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B Coequations have been around for at least 25 years
H Tons of theoretical results

B ... but coequations haven’t really been adopted as a practical
formalism by computer scientists

B Why?
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Some answers

B No universally accepted syntax to write a coequation
H Difficult for the end-user to understand what a coequation is
B Which formalism should be used in practice?
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Root cause

B This problem is inevitable
B Equations are given by pairs of terms

m Terms are finite trees
m Using brackets there is an unambiguous finite string representation

B Coequations typically deal with generalised trees

m Infinitely branching, infinite depth
m No finite string representation
m Often equivalence classes of trees

B Impossible to get a simple syntax working well in every case
B Underlying maths seems harder to grasp (relation versus corelation)



&
% Queen Mary

University of London

Outline



&
% Queen Mary

University of London

Outline

W History of the notion of coequation



&
% Queen Mary

University of London

Outline

W History of the notion of coequation
B From this extract 4 kinds of syntax



&
% Queen Mary

University of London

Outline

W History of the notion of coequation
B From this extract 4 kinds of syntax
m Coequation-as-corelation
m Coequation-as-predicate
m Coequation-as-equation
m Coequation-as-modal-formula
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©ccoo

Appearance of the word Early 90s: terminal coalgebra semantics,
‘coequational’, Davis. coalgebraic specification (hd(tl(x))=hd(x))
Focused on finding examples Jacobs, Reichel, Hensel.
of comonads/cotriples. Coequations-as-equations.

Late 90’s: birth of coalgebra community.
Rutten & Gumm papers, CMCS 98.
Coequations-as-predicate.
Word ‘coequation’ — Cirstea 1999.

Concept of ‘covariety’ (1985). Early 00s: Wolter, Kurtz — coequations as
Aczel — Non-wellfounded sets formal dual to equations.
terminal coalgebras. Coequations-as-corelations.

Gumm, Adamek — coequations as
pattern avoidance. Coequational logic.
Mid 00s: Birth of coalgebraic modal logic.
Coequations-as-modal-formulas.
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Equations are relations under which one can take a quotient

e
Rel :11 FrVar ——

(7] e
e
v e
e
A

A

Example: semigroups
TX=Xx X, Var ={x,y,z}, Rel =1, e1(x) = (xy)z, ex(*) = x(yz)

&1
11— Fr{x,y,z} —=Q
92 e

o
A

~
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Coequations

Dually, coequations are corelations defining a subobject

C-
S>> CrCol —= CoRel

S C2
AN
N c
AN
N

w

Example: deterministic binary trees TX = X x X, Col = {b, w}, CoRel =
2,ci(t) =1ifLeft(t) = b, co(t) = 1if Right(t) = b

(e
S>—— CT{b, W} 41> 2
~ C2

N
~ c
~
~

w
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Birkhoff’s HSC theorem

Let T : Set — Set be a covarietor. A class of T-coalgebras is a covariety iff
it is closed under Homomorphic images (H), Subcoalgebras (S) and
Coproducts (C).

Note: the HSC conditions make sense even if T is not a covarietor — for
example T = P. We will call a class of T-coalgebras a structural covariety
if it is closed under HSC.
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B Let T : Set — Set have a terminal coalgebra vT
B A behavioural coequation is a subset W C vT
B A T-coalgebra (X,vy) satisfies W if

im! (X,v) Q W

In other words: every behaviour in (X, y) belongs to W.
B No particular syntax, any way of describing W will do
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Theorem (Rutten, 1996)

The class of T-coalgebras satisfying a behavioural coequation forms a
structural covariety.

But not all structural covarieties are behavioural, e.g. locally finite
automata.

Theorem (Gumm-Schroder, 1998)

Let T preserve weak pullbacks. Then a structural T-covariety is
behavioural if and only if it is closed under total bisimulations.
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Coequation-as-predicate: beyond behaviour

B To capture more classes of coalgebras we need to consider
‘labelled/coloured’ coalgebras. Let T : Set — Set be a covarietor and
let Col be a set of colors.

