How to write a coequation.

Fredrik Dahlqvist

Joint work with Todd Schmid
Comonadic meeting - 22 February 2023

Starting point

Starting point

■ Coequations have been around for at least 25 years

Starting point

- Coequations have been around for at least 25 years

■ Tons of theoretical results

Starting point

- Coequations have been around for at least 25 years

■ Tons of theoretical results

- ... but coequations haven't really been adopted as a practical formalism by computer scientists

Starting point

- Coequations have been around for at least 25 years

■ Tons of theoretical results

- ... but coequations haven't really been adopted as a practical formalism by computer scientists
- Why?

Some answers

Some answers

■ No universally accepted syntax to write a coequation

Some answers

■ No universally accepted syntax to write a coequation

- Difficult for the end-user to understand what a coequation is

Some answers

\square No universally accepted syntax to write a coequation

- Difficult for the end-user to understand what a coequation is
- Which formalism should be used in practice?

Root cause

Root cause

■ This problem is inevitable

Root cause

- This problem is inevitable
- Equations are given by pairs of terms

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees
- Using brackets there is an unambiguous finite string representation

■ Coequations typically deal with generalised trees

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

- Coequations typically deal with generalised trees

■ Infinitely branching, infinite depth

University of London

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

- Coequations typically deal with generalised trees

■ Infinitely branching, infinite depth

- No finite string representation

University of London

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

- Coequations typically deal with generalised trees

■ Infinitely branching, infinite depth

- No finite string representation
- Often equivalence classes of trees

University of London

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

- Coequations typically deal with generalised trees

■ Infinitely branching, infinite depth

- No finite string representation
- Often equivalence classes of trees

■ Impossible to get a simple syntax working well in every case

University of London

Root cause

- This problem is inevitable
- Equations are given by pairs of terms
- Terms are finite trees

■ Using brackets there is an unambiguous finite string representation

- Coequations typically deal with generalised trees

■ Infinitely branching, infinite depth

- No finite string representation
- Often equivalence classes of trees
- Impossible to get a simple syntax working well in every case

■ Underlying maths seems harder to grasp (relation versus corelation)

Outline

Outline

■ History of the notion of coequation

Outline

- History of the notion of coequation
- From this extract 4 kinds of syntax

Outline

\square History of the notion of coequation
\square From this extract 4 kinds of syntax

- Coequation-as-corelation
- Coequation-as-predicate
- Coequation-as-equation

■ Coequation-as-modal-formula

History of coequations

Coequation-as-corelation

Equations

Equations

Equations are relations under which one can take a quotient

$$
\begin{array}{r}
\operatorname{ReI} \underset{e_{2}}{\stackrel{e_{1}}{\longrightarrow}} F_{T} \text { Var } \longrightarrow Q \\
\left.\right|^{v},^{\prime},^{\prime} \\
A^{\prime}
\end{array}
$$

Equations

Equations are relations under which one can take a quotient

Example: semigroups $T X=X \times X, \operatorname{Var}=\{x, y, z\}, R e l=1, e_{1}(*)=(x y) z, e_{2}(*)=x(y z)$

$$
\begin{gathered}
\stackrel{e_{2}}{\stackrel{e_{1}}{\longrightarrow}} F_{T}\{x, y, z\} \longrightarrow Q \\
\left.\right|_{A^{\prime}},,^{\prime}
\end{gathered}
$$

Coequations

Coequations

Dually, coequations are corelations defining a subobject

Coequations

Dually, coequations are corelations defining a subobject

Example: deterministic binary trees $T X=X \times X, \mathrm{Col}=\{b, w\}$, CoRel $=$ 2, $c_{1}(t)=1$ if $\operatorname{Left}(t)=b, c_{2}(t)=1$ if $\operatorname{Right}(t)=b$

Birkhoff's HSC theorem

Theorem

Let T : Set \rightarrow Set be a covarietor. A class of T-coalgebras is a covariety iff it is closed under Homomorphic images (H), Subcoalgebras (S) and Coproducts (C).

Birkhoff's HSC theorem

Theorem

Let T : Set \rightarrow Set be a covarietor. A class of T-coalgebras is a covariety iff it is closed under Homomorphic images (H), Subcoalgebras (S) and Coproducts (C).

Note: the HSC conditions make sense even if T is not a covarietor - for example $T=\mathcal{P}$. We will call a class of T-coalgebras a structural covariety if it is closed under HSC.

