
How to write a coequation.

Fredrik Dahlqvist

Joint work with Todd Schmid

Comonadic meeting - 22 February 2023

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Starting point

Coequations have been around for at least 25 years

Tons of theoretical results

... but coequations haven’t really been adopted as a practical
formalism by computer scientists

Why?

Some answers

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Some answers

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Some answers

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Some answers

No universally accepted syntax to write a coequation

Difficult for the end-user to understand what a coequation is

Which formalism should be used in practice?

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable

Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees

Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees

Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees
Infinitely branching, infinite depth

No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees
Infinitely branching, infinite depth
No finite string representation

Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees
Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees
Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Root cause

This problem is inevitable
Equations are given by pairs of terms

Terms are finite trees
Using brackets there is an unambiguous finite string representation

Coequations typically deal with generalised trees
Infinitely branching, infinite depth
No finite string representation
Often equivalence classes of trees

Impossible to get a simple syntax working well in every case

Underlying maths seems harder to grasp (relation versus corelation)

Outline

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Outline

History of the notion of coequation

From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Outline

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

Outline

History of the notion of coequation
From this extract 4 kinds of syntax

Coequation-as-corelation
Coequation-as-predicate
Coequation-as-equation
Coequation-as-modal-formula

History of coequations

1970s

Appearance of the word
‘coequational’, Davis.

Focused on finding examples
of comonads/cotriples.

1980s

Concept of ‘covariety’ (1985).
Aczel – Non-wellfounded sets

terminal coalgebras.

1990s

Early 90s: terminal coalgebra semantics,
coalgebraic specification (hd(tl(x))=hd(x))

Jacobs, Reichel, Hensel.
Coequations-as-equations.

Late 90’s: birth of coalgebra community.
Rutten & Gumm papers, CMCS 98.

Coequations-as-predicate.
Word ‘coequation’ – Cı̂rstea 1999.

2000s

Early 00s: Wolter, Kurtz – coequations as
formal dual to equations.

Coequations-as-corelations.
Gumm, Adámek – coequations as

pattern avoidance. Coequational logic.
Mid 00s: Birth of coalgebraic modal logic.

Coequations-as-modal-formulas.

Future

???

Coequation-as-corelation

Equations

Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Equations
Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Equations
Equations are relations under which one can take a quotient

Rel
e1 //
e2
// FT Var // //

v
��

Q

||
A

Example: semigroups
TX = X × X ,Var = {x , y , z},Rel = 1, e1(∗) = (xy)z, e2(∗) = x(yz)

1
e1 //
e2
// FT {x , y , z} // //

v
��

Q

zz
A

Coequations

Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Coequations
Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Coequations
Dually, coequations are corelations defining a subobject

S // // CT Col
c1 //
c2
// CoRel

W

c

OOcc

Example: deterministic binary trees TX = X × X ,Col = {b,w},CoRel =
2, c1(t) = 1 if Left(t) = b, c2(t) = 1 if Right(t) = b

S // // CT {b,w}
c1 //
c2
// 2

W

c

OOdd

Birkhoff’s HSC theorem

Theorem

Let T : Set→ Set be a covarietor. A class of T -coalgebras is a covariety iff
it is closed under Homomorphic images (H), Subcoalgebras (S) and
Coproducts (C).

Note: the HSC conditions make sense even if T is not a covarietor – for
example T = P. We will call a class of T -coalgebras a structural covariety
if it is closed under HSC.

Birkhoff’s HSC theorem

Theorem

Let T : Set→ Set be a covarietor. A class of T -coalgebras is a covariety iff
it is closed under Homomorphic images (H), Subcoalgebras (S) and
Coproducts (C).

Note: the HSC conditions make sense even if T is not a covarietor – for
example T = P. We will call a class of T -coalgebras a structural covariety
if it is closed under HSC.

Coequation-as-predicate

Coequations-as-predicate: behavioural coequations

Let T : Set→ Set have a terminal coalgebra νT

A behavioural coequation is a subset W ⊆ νT

A T -coalgebra (X ,γ) satisfies W if

im!(X ,γ) ⊆ W

In other words: every behaviour in (X ,γ) belongs to W .

