

How to write a coequation.

Fredrik Dahlqvist

Joint work with Todd Schmid

Comonadic meeting - 22 February 2023

Coequations have been around for at least 25 years

- Coequations have been around for at least 25 years
- Tons of theoretical results

- Coequations have been around for at least 25 years
- Tons of theoretical results
- ... but coequations haven't really been adopted as a practical formalism by computer scientists

- Coequations have been around for at least 25 years
- Tons of theoretical results
- ... but coequations haven't really been adopted as a practical formalism by computer scientists
- Why?

No universally accepted syntax to write a coequation

- No universally accepted syntax to write a coequation
 - Difficult for the end-user to understand what a coequation is

- No universally accepted syntax to write a coequation
- Difficult for the end-user to understand what a coequation is
- Which formalism should be used in practice?

This problem is inevitable

- This problem is inevitable
- Equations are given by pairs of terms

This problem is inevitable

Equations are given by pairs of terms

Terms are *finite* trees

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees
 - Infinitely branching, infinite depth

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees
 - Infinitely branching, infinite depth
 - No finite string representation

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees
 - Infinitely branching, infinite depth
 - No finite string representation
 - Often equivalence classes of trees

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees
 - Infinitely branching, infinite depth
 - No finite string representation
 - Often equivalence classes of trees
- Impossible to get a simple syntax working well in every case

- This problem is inevitable
- Equations are given by pairs of terms
 - Terms are *finite* trees
 - Using brackets there is an unambiguous finite string representation
- Coequations typically deal with generalised trees
 - Infinitely branching, infinite depth
 - No finite string representation
 - Often equivalence classes of trees
- Impossible to get a simple syntax working well in every case
- Underlying maths seems harder to grasp (relation versus corelation)

History of the notion of coequation

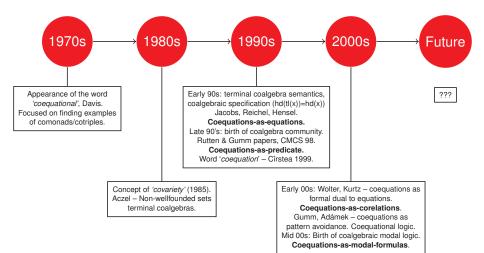
- History of the notion of coequation
- From this extract 4 kinds of syntax

History of the notion of coequation

From this extract 4 kinds of syntax

- Coequation-as-corelation
- Coequation-as-predicate
- Coequation-as-equation
- Coequation-as-modal-formula

History of coequations

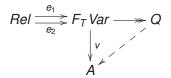


Coequation-as-corelation

Equations

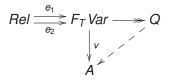
Equations

Equations are relations under which one can take a quotient

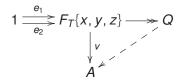


Equations

Equations are relations under which one can take a quotient



Example: semigroups $TX = X \times X$, $Var = \{x, y, z\}$, Rel = 1, $e_1(*) = (xy)z$, $e_2(*) = x(yz)$



Coequations

Coequations

Dually, coequations are corelations defining a subobject

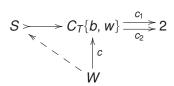
$$S \xrightarrow{\sim} C_T Col \xrightarrow{c_1} CoRel$$

Coequations

Dually, coequations are corelations defining a subobject

$$S \xrightarrow{\sim} C_T Col \xrightarrow{c_1} CoRel$$

Example: deterministic binary trees $TX = X \times X$, $Col = \{b, w\}$, CoRel = 2, $c_1(t) = 1$ if Left(t) = b, $c_2(t) = 1$ if Right(t) = b



Birkhoff's HSC theorem

Theorem

Let T : **Set** \rightarrow **Set** be a covarietor. A class of T-coalgebras is a covariety iff it is closed under Homomorphic images (H), Subcoalgebras (S) and Coproducts (C).

Birkhoff's HSC theorem

Theorem

Let T : **Set** \rightarrow **Set** be a covarietor. A class of T-coalgebras is a covariety iff it is closed under Homomorphic images (H), Subcoalgebras (S) and Coproducts (C).

Note: the HSC conditions make sense even if T is not a covarietor – for example $T = \mathcal{P}$. We will call a class of T-coalgebras a *structural covariety* if it is closed under HSC.