Coequation-as-predicate

Coequations-as-predicate: behavioural coequations

Coequations-as-predicate: behavioural coequations

■ Let T : Set \rightarrow Set have a terminal coalgebra $v T$

Coequations-as-predicate: behavioural coequations

\square Let T : Set \rightarrow Set have a terminal coalgebra $v T$

- A behavioural coequation is a subset $W \subseteq v T$

Coequations-as-predicate: behavioural coequations

\square Let T : Set \rightarrow Set have a terminal coalgebra $\vee T$

- A behavioural coequation is a subset $W \subseteq v T$
- A T-coalgebra (X, γ) satisfies W if

$$
\operatorname{im}!_{(X, \gamma)} \subseteq W
$$

In other words: every behaviour in (X, γ) belongs to W.

Coequations-as-predicate: behavioural coequations

\square Let T : Set \rightarrow Set have a terminal coalgebra $\vee T$

- A behavioural coequation is a subset $W \subseteq v T$
- A T-coalgebra (X, γ) satisfies W if

$$
\operatorname{im}!_{(X, \gamma)} \subseteq W
$$

In other words: every behaviour in (X, γ) belongs to W.
■ No particular syntax, any way of describing W will do

University of London

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)
 The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite automata.

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite automata.

Theorem (Gumm-Schröder, 1998)

Let T preserve weak pullbacks. Then a structural T-covariety is behavioural if and only if it is closed under total bisimulations.

Coequation-as-predicate: beyond behaviour

- To capture more classes of coalgebras we need to consider 'labelled/coloured’ coalgebras. Let T : Set \rightarrow Set be a covarietor and let Col be a set of colors.

Coequation-as-predicate: beyond behaviour

- To capture more classes of coalgebras we need to consider 'labelled/coloured’ coalgebras. Let T : Set \rightarrow Set be a covarietor and let Col be a set of colors.
- A coequation-as-predicate can be either
- a subcoalgebra Coeq $\rightarrow C_{T} \mathrm{Col}$, or

■ a subset Coeq $\mapsto U_{T} C_{T} C o l$

University of London

Coequation-as-predicate: beyond behaviour

- To capture more classes of coalgebras we need to consider 'labelled/coloured’ coalgebras. Let T : Set \rightarrow Set be a covarietor and let Col be a set of colors.
- A coequation-as-predicate can be either

■ a subcoalgebra Coeq $\rightarrow C_{T} \mathrm{Col}$, or

- a subset Coeq $\mapsto U_{T} C_{T}$ Col

■ A coalgebra (X, γ) satisfies Coeq if for every colouring map $c: X \rightarrow$ Col

$$
\mathrm{im} \hat{c} \subseteq \text { Coeq }
$$

University of London

Coequation-as-predicate: beyond behaviour

- To capture more classes of coalgebras we need to consider 'labelled/coloured’ coalgebras. Let T : Set \rightarrow Set be a covarietor and let Col be a set of colors.
- A coequation-as-predicate can be either

■ a subcoalgebra Coeq $\rightarrow C_{T} \mathrm{Col}$, or

- a subset Coeq $\mapsto U_{T} C_{T}$ Col

■ A coalgebra (X, γ) satisfies Coeq if for every colouring map $c: X \rightarrow$ Col

$$
\mathrm{im} \hat{c} \subseteq \text { Coeq }
$$

■ No syntax, any way of describing a subcoalgebra/subset will do.

University of London

Coequation-as-predicate: beyond behaviour

- To capture more classes of coalgebras we need to consider 'labelled/coloured’ coalgebras. Let T : Set \rightarrow Set be a covarietor and let Col be a set of colors.
- A coequation-as-predicate can be either

■ a subcoalgebra Coeq $\rightarrow C_{T} \mathrm{Col}$, or
■ a subset Coeq $\mapsto U_{T} C_{T}$ Col
■ A coalgebra (X, γ) satisfies Coeq if for every colouring map $c: X \rightarrow$ Col

$$
\mathrm{im} \hat{c} \subseteq \text { Coeq }
$$

■ No syntax, any way of describing a subcoalgebra/subset will do.

- Special syntax for pattern avoidance in coalgebras for polynomial functors (Gumm, Adámek et al): $\boxtimes t, t \in C_{T} \mathrm{Col}$

Coequation-as-predicate: beyond behaviour

Theorem (Rutten, 1996)

If T is k -bounded and C is a structural T-covariety, then C is the class of coalgebras satisfying some coequation-as-predicate Coeq $\subseteq C_{T} k$

Coequation-as-predicate: beyond behaviour

Theorem (Rutten, 1996)

If T is k -bounded and C is a structural T-covariety, then C is the class of coalgebras satisfying some coequation-as-predicate Coeq $\subseteq C_{T} \mathrm{~K}$

Theorem (Adámek, 2005)

Suppose T is a covarietor that preserves weak pullbacks. A T-covariety is presentable by a predicate coequation in k colours if and only if it is closed under к-colour bisimilarity.