B A coequation-as-predicate can be either

m a subcoalgebra Coeq — CrCol, or
m a subset Coeq — UrCrCol

B A coalgebra (X, y) satisfies Coeq if for every colouring map

c: X — Col
im¢ C Coeq

B No syntax, any way of describing a subcoalgebra/subset will do.

B Special syntax for pattern avoidance in coalgebras for polynomial
functors (Gumm, Adamek et al): xt, t € CrCol
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Coequation-as-predicate: beyond behaviour
Theorem (Rutten, 1996)

If T is k-bounded and C is a structural T -covariety, then C is the class of

coalgebras satisfying some coequation-as-predicate Coeq C Ctk

Theorem (Adamek, 2005)

Suppose T is a covarietor that preserves weak pullbacks. A T-covariety is
presentable by a predicate coequation in x colours if and only if it is closed
under k-colour bisimilarity.

(R.p)

- ~
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(X,v) (X', v")
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Examples

H ForTX=XxX+1

. o o

defines the covariety of binary trees which do not have two halting
SUCCESSOrS.

A T-coalgebra (V,v) is locally finite if for every v € V there exists a
finite subcoalgebra S of (V,vy) such that v € S. The class of locally
finite T-coalgebra is a covariety. By a theorems from Rutten and
Adamek there must exist a coequation in w-colours describing it.

The filter functor is not a covarietor. A generalized notion of
coequation must be used. The class of topological spaces and open
maps is a covariety in the class of coalgebras for the filter functor.
Kurz and Rosicky present this covariety by a generalized coequation.
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Coequation-as-equation

B Specific syntax to write certain coequations

B Destructor signature: 0: S x X — T(X)
Example: Bank account

bal: X - N credit : X x N — X

B Build a grammar of terms from variables, signature and anything

useful
x:X,n:N (-)+(=):NxN—=N

B Write specifications in the usual equational format

bal(x) + n = bal(credit(n, x))
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Coequations-as-equation are coequations-as-corelation

B Format of destructor signatures guarantee that currying is possible
Taking products, bank account signature becomes

X — N x XN

i.e. a particular bank account instance is a coalgebra for TX = N x XV
B Format of terms guarantee that they can be interpreted as maps on X

X — NN, x = An.[bal(x) 4 n]
B We get a coequation-as-corelation
vT = NV

B Classify behaviours according to what the functions An.[bal(x) + n]
and An.[bal(credit(n, x))] do, then select those for which the
classifications match up
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Coequations-as-modal-formulas

B Syntax for coequation-as-predicate, given by coalgebraic modal logic
H Idea: for a covarietor T and a set of atomic proposition At consider

CrPAt

B Under very general assumptions, coalgebraic modal formula ¢ for
T-systems can be canonically interpreted in this coalgebra

B Formula ¢ defines the coequation-as-predicate
{x € CrPAt : x = ¢}

B Looks at local behaviour (typically ~1,2 steps ahead), in practice
|At| < 3 is often enough

B Coalgebraic Goldblatt-Thomason theorem
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B Is the behaviour you're trying to define local?
m Yes.
How are you trying to define it?
B Forbidden behaviour: coequation-as-predicate in xf format
m Desired behaviour: coequation-as-modal formula
B Identifying behaviours/processes: coequation-as-equation/corelation
= No
How are you trying to define it?
m Desired behaviour: coequation-as-predicate {t : ()}
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Which coequation is right for you?

B Is the behaviour you're trying to define local?

m Yes.
How are you trying to define it?
B Forbidden behaviour: coequation-as-predicate in xf format
m Desired behaviour: coequation-as-modal formula
B Identifying behaviours/processes: coequation-as-equation/corelation
= No
How are you trying to define it?
m Desired behaviour: coequation-as-predicate {t : ()}
H |dentifying behaviours: coequation-as-corelation
B Not sure: Reason directly in terms of covariety?
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Reference:
Fredrik Dahlqgvist and Todd Schmid. “How to Write a Coequation.” 9th Conference on
Algebra and Coalgebra in Computer Science. 2021.