Coequation-as-predicate

Let $T : \mathbf{Set} \to \mathbf{Set}$ have a terminal coalgebra vT

Let $T : \mathbf{Set} \to \mathbf{Set}$ have a terminal coalgebra vT

A behavioural coequation is a subset $W \subseteq vT$

Let T : **Set** \rightarrow **Set** have a terminal coalgebra νT

A behavioural coequation is a subset $W \subseteq \nu T$

A *T*-coalgebra (X, γ) satisfies *W* if

$$\operatorname{im!}_{(X,\gamma)} \subseteq W$$

In other words: every behaviour in (X, γ) belongs to W.

Let T : Set → Set have a terminal coalgebra vT
A behavioural coequation is a subset W ⊆ vT
A T-coalgebra (X, γ) satisfies W if

$$\operatorname{im!}_{(X,\gamma)} \subseteq W$$

In other words: every behaviour in (X, γ) belongs to W.

No particular syntax, any way of describing *W* will do

Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite automata.

Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite automata.

Theorem (Gumm-Schröder, 1998)

Let T preserve weak pullbacks. Then a structural T-covariety is behavioural if and only if it is closed under total bisimulations.

■ To capture more classes of coalgebras we need to consider 'labelled/coloured' coalgebras. Let *T* : Set → Set be a covarietor and let *Col* be a set of colors.

- To capture more classes of coalgebras we need to consider 'labelled/coloured' coalgebras. Let *T* : Set → Set be a covarietor and let *Col* be a set of colors.
- A coequation-as-predicate can be either
 - **a** subcoalgebra $Coeq \rightarrow C_T Col$, or
 - a subset $Coeq \rightarrow U_T C_T Col$

- To capture more classes of coalgebras we need to consider 'labelled/coloured' coalgebras. Let *T* : Set → Set be a covarietor and let *Col* be a set of colors.
- A coequation-as-predicate can be either
 - **a** subcoalgebra $Coeq \rightarrow C_T Col$, or
 - a subset $Coeq \rightarrow U_T C_T Col$

A coalgebra (X, γ) satisfies *Coeq* if for every colouring map $c: X \rightarrow Col$

 $\mathrm{im}\hat{c}\subseteq \mathit{Coeq}$

- To capture more classes of coalgebras we need to consider 'labelled/coloured' coalgebras. Let *T* : Set → Set be a covarietor and let *Col* be a set of colors.
- A coequation-as-predicate can be either
 - **a** subcoalgebra $Coeq \rightarrow C_T Col$, or
 - a subset $Coeq \rightarrow U_T C_T Col$
- A coalgebra (X, γ) satisfies *Coeq* if for every colouring map $c: X \rightarrow Col$

$\mathrm{im}\hat{c}\subseteq \mathit{Coeq}$

No syntax, any way of describing a subcoalgebra/subset will do.

- To capture more classes of coalgebras we need to consider 'labelled/coloured' coalgebras. Let *T* : Set → Set be a covarietor and let *Col* be a set of colors.
- A coequation-as-predicate can be either
 - **a** subcoalgebra $Coeq \rightarrow C_T Col$, or
 - a subset $Coeq \rightarrow U_T C_T Col$
- A coalgebra (X, γ) satisfies *Coeq* if for every colouring map $c: X \rightarrow Col$

$$\mathrm{im}\hat{c}\subseteq \mathit{Coeq}$$

- No syntax, any way of describing a subcoalgebra/subset will do.
- Special syntax for pattern avoidance in coalgebras for polynomial functors (Gumm, Adámek *et al*): $\boxtimes t, t \in C_T Col$

Theorem (Rutten, 1996)

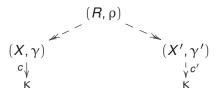
If T is κ -bounded and C is a structural T-covariety, then C is the class of coalgebras satisfying some coequation-as-predicate Coeq $\subseteq C_T \kappa$

Theorem (Rutten, 1996)

If T is κ -bounded and C is a structural T-covariety, then C is the class of coalgebras satisfying some coequation-as-predicate Coeq $\subseteq C_T \kappa$

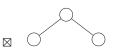
Theorem (Adámek, 2005)

Suppose T is a covarietor that preserves weak pullbacks. A T-covariety is presentable by a predicate coequation in κ colours if and only if it is closed under κ -colour bisimilarity.



Examples

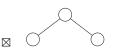
1 For
$$TX = X \times X + 1$$



defines the covariety of binary trees which do *not* have two halting successors.