Examples

1 For $T X=X \times X+1$

defines the covariety of binary trees which do not have two halting successors.

Examples

1 For $T X=X \times X+1$

defines the covariety of binary trees which do not have two halting successors.

2 A T-coalgebra (V, γ) is locally finite if for every $v \in V$ there exists a finite subcoalgebra S of (V, γ) such that $v \in S$. The class of locally finite T-coalgebra is a covariety. By a theorems from Rutten and Adamek there must exist a coequation in ω-colours describing it.

Examples

1 For $T X=X \times X+1$

defines the covariety of binary trees which do not have two halting successors.

2 A T-coalgebra (V, γ) is locally finite if for every $v \in V$ there exists a finite subcoalgebra S of (V, γ) such that $v \in S$. The class of locally finite T-coalgebra is a covariety. By a theorems from Rutten and Adamek there must exist a coequation in ω-colours describing it.
3 The filter functor is not a covarietor. A generalized notion of coequation must be used. The class of topological spaces and open maps is a covariety in the class of coalgebras for the filter functor. Kurz and Rosicky present this covariety by a generalized coequation.

Coequation-as-equation

Coequation-as-equation

Coequation-as-equation

- Specific syntax to write certain coequations

Coequation-as-equation

- Specific syntax to write certain coequations

■ Destructor signature: $\sigma: S \times X \rightarrow T(X)$
Example: Bank account

$$
\text { bal : } X \rightarrow \mathbb{N} \quad \text { credit : } X \times \mathbb{N} \rightarrow X
$$

Coequation-as-equation

- Specific syntax to write certain coequations

■ Destructor signature: $\sigma: S \times X \rightarrow T(X)$
Example: Bank account

$$
\text { bal : } X \rightarrow \mathbb{N} \quad \text { credit : } X \times \mathbb{N} \rightarrow X
$$

■ Build a grammar of terms from variables, signature and anything useful

$$
x: X, n: \mathbb{N} \quad(-)+(-): \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

Coequation-as-equation

- Specific syntax to write certain coequations

■ Destructor signature: $\sigma: S \times X \rightarrow T(X)$
Example: Bank account

$$
\text { bal : } X \rightarrow \mathbb{N} \quad \text { credit : } X \times \mathbb{N} \rightarrow X
$$

■ Build a grammar of terms from variables, signature and anything useful

$$
x: X, n: \mathbb{N} \quad(-)+(-): \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

■ Write specifications in the usual equational format

$$
\operatorname{bal}(x)+n=\operatorname{bal}(\operatorname{credit}(n, x))
$$

Coequations-as-equation are coequations-as-corelation

Coequations-as-equation are coequations-as-corelation

■ Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$
X \rightarrow \mathbb{N} \times X^{\mathbb{N}}
$$

i.e. a particular bank account instance is a coalgebra for $T X=\mathbb{N} \times X^{\mathbb{N}}$

Coequations-as-equation are coequations-as-corelation

■ Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$
X \rightarrow \mathbb{N} \times X^{\mathbb{N}}
$$

i.e. a particular bank account instance is a coalgebra for $T X=\mathbb{N} \times X^{\mathbb{N}}$
\square Format of terms guarantee that they can be interpreted as maps on X

$$
X \rightarrow \mathbb{N}^{\mathbb{N}}, x \mapsto \lambda n \cdot \llbracket \operatorname{bal}(x)+n \rrbracket
$$

Coequations-as-equation are coequations-as-corelation

■ Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$
X \rightarrow \mathbb{N} \times X^{\mathbb{N}}
$$

i.e. a particular bank account instance is a coalgebra for $T X=\mathbb{N} \times X^{\mathbb{N}}$
\square Format of terms guarantee that they can be interpreted as maps on X

$$
x \rightarrow \mathbb{N}^{\mathbb{N}}, x \mapsto \lambda n . \llbracket \operatorname{bal}(x)+n \rrbracket
$$

\square We get a coequation-as-corelation

$$
\vee T \rightrightarrows \mathbb{N}^{\mathbb{N}}
$$

Coequations-as-equation are coequations-as-corelation

■ Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$
X \rightarrow \mathbb{N} \times X^{\mathbb{N}}
$$

i.e. a particular bank account instance is a coalgebra for $T X=\mathbb{N} \times X^{\mathbb{N}}$
\square Format of terms guarantee that they can be interpreted as maps on X

$$
x \rightarrow \mathbb{N}^{\mathbb{N}}, x \mapsto \lambda n . \llbracket \operatorname{bal}(x)+n \rrbracket
$$

