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Why Homomorphism Indistinguishability?

• Connections to graph properties in finite model theory and algebraic graph
theory

Counting Logic
∃=3x∃=2y. Exy

Homomorphism Indistin-
guishability over Trees

Fractional Isomorphism
XAG = AHX

• Expressive numerical graph invariants for applications Illustration from Grohe (2020).
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Outline

Matrix Equations for Homomorphism Indistinguishability

Towards a Theory of Homomorphism Indistinguishability

Open Questions
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Matrix Equations for Homomorphism
Indistinguishability



Matrix Equations for Homomorphism Indistinguishability

Homomorphism
Indistinguishability

Matrix Equations
X s.t. XAG = AHX

All Graphs X permutation matrixLovász (1967)

Cycles X orthogonalFolklore

Paths
X pseudo-stochastic
X1 = 1 = XT1

Dell et al. (2018)

Trees
X doubly-stochastic
X ≥ 0, X1 = 1 = XT1

Tinhofer (1986)
Dvořák (2010); Dell et al. (2018)
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A Strategy for Matrix Equations Grohe, Rattan, S. (2022), Rattan & S. (2023)

Homomorphism
Indistinguishability

Matrix Equations
X s.t. XAG = AHX

Unified Algebraic
Framework

1. Construct family F of (bi)labelled graphs
2. Define suitable operations
3. Prove that F is finitely generated under operations
4. Define representation and recover system of equations
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Labelled Graphs and Homomorphism Vectors
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Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries
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Bilabelled Graphs and Homomorphism Matrices
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Combinatorial and Algebraic Operations: Gluing+Unlabelling and Traces
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Examples: Trees, Paths, Cycles

1. Construct family F of (bi)labelled graphs

• paths, trees, cycles

2. Define suitable operations

• gluing, series composition

• unlabelling, taking traces

3. Prove that F is finitely generated under
operations

• generator is

4. Define representation and recover system of
equations

• homomorphism vectors and matrices
• missing ingredient: variants of theorem by
Specht and Wiegmann
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Specht–Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A1, . . . ,An and B1, . . . ,Bn simultaneously
similar?

Theorem
For every word w,
trwA = trwB.

X unitary
∀i. XAi = BiX, XA∗

i = B∗
i X

Specht (1940); Wiegmann (1961)

For every word w,
soewA = soewB.

X pseudo-stochastic
∀i. XAi = BiX, XA∗

i = B∗
i X

Grohe, Rattan, S. (2022)

For every tree t,
soe tA = soe tB.

X doubly-stochastic
∀i. XAi = BiX, XA∗

i = B∗
i X

Grohe, Rattan, S. (2022)
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Specht–Wiegmann: Words

Let Γ be the set of finite words over
{x1, . . . , xn, x∗

1 , . . . , x∗
n}.

Γ forms an involution monoid.

x2 x∗
1 x∗

3 x5w =
7→

wA = A2 A∗
1 A∗

3 A5
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Specht–Wiegmann: Trees

Consider trees over {x1, . . . , xn, x∗
1 , . . . , x∗

n}.

x1 x5

x∗
2 x3

t =
7→

tA =

A∗
2 ((A1

1

) � (A51)) � (A31)
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Specht–Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

Let A1, . . . ,An and B1, . . . ,Bn be square matrices.

Theorem
For every word w,
trwA = trwB.

X unitary
∀i. XAi = BiX, XA∗

i = B∗
i X

Specht (1940); Wiegmann (1961)
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Graphs of Bounded Pathwidth and Sherali–Adams Relaxation

Homomorphism
Indistinguishability

Matrix Equations

Trees
XAG = AHX

X doubly-stochastic
Tinhofer (1986)

Dvořák (2010); Dell et al. (2018)

Paths
XAG = AHX

X pseudo-stochastic
Dell et al. (2018)

Treewidth ≤ k − 1
level-k Sherali–Adams
non-negative solution

Atserias and Maneva (2012)
Grohe and Otto (2015)

Pathwidth ≤ k − 1 level-k Sherali–Adams
rational solutionDell et al. (2018)
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Graphs of Bounded Pathwidth and Sherali–Adams Relaxation

1. Construct family F of (bi)labelled graphs

• labels in a single bag of the tree or path
decomposion.

2. Define suitable operations

• gluing, series composition

3. Prove that F is finitely generated under operations

• generator is not but basal graphs, i.e. bilabelled
single bag.

4. Define representation and recover system of
equations

• homomorphism tensors and Specht–Wiegmann

1 2 3

1 2 3
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Limitations: Warped Wheel

The pieces labelling, operations, finite generation, and representation have to fit
together.

�
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A Comonadic Strategy

1. Construct family F of (bi)labelled graphs

• labelled coalgebras of pebbling comonad
Pk,d from Dawar et al. (2021).

2. Define suitable operations

• pushouts in EM(Pk,d)

3. Prove that F is finitely generated under
operations

• requires Pk,d-specific argument

4. Define representation and recover system of
equations

• augmented homomorphism tensors and
Specht–Wiegmann
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Augmented Homomorphism Representation

1

4

44
1 1

9
ü

F CV(G)

7→

⊗

⊗

ü

⊕
(L,λ)
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Graphs admitting k-pebble forest covers of depth d

Homomorphism
Indistinguishability

Matrix Equations

Graphs with k-pebble
forest cover of depth d

Novel system of
equations: matrix

commuting with aug-
mented representation

Novel system of
equations: matrix

commuting with aug-
mented representation

Rattan and S. (2023)

This characterises logical equivalence over Ck ∩ Cd, and with some modifications
indistinguishability after d rounds of the k-dimensional Weisfeiler–Leman
algorithm.
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Towards a Theory of Homomorphism
Indistinguishability



G and H are isomorphic iff
integer program ISO(G,H) is feasible

Sherali–Adams
linear prog.

