

\therefore

24

36

24

36

?

24

36

24
24

36
36


```
    24
36
```

The graphs and are homomorphism indistinguishable over $\{0,0,0\}$.

Why Homomorphism Indistinguishability?

- Connections to graph properties in finite model theory and algebraic graph theory

Why Homomorphism Indistinguishability?

- Connections to graph properties in finite model theory and algebraic graph theory

```
Counting Logic
        Homomorphism Indistin-
        Fractional Isomorphism
        \exists=3}x\exists=2\mp@code{y.Exy
        guishability over Trees
        XAG}=\mp@subsup{A}{H}{}
```


Why Homomorphism Indistinguishability?

- Connections to graph properties in finite model theory and algebraic graph theory

$$
\begin{aligned}
& \text { Counting Logic } \\
& \exists^{=3} x \exists^{=2} y \text {. Exy }
\end{aligned}
$$

\leftrightarrow| Homomorphism Indistin- |
| :---: |
| guishability over Trees |\leftrightarrow| Fractional Isomorphism |
| :---: |
| $X A_{G}=A_{H} X$ |

- Expressive numerical graph invariants for applications illustration from Grohe (2020).

Outline

Matrix Equations for Homomorphism Indistinguishability

Outline

Matrix Equations for Homomorphism Indistinguishability

Towards a Theory of Homomorphism Indistinguishability

Outline

Matrix Equations for Homomorphism Indistinguishability

Towards a Theory of Homomorphism Indistinguishability

Open Questions

Matrix Equations for Homomorphism Indistinguishability

Matrix Equations for Homomorphism Indistinguishability

Homomorphism Indistinguishability

Matrix Equations
X s.t. $X A_{G}=A_{H} X$

All Graphs \longleftrightarrow Lovász (1967) \longleftrightarrow permutation matrix

Matrix Equations for Homomorphism Indistinguishability

Homomorphism Indistinguishability

Matrix Equations
X s.t. $X A_{G}=A_{H} X$

All Graphs Lovász (1967) \longleftrightarrow X permutation matrix

Cycles Folklore \longleftrightarrow X orthogonal

Matrix Equations for Homomorphism Indistinguishability

Homomorphism Indistinguishability

Matrix Equations
X s.t. $X A_{G}=A_{H} X$

All Graphs \longleftrightarrow Lovász (1967) \longleftrightarrow X permutation matrix

Matrix Equations for Homomorphism Indistinguishability

Homomorphism Indistinguishability

Matrix Equations
X s.t. $X A_{G}=A_{H} X$

All Graphs \longleftrightarrow Lovász (1967) \longleftrightarrow X permutation matrix

Matrix Equations for Homomorphism Indistinguishability

Homomorphism Indistinguishability

Matrix Equations
X s.t. $X A_{G}=A_{H} X$

A Strategy for Matrix Equations Grohe, Ratan, s. (2022), Ratan es. (2023)

Homomorphism
Indistinguishability $\quad \begin{gathered}\text { Unified Algebraic } \\ \text { Framework }\end{gathered} \longrightarrow \begin{gathered}\text { Matrix Equations } \\ X \text { s.t. } X A_{G}=A_{H} X\end{gathered}$

A Strategy for Matrix Equations Grohe, Ratan, s. (2022), Ratan es. (2023)

Homomorphism
Indistinguishability
Unified Algebraic

Framework $\longrightarrow \quad$| Matrix Equations |
| :--- |
| X s.t. $X A_{G}=A_{H} X$ |

1. Construct family \mathcal{F} of (bi)labelled graphs
2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Labelled Graphs and Homomorphism Vectors

Labelled Graphs and Homomorphism Vectors

$$
\mathcal{F} \longrightarrow \mathbb{C}^{V(G)}
$$

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing

\odot

$=$

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing
\odot

I

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing

\odot

$=$

I
I
I

Schur product

Bilabelled Graphs and Homomorphism Matrices

Bilabelled Graphs and Homomorphism Matrices

$$
\mapsto\left\{\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right.
$$

Bilabelled Graphs and Homomorphism Matrices

$$
\mapsto\left\{\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right.
$$

Bilabelled Graphs and Homomorphism Matrices

Combinatorial and Algebraic Operations: Gluing+Unlabelling and Traces

Combinatorial and Algebraic Operations: Gluing+Unlabelling and Traces

Combinatorial and Algebraic Operations: Gluing+Unlabelling and Traces

$\mapsto\left\{\begin{array}{ccccccc}12 & 0 & 4 & 0 & 4 & 0 & 4 \\ 0 & 6 & 0 & 5 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 1 & 0 & 1 \\ 0 & 5 & 0 & 6 & 0 & 5 & 0 \\ 4 & 0 & 1 & 0 & 2 & 0 & 1 \\ 0 & 5 & 0 & 5 & 0 & 6 & 0 \\ 4 & 0 & 1 & 0 & 1 & 0 & 2\end{array}\right.$