■ We get a coequation-as-corelation

$$
\vee T \rightrightarrows \mathbb{N}^{\mathbb{N}}
$$

■ Classify behaviours according to what the functions λn. $\llbracket \operatorname{bal}(x)+n \rrbracket$ and λn. $\llbracket \operatorname{bal}(\operatorname{credit}(n, x)) \rrbracket$ do, then select those for which the classifications match up

Coequation-as-modal-formula

Coequations-as-modal-formulas

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic
■ Idea: for a covarietor T and a set of atomic proposition At consider

$$
C_{T} \mathcal{P A t}
$$

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic
■ Idea: for a covarietor T and a set of atomic proposition At consider

$$
C_{T} \mathcal{P A t}
$$

■ Under very general assumptions, coalgebraic modal formula ϕ for T-systems can be canonically interpreted in this coalgebra

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic
■ Idea: for a covarietor T and a set of atomic proposition At consider

$$
C_{T} \mathcal{P A t}
$$

■ Under very general assumptions, coalgebraic modal formula ϕ for T-systems can be canonically interpreted in this coalgebra

- Formula ϕ defines the coequation-as-predicate

$$
\left\{x \in C_{T} \mathcal{P A t}: x \models \phi\right\}
$$

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic
■ Idea: for a covarietor T and a set of atomic proposition At consider

$$
C_{T} \mathcal{P A t}
$$

■ Under very general assumptions, coalgebraic modal formula ϕ for T-systems can be canonically interpreted in this coalgebra

- Formula ϕ defines the coequation-as-predicate

$$
\left\{x \in C_{T} \mathcal{P A t}: x \models \phi\right\}
$$

- Looks at local behaviour (typically $\sim 1,2$ steps ahead), in practice $|A t| \leqslant 3$ is often enough

Coequations-as-modal-formulas

■ Syntax for coequation-as-predicate, given by coalgebraic modal logic
■ Idea: for a covarietor T and a set of atomic proposition At consider

$$
C_{T} \mathcal{P A t}
$$

■ Under very general assumptions, coalgebraic modal formula ϕ for T-systems can be canonically interpreted in this coalgebra

- Formula ϕ defines the coequation-as-predicate

$$
\left\{x \in C_{T} \mathcal{P A t}: x \models \phi\right\}
$$

- Looks at local behaviour (typically $\sim 1,2$ steps ahead), in practice $|A t| \leqslant 3$ is often enough
■ Coalgebraic Goldblatt-Thomason theorem

Which coequation is right for you?

Which coequation is right for you?

- Is the behaviour you're trying to define local?

Which coequation is right for you?

- Is the behaviour you're trying to define local?
\square Yes.
How are you trying to define it?

Which coequation is right for you?

■ Is the behaviour you're trying to define local?

- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in $\boxtimes t$ format

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in $\boxtimes t$ format
■ Desired behaviour: coequation-as-modal formula

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in $\boxtimes t$ format
■ Desired behaviour: coequation-as-modal formula

- Identifying behaviours/processes: coequation-as-equation/corelation

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in $\boxtimes t$ format
■ Desired behaviour: coequation-as-modal formula
■ Identifying behaviours/processes: coequation-as-equation/corelation

- No

How are you trying to define it?

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in $\boxtimes t$ format
■ Desired behaviour: coequation-as-modal formula
■ Identifying behaviours/processes: coequation-as-equation/corelation

- No

How are you trying to define it?
■ Desired behaviour: coequation-as-predicate $\{t: \phi(t)\}$

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in Δt format
■ Desired behaviour: coequation-as-modal formula
■ Identifying behaviours/processes: coequation-as-equation/corelation

- No

How are you trying to define it?
■ Desired behaviour: coequation-as-predicate $\{t: \phi(t)\}$
■ Identifying behaviours: coequation-as-corelation

Which coequation is right for you?

- Is the behaviour you're trying to define local?
- Yes.

How are you trying to define it?
■ Forbidden behaviour: coequation-as-predicate in Δt format
■ Desired behaviour: coequation-as-modal formula
■ Identifying behaviours/processes: coequation-as-equation/corelation

- No

How are you trying to define it?
■ Desired behaviour: coequation-as-predicate $\{t: \phi(t)\}$
■ Identifying behaviours: coequation-as-corelation
■ Not sure: Reason directly in terms of covariety?

Thank you.

Reference:

Fredrik Dahlqvist and Todd Schmid. "How to Write a Coequation." 9th Conference on Algebra and Coalgebra in Computer Science. 2021.