Examples

1 For
$$TX = X \times X + 1$$

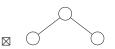


defines the covariety of binary trees which do *not* have two halting successors.

2 A *T*-coalgebra (V, γ) is *locally finite* if for every $v \in V$ there exists a finite subcoalgebra *S* of (V, γ) such that $v \in S$. The class of locally finite *T*-coalgebra is a covariety. By a theorems from Rutten and Adamek there must exist a coequation in ω -colours describing it.

Examples

1 For
$$TX = X \times X + 1$$



defines the covariety of binary trees which do *not* have two halting successors.

- **2** A *T*-coalgebra (V, γ) is *locally finite* if for every $v \in V$ there exists a finite subcoalgebra *S* of (V, γ) such that $v \in S$. The class of locally finite *T*-coalgebra is a covariety. By a theorems from Rutten and Adamek there must exist a coequation in ω -colours describing it.
- 3 The *filter functor* is not a covarietor. A generalized notion of coequation must be used. The class of topological spaces and open maps is a covariety in the class of coalgebras for the filter functor. Kurz and Rosicky present this covariety by a generalized coequation.

Specific syntax to write certain coequations

- Specific syntax to write certain coequations
- Destructor signature: $\sigma : S \times X \to T(X)$ Example: Bank account

$$\operatorname{bal}: X \to \mathbb{N} \qquad \operatorname{credit}: X \times \mathbb{N} \to X$$

- Specific syntax to write certain coequations
- Destructor signature: $\sigma : S \times X \to T(X)$ Example: Bank account

$$\operatorname{bal}: X \to \mathbb{N} \qquad \operatorname{credit}: X \times \mathbb{N} \to X$$

Build a grammar of terms from variables, signature and anything useful

 $x: X, n: \mathbb{N}$ $(-) + (-): \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

- Specific syntax to write certain coequations
- Destructor signature: $\sigma : S \times X \to T(X)$ Example: Bank account

$$\operatorname{bal}:X o\mathbb{N}$$
 credit: $X imes\mathbb{N} o X$

- Build a grammar of terms from variables, signature and anything useful
 - $x: X, n: \mathbb{N}$ $(-) + (-): \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Write specifications in the usual equational format

 $\operatorname{bal}(x) + n = \operatorname{bal}(\operatorname{credit}(n, x))$

Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$X o \mathbb{N} imes X^{\mathbb{N}}$$

i.e. a particular bank account instance is a coalgebra for $TX = \mathbb{N} \times X^{\mathbb{N}}$

Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$X o \mathbb{N} imes X^{\mathbb{N}}$$

i.e. a particular bank account instance is a coalgebra for $TX = \mathbb{N} \times X^{\mathbb{N}}$ Format of terms guarantee that they can be interpreted as maps on *X*

$$X \to \mathbb{N}^{\mathbb{N}}$$
, $x \mapsto \lambda n$. $\llbracket \operatorname{bal}(x) + n \rrbracket$

Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$X o \mathbb{N} imes X^{\mathbb{N}}$$

i.e. a particular bank account instance is a coalgebra for $TX = \mathbb{N} \times X^{\mathbb{N}}$ Format of terms guarantee that they can be interpreted as maps on *X*

$$X o \mathbb{N}^{\mathbb{N}}$$
, $x \mapsto \lambda n$. $\llbracket \mathrm{bal}(x) + n \rrbracket$

We get a coequation-as-corelation

$$\nu T \rightrightarrows \mathbb{N}^{\mathbb{N}}$$

Format of destructor signatures guarantee that currying is possible Taking products, bank account signature becomes

$$X \to \mathbb{N} imes X^{\mathbb{N}}$$

i.e. a particular bank account instance is a coalgebra for $TX = \mathbb{N} \times X^{\mathbb{N}}$ Format of terms guarantee that they can be interpreted as maps on *X*

$$X o \mathbb{N}^{\mathbb{N}}$$
, $x \mapsto \lambda n$. $\llbracket \operatorname{bal}(x) + n \rrbracket$

We get a coequation-as-corelation

$$\nu T \rightrightarrows \mathbb{N}^{\mathbb{N}}$$

Classify behaviours according to what the functions $\lambda n.[[bal(x) + n]]$ and $\lambda n.[[bal(credit(n, x))]]$ do, then *select* those for which the classifications match up

