Difference between revisions of "Public:Known Game Comonads"

(Page created)
 
(kicking off)
Line 1: Line 1:
<div style="display:none;"><math>
Here we list all the comonads known so far.
\newcommand\Ck{\mathbb C_k}
\newcommand\Lk{\mathcal L_k}
\newcommand\Hom{\mathrm{Hom}}
\newcommand\qtq[1]{\quad\text{#1}\quad}
</math></div>

In this page we gather the list all comonads we've explored so far.

Convention:

* $$A \leftrightarrows_k B$$ iff there ''exist'' homomorphisms $$\Ck A \to B$$ and $$\Ck B \to A$$
* $$A \leftrightarrow_k B$$ iff there exist non-empty sets $$F\subseteq \Hom(\Ck A, B)$$ and $$G\subseteq \Hom(\Ck B, A)$$ which are [[Public:locally invertible|locally invertible]]
* $$A \cong_{\mathrm{Kl}(\Ck)} B$$ iff $$A$$ and $$B$$ are isomorphic in the coKleisly category for $$\Ck$$, i.e. there exist homomorphisms $$f\colon\Ck A \to B$$ and $$g\colon\Ck B \to A$$ such that both $$f^* g^*$$ and $$g^* f^*$$ are identities

Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that
\[
A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists \Lk} B,
\qquad
A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B,
\qtq{and}
A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B
\]
where $$\exists \Lk$$ is the existential-positive fragment of $\\Lk$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n$$ and $$\exists_{{\leq} n$$.


{| class="wikitable"
! '''Comonad'''
! $$\Ck$$
! $$\Lk$$
! $$\leftrightarrows_k$$
! $$\leftrightarrow_k$$
! $$\cong_{\mathrm{Kl}(\Ck)}$$
! '''Coalgebras'''
|-
| Pebbling
| $$\mathbb P_k$$
| $$k$$-variable fragment of FO
| ✓
| ✓
| ✓
| tree width $${\leq} k$$
|-
| Ehrenfeucht-Fraissé
| $$\mathbb E_k$$
| quantifier rank $${\leq} k$$ fragment of FO
| ✓
| ✓
| ✓
| tree depth $${\leq} k$$
|-
| Modal (*)
| $$\mathbb M_k$$
| modal depth $${\leq} k$$ fragment of ML
| ✓
| ✓
| ✓
| synchronization tree<br>depth $${\leq} k$$
|}

The comonads marked with ``(*)`` denote the comonads over the category of pointed structures.

Revision as of 13:00, 14 May 2020

\( \newcommand\Ck{\mathbb C_k} \newcommand\Lk{\mathcal L_k} \newcommand\Hom{\mathrm{Hom}} \newcommand\qtq[1]{\quad\text{#1}\quad} \)

In this page we gather the list all comonads we've explored so far.

Convention:

  • $$A \leftrightarrows_k B$$ iff there exist homomorphisms $$\Ck A \to B$$ and $$\Ck B \to A$$
  • $$A \leftrightarrow_k B$$ iff there exist non-empty sets $$F\subseteq \Hom(\Ck A, B)$$ and $$G\subseteq \Hom(\Ck B, A)$$ which are locally invertible
  • $$A \cong_{\mathrm{Kl}(\Ck)} B$$ iff $$A$$ and $$B$$ are isomorphic in the coKleisly category for $$\Ck$$, i.e. there exist homomorphisms $$f\colon\Ck A \to B$$ and $$g\colon\Ck B \to A$$ such that both $$f^* g^*$$ and $$g^* f^*$$ are identities

Typically, each of those equivalences corresponds to a certain logical equivalence. That is, we have that \[ A \leftrightarrows_k B \qtq{iff} A \equiv^{\exists \Lk} B, \qquad A \leftrightarrow_k B \qtq{iff} A \equiv^{\Lk} B, \qtq{and} A \cong_{\mathrm{Kl}(\Ck)} B \qtq{iff} A \equiv^{\Lk^\#} B \] where $$\exists \Lk$$ is the existential-positive fragment of $\\Lk$ and $$\Lk^\#$$ is the extension of $$\Lk$$ by adding counting quantifiers $$\exists_{{\geq} n$$ and $$\exists_{{\leq} n$$.


Comonad $$\Ck$$ $$\Lk$$ $$\leftrightarrows_k$$ $$\leftrightarrow_k$$ $$\cong_{\mathrm{Kl}(\Ck)}$$ Coalgebras
Pebbling $$\mathbb P_k$$ $$k$$-variable fragment of FO tree width $${\leq} k$$
Ehrenfeucht-Fraissé $$\mathbb E_k$$ quantifier rank $${\leq} k$$ fragment of FO tree depth $${\leq} k$$
Modal (*) $$\mathbb M_k$$ modal depth $${\leq} k$$ fragment of ML synchronization tree
depth $${\leq} k$$

The comonads marked with ``(*)`` denote the comonads over the category of pointed structures.