcal L^k$$ with generalised quantifiers $$\exists^+ \mathcal L^k(\mathbf Q_n^H)$$ $$\mathcal L^k(\mathbf Q_n^H)$$ $$\mathcal L^k_{\infty,\omega}(\mathbf Q_n^H)$$ $$n$$-ary generalised tree width $${\leq} k$$
Guarded Fragment Modal (*) GF [2]

The comonads marked with ``(*)`` denote the comonads over the category of pointed labeled graphs. Note that $$\exists^+ \mathcal M_k$$ denotes the positive $$\Box$$-free fragment of $$\mathcal M_k$$. The $$\leftrightarrows_k$$, $$\leftrightarrow_k$$, and $$\cong_{\mathrm{Kl}(\Ck)}$$ columns mark logic $\mathcal L$ such that they correspond to $\equiv^{\mathcal L}$ of that logic.