Lasserre
semidefinite prog.

1
2
3

...

1
2
3

...
c

...
2c

4
5
6

...

T W0

T W1

T W2

T W3

T W4

T W5

...

Homomorphism
Indistinguishability

L1

L2

L3

...

Homomorphism
Indistinguishability

Atserias and Ochremiak (2018), Roberson & S. (2023), Grohe and Otto (2015), Atserias and Maneva (2012), Dvořák (2010)
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From Equations to Graphs

Equations
homomorphism tensors,
algebraic operations

Graph Class
(bi)labelled graphs,

combinatorial operations

Mančinska & Roberson (’20),
Roberson & S. (’23)

Grohe, Rattan, & S. (’22),
Rattan & S. (’23)
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The Graph Class Lt

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class Lt is generated by atomic graphs under
• series composition,
• parallel composition with atomic graphs,
• permutation of labels.

1 1

2 2

3 3

4 4
. . .

t t
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Syntactic Properties of the Graph Class Lt

• Lt ⊆ T W3t−1,

• Lt contains the clique K3t,
• Lt is minor-closed,
• L1 is the class of all outerplanar graphs.
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Syntax and Semantics: Roberson’s Conjecture

Lt is a class of graphs of treewidth ≤ 3t − 1 containing K3t.

Although Lt 6⊆ T W3t−2, it could well be that G ≡T W3t−2 H =⇒ G ≡Lt H.

The homomorphism distinguishing closure of a graph class F is

cl(F) = {K graph | G ≡F H =⇒ hom(K,G) = hom(K,H)}.

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.
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Roberson’s Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.

• treewidth ≤ k, Neuen (2023)
• planar graphs, Roberson (2022)
• essentially finite graph classes. S. (2023)

Corollary (Roberson and S. (2023))
For every t ≥ 1, there are graphs G and H such that G 'SA

3t−1 H and G 6'L
t H.
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Games for Roberson’s Conjecture

Theorem (Neuen (2023))
For every t ≥ 0, the class T W t is homomorphism distinguishing closed.

Using a CFI-like construction of Roberson (2022), it suffices to show the following:

Claim
If G 6∈ T Wk and G is connected then G0 ≡T Wk G1.

Duplicator can play like robber evading k+ 1 cops on G.

Question
Can game comonads yield more such results?
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Properties of Homomorphism Indistinguishability Relations

Let’s forget about the graph class F and think of the equivalence relation ≡F !

Observation (≡F is preserved under categorical products)
If G1 ≡F H1 and G2 ≡F H2 then G1 × G2 ≡F H1 × H2.

The hom(F, −)-functor maps products to products.

In the language of Marsden, Jakl, Shah (2023): There is a Kleisli law for the product
functor (G,H) 7→ G× H.
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Properties of Homomorphism Indistinguishability Relations

Closure properties of F correspond to preservation properties of ≡F .

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements G 7→ G
summands disjoint unions (G,H) 7→ G+ H
subgraphs full complements G 7→ Ĝ
induced subgraphs left lexicographic products H 7→ G[H] for every G
contracting edges right lexicographic products G 7→ G[H] for every H.
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Logic meets Minors

Corollary (S. (2023))
Let ≡ be an equivalence relation between graphs. If

• G ≡ H ⇐⇒ G ≡ H for all G and H,
• ≡ is a homomorphism indistinguishability relation, then

≡ is a homomorphism indistinguishability over a minor-closed graph class.

Examples include logical equivalences and systems of equations.

Corollary (Atserias et al. (2021))
≡FOk is not a homomorphism indistinguishability relation.
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Open Questions



Open Questions I

What is the complexity of deciding whether G and
H are homomorphism indistinguishable over F?
• Succinct matrix equations yield algorithms
• …may be used to prove undecidability

PTIME

Tree(width)

Path(width)

Treedepth

Decidable

Cliques

Undecidable
Planar
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Open Questions II

Can matrix equations be cooked up for other
graph classes?
• path-like or tree-like graph classes, e.g.
bounded cutwidth

• with comonadic strategy, only finite
generation seems to be an issue

1 3 3 2
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Open Questions III

When is a function h : F → N such that
h = hom(−,H) for some graph H?
• Lovász and Schrijver (2009) answer this for

F = {all graphs} using algebras of labelled
graphs

• Applications in reconstruction
. . .
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24

48

. . .
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Lovász and Schrijver (2009)

Let C be a category such that

• C is locally finite,
• C has pushouts and an initial object 0,
• every morphism is the product of an epimorphism and a monomorphism,
• there is a generator G ∈ obj C, i.e. ∀F∃n ∈ N. nG� F.

Then h : obj C → R is of the form h = hom(−,H) if and only if

• h(0) = 1,
• h is multiplicative over coproducts,
• the matrix N(h, L) is positive semidefinite for every L.

Question
Characterise h : imUC → R of the form h = homΣ(−,H) = homEM(C)(−, FCH).
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Conclusion

• Matrix Equations for Homomorphism Indistinguishability

• (bi)labelled graphs, operations, finite generation, representation
• versions of Specht–Wiegmann Theorem

• Towards a Theory of Homomorphism Indistinguishability

• Roberson’s Conjecture
• properties of homomorphism indistinguishability relations

• Check out Grohe et al. (2022); Rattan and Seppelt (2023); Roberson and
Seppelt (2023); Seppelt (2023)!
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