Syntax for coequation-as-predicate, given by *coalgebraic modal logic*

- Syntax for coequation-as-predicate, given by *coalgebraic modal logic*
- Idea: for a covarietor *T* and a set of atomic proposition At consider

 $C_T \mathcal{P} \mathsf{At}$

- Syntax for coequation-as-predicate, given by *coalgebraic modal logic*
- Idea: for a covarietor *T* and a set of atomic proposition At consider

$C_T \mathcal{P} \mathsf{At}$

- Syntax for coequation-as-predicate, given by *coalgebraic modal logic*
- Idea: for a covarietor *T* and a set of atomic proposition At consider

$C_T \mathcal{P} \mathsf{At}$

- Under very general assumptions, coalgebraic modal formula φ for *T*-systems can be canonically interpreted in this coalgebra
- Formula ϕ defines the coequation-as-predicate

$$\{x \in C_T \mathcal{P} \mathsf{At} : x \models \phi\}$$

- Syntax for coequation-as-predicate, given by *coalgebraic modal logic*
- Idea: for a covarietor *T* and a set of atomic proposition At consider

$C_T \mathcal{P} \mathsf{At}$

- Formula ϕ defines the coequation-as-predicate

$$\{x \in C_T \mathcal{P} \mathsf{At} : x \models \phi\}$$

Looks at local behaviour (typically ~1,2 steps ahead), in practice $|At| \leq 3$ is often enough

Coequations-as-modal-formulas

- Syntax for coequation-as-predicate, given by *coalgebraic modal logic*
- Idea: for a covarietor *T* and a set of atomic proposition At consider

$C_T \mathcal{P} \mathsf{At}$

- Formula ϕ defines the coequation-as-predicate

$$\{x \in C_T \mathcal{P} \mathsf{At} : x \models \phi\}$$

- Looks at local behaviour (typically ~1,2 steps ahead), in practice $|At| \leq 3$ is often enough
 - Coalgebraic Goldblatt-Thomason theorem

Is the behaviour you're trying to define local?

■ Is the behaviour you're trying to define local?

Is the behaviour you're trying to define local?

Yes.

How are you trying to define it?

■ Forbidden behaviour: coequation-as-predicate in ⊠*t* format

Is the behaviour you're trying to define local?

Yes.

- Forbidden behaviour: coequation-as-predicate in ⊠t format
- Desired behaviour: coequation-as-modal formula

Is the behaviour you're trying to define local?

Yes.

- Forbidden behaviour: coequation-as-predicate in ⊠*t* format
- Desired behaviour: coequation-as-modal formula
- Identifying behaviours/processes: coequation-as-equation/corelation

Is the behaviour you're trying to define local?

Yes.

How are you trying to define it?

- Forbidden behaviour: coequation-as-predicate in ⊠*t* format
- Desired behaviour: coequation-as-modal formula
- Identifying behaviours/processes: coequation-as-equation/corelation
- No

Is the behaviour you're trying to define local?

Yes.

How are you trying to define it?

- Forbidden behaviour: coequation-as-predicate in ⊠*t* format
- Desired behaviour: coequation-as-modal formula
- Identifying behaviours/processes: coequation-as-equation/corelation

No

How are you trying to define it?

■ Desired behaviour: coequation-as-predicate $\{t : \phi(t)\}$

Is the behaviour you're trying to define local?

Yes.

How are you trying to define it?

- Forbidden behaviour: coequation-as-predicate in ⊠*t* format
- Desired behaviour: coequation-as-modal formula
- Identifying behaviours/processes: coequation-as-equation/corelation

No

- Desired behaviour: coequation-as-predicate $\{t : \phi(t)\}$
- Identifying behaviours: coequation-as-corelation

Is the behaviour you're trying to define local?

Yes.

How are you trying to define it?

- Forbidden behaviour: coequation-as-predicate in ⊠*t* format
- Desired behaviour: coequation-as-modal formula
- Identifying behaviours/processes: coequation-as-equation/corelation

No

- Desired behaviour: coequation-as-predicate $\{t : \phi(t)\}$
- Identifying behaviours: coequation-as-corelation
- Not sure: Reason directly in terms of covariety?

Thank you.

Reference:

Fredrik Dahlqvist and Todd Schmid. "How to Write a Coequation." *9th Conference on Algebra and Coalgebra in Computer Science.* 2021.