No particular syntax, any way of describing W will do

Coequations-as-predicate: behavioural coequations

Let T : Set→ Set have a terminal coalgebra νT

A behavioural coequation is a subset W ⊆ νT

A T -coalgebra (X ,γ) satisfies W if

im!(X ,γ) ⊆ W

In other words: every behaviour in (X ,γ) belongs to W .

No particular syntax, any way of describing W will do

Coequations-as-predicate: behavioural coequations

Let T : Set→ Set have a terminal coalgebra νT

A behavioural coequation is a subset W ⊆ νT

A T -coalgebra (X ,γ) satisfies W if

im!(X ,γ) ⊆ W

In other words: every behaviour in (X ,γ) belongs to W .

No particular syntax, any way of describing W will do

Coequations-as-predicate: behavioural coequations

Let T : Set→ Set have a terminal coalgebra νT

A behavioural coequation is a subset W ⊆ νT

A T -coalgebra (X ,γ) satisfies W if

im!(X ,γ) ⊆ W

In other words: every behaviour in (X ,γ) belongs to W .

No particular syntax, any way of describing W will do

Coequations-as-predicate: behavioural coequations

Let T : Set→ Set have a terminal coalgebra νT

A behavioural coequation is a subset W ⊆ νT

A T -coalgebra (X ,γ) satisfies W if

im!(X ,γ) ⊆ W

In other words: every behaviour in (X ,γ) belongs to W .

No particular syntax, any way of describing W will do

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)

The class of T -coalgebras satisfying a behavioural coequation forms a
structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite
automata.

Theorem (Gumm-Schröder, 1998)

Let T preserve weak pullbacks. Then a structural T -covariety is
behavioural if and only if it is closed under total bisimulations.

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)

The class of T -coalgebras satisfying a behavioural coequation forms a
structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite
automata.

Theorem (Gumm-Schröder, 1998)

Let T preserve weak pullbacks. Then a structural T -covariety is
behavioural if and only if it is closed under total bisimulations.

Coequations-as-predicate: behavioural coequations

Theorem (Rutten, 1996)

The class of T -coalgebras satisfying a behavioural coequation forms a
structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite
automata.

Theorem (Gumm-Schröder, 1998)

Let T preserve weak pullbacks. Then a structural T -covariety is
behavioural if and only if it is closed under total bisimulations.

Coequation-as-predicate: beyond behaviour

To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set→ Set be a covarietor and
let Col be a set of colors.

A coequation-as-predicate can be either
a subcoalgebra Coeq � CT Col , or
a subset Coeq � UT CT Col

A coalgebra (X ,γ) satisfies Coeq if for every colouring map
c : X → Col

imĉ ⊆ Coeq

No syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adámek et al): 4t , t ∈ CT Col

Coequation-as-predicate: beyond behaviour

To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set→ Set be a covarietor and
let Col be a set of colors.
A coequation-as-predicate can be either

a subcoalgebra Coeq � CT Col , or
a subset Coeq � UT CT Col

A coalgebra (X ,γ) satisfies Coeq if for every colouring map
c : X → Col

imĉ ⊆ Coeq

No syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adámek et al): 4t , t ∈ CT Col

Coequation-as-predicate: beyond behaviour

To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set→ Set be a covarietor and
let Col be a set of colors.
A coequation-as-predicate can be either

a subcoalgebra Coeq � CT Col , or
a subset Coeq � UT CT Col

A coalgebra (X ,γ) satisfies Coeq if for every colouring map
c : X → Col

imĉ ⊆ Coeq

No syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adámek et al): 4t , t ∈ CT Col

Coequation-as-predicate: beyond behaviour

To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set→ Set be a covarietor and
let Col be a set of colors.
A coequation-as-predicate can be either

a subcoalgebra Coeq � CT Col , or
a subset Coeq � UT CT Col

A coalgebra (X ,γ) satisfies Coeq if for every colouring map
c : X → Col

imĉ ⊆ Coeq

No syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adámek et al): 4t , t ∈ CT Col

Coequation-as-predicate: beyond behaviour

To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set→ Set be a covarietor and
let Col be a set of colors.
A coequation-as-predicate can be either

a subcoalgebra Coeq � CT Col , or
a subset Coeq � UT CT Col

A coalgebra (X ,γ) satisfies Coeq if for every colouring map
c : X → Col

imĉ ⊆ Coeq

No syntax, any way of describing a subcoalgebra/subset will do.

Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adámek et al): 4t , t ∈ CT Col

Coequation-as-predicate: beyond behaviour
Theorem (Rutten, 1996)

If T is κ-bounded and C is a structural T -covariety, then C is the class of
coalgebras satisfying some coequation-as-predicate Coeq ⊆ CTκ

Theorem (Adámek, 2005)

Suppose T is a covarietor that preserves weak pullbacks. A T -covariety is
presentable by a predicate coequation in κ colours if and only if it is closed
under κ-colour bisimilarity.

(R, ρ)

((((wwww
(X ,γ)

c ��

(X ′,γ ′)
c ′
��

κ κ

Coequation-as-predicate: beyond behaviour
Theorem (Rutten, 1996)

If T is κ-bounded and C is a structural T -covariety, then C is the class of
coalgebras satisfying some coequation-as-predicate Coeq ⊆ CTκ

Theorem (Adámek, 2005)

Suppose T is a covarietor that preserves weak pullbacks. A T -covariety is
presentable by a predicate coequation in κ colours if and only if it is closed
under κ-colour bisimilarity.

(R, ρ)

((((wwww
(X ,γ)

c ��

(X ′,γ ′)
c ′
��

κ κ

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Examples

1 For TX = X × X + 1

4

defines the covariety of binary trees which do not have two halting
successors.

2 A T -coalgebra (V ,γ) is locally finite if for every v ∈ V there exists a
finite subcoalgebra S of (V ,γ) such that v ∈ S. The class of locally
finite T -coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in ω-colours describing it.

3 The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.

Coequation-as-equation

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequation-as-equation

Specific syntax to write certain coequations

Destructor signature: σ : S × X → T (X)
Example: Bank account

bal : X → N credit : X × N→ X

Build a grammar of terms from variables, signature and anything
useful

x : X , n : N (−) + (−) : N× N→ N

Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))

Coequations-as-equation are coequations-as-corelation

Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of terms guarantee that they can be interpreted as maps on X

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

νT ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of terms guarantee that they can be interpreted as maps on X

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

νT ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of terms guarantee that they can be interpreted as maps on X

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

νT ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of terms guarantee that they can be interpreted as maps on X

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

νT ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequations-as-equation are coequations-as-corelation
Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X → N× XN

i.e. a particular bank account instance is a coalgebra for TX = N×XN

Format of terms guarantee that they can be interpreted as maps on X

X → NN, x 7→ λn.Jbal(x) + nK

We get a coequation-as-corelation

νT ⇒ NN

Classify behaviours according to what the functions λn.Jbal(x) + nK
and λn.Jbal(credit(n, x))K do, then select those for which the
classifications match up

Coequation-as-modal-formula

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Coequations-as-modal-formulas

Syntax for coequation-as-predicate, given by coalgebraic modal logic

Idea: for a covarietor T and a set of atomic proposition At consider

CTPAt

Under very general assumptions, coalgebraic modal formula φ for
T -systems can be canonically interpreted in this coalgebra

Formula φ defines the coequation-as-predicate

{x ∈ CTPAt : x |= φ}

Looks at local behaviour (typically ∼1,2 steps ahead), in practice
|At| 6 3 is often enough

Coalgebraic Goldblatt-Thomason theorem

Which coequation is right for you?

Is the behaviour you’re trying to define local?

Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?

Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format

Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula

Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}

Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation

Not sure: Reason directly in terms of covariety?

Which coequation is right for you?

Is the behaviour you’re trying to define local?
Yes.
How are you trying to define it?

Forbidden behaviour: coequation-as-predicate in 4t format
Desired behaviour: coequation-as-modal formula
Identifying behaviours/processes: coequation-as-equation/corelation

No
How are you trying to define it?

Desired behaviour: coequation-as-predicate {t : φ(t)}
Identifying behaviours: coequation-as-corelation
Not sure: Reason directly in terms of covariety?

Thank you.

Reference:
Fredrik Dahlqvist and Todd Schmid. “How to Write a Coequation.” 9th Conference on
Algebra and Coalgebra in Computer Science. 2021.