Combinatorial and Algebraic Operations: Gluing+Unlabelling and Traces

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs
2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of
 equations

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

- gluing, series composition

3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

- gluing, series composition

3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

- gluing, series composition
- unlabelling, taking traces

$\square \rightarrow \cdot \square-\square=-{ }^{-}+$

3. Prove that \mathcal{F} is finitely generated under operations

4. Define representation and recover system of equations

$$
\text { soe } \square=0-
$$

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

- gluing, series composition
- unlabelling, taking traces

3. Prove that \mathcal{F} is finitely generated under operations

- generator is ——

4. Define representation and recover system of equations

Examples: Trees, Paths, Cycles

1. Construct family \mathcal{F} of (bi)labelled graphs

- paths, trees, cycles

2. Define suitable operations

- gluing, series composition
- unlabelling, taking traces

3. Prove that \mathcal{F} is finitely generated under operations

- generator is \quad -

4. Define representation and recover system of equations

- homomorphism vectors and matrices
- missing ingredient: variants of theorem by Specht and Wiegmann

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} simultaneously similar?

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} simultaneously similar?

Theorem

$$
\begin{gathered}
\text { X unitary } \\
\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X \\
\text { X pseudo-stochastic } \\
\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X
\end{gathered}
$$

X doubly-stochastic
$\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} simultaneously similar?

Theorem

$$
\begin{aligned}
& \text { For every word } w \text {, } \\
& \operatorname{tr} W_{A}=\operatorname{tr} W_{B} \text {. } \\
& \forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X \\
& X \text { pseudo-stochastic } \\
& \forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X \\
& X \text { doubly-stochastic } \\
& \forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X
\end{aligned}
$$

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} simultaneously similar?

Theorem

$$
\begin{aligned}
& \text { For every word } w \text {, } \\
& \operatorname{tr} W_{A}=\operatorname{tr} W_{B} \text {. } \\
& \text { Specht (1940); Wiegmann (1961) } \\
& X \text { unitary } \\
& \forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X \\
& \text { For every word } w \text {, } \\
& \text { Grohe, Rattan, S. (2022) } \\
& \text { soe } W_{A}=\operatorname{soe} W_{B} \text {. } \\
& X \text { doubly-stochastic } \\
& \forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X
\end{aligned}
$$

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

When are complex square matrices A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} simultaneously similar?

Theorem

For every word w, $\operatorname{tr} W_{A}=\operatorname{tr} W_{B}$.	Specht (1940); Wiegmann (1961)	X unitary $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$
For every word w, $\text { soe } W_{A}=\operatorname{soe} W_{B} .$	Grohe, Rattan, S. (2022)	X pseudo-stochastic $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$
For every tree t, soet $t_{A}=\operatorname{soe}_{B}$.	Grohe, Rattan, S. (2022)	X doubly-stochastic $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$

Specht-Wiegmann: Words

Let Γ be the set of finite words over
$\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
Γ forms an involution monoid.

Specht-Wiegmann: Words

Let Γ be the set of finite words over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

Γ forms an involution monoid.

Specht-Wiegmann: Words

Let Γ be the set of finite words over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

$$
w=\frac{x_{2}}{I} \frac{x_{1}^{*}}{I} \frac{x_{3}^{*}}{x_{5}}
$$

Γ forms an involution monoid.

$$
W_{A}=A_{2}
$$

Specht-Wiegmann: Words

Let Γ be the set of finite words over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
Γ forms an involution monoid.

$$
w=\square \frac{x_{2}}{I} \frac{x_{1}^{*}}{\frac{x_{3}^{*}}{x_{5}}}
$$

$$
W_{A}=A_{2} \quad A_{1}^{*}
$$

Specht-Wiegmann: Words

Let Γ be the set of finite words over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
Γ forms an involution monoid.

$$
W_{A}=A_{2} \quad A_{1}^{*} \quad A_{3}^{*}
$$

Specht-Wiegmann: Words

Let Γ be the set of finite words over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
Γ forms an involution monoid.

I

$$
W_{A}=\begin{array}{llll}
A_{2} & A_{1}^{*} & A_{3}^{*} & A_{5}
\end{array}
$$

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

$$
t=
$$

$$
t_{A}=\quad 1
$$

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

$$
\begin{aligned}
& t=x_{1} / x_{5} \\
& t_{A}=\left(A_{1} 1\right)^{I}
\end{aligned}
$$

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

Specht-Wiegmann: Trees

Consider trees over $\left\{x_{1}, \ldots, x_{n}, x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.

$$
t=
$$

Specht-Wiegmann: Unitary, Pseudo-Stochastic, Doubly-Stochastic

Let A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} be square matrices.
Theorem

For every word w, $\operatorname{tr} W_{A}=\operatorname{tr} W_{B} .$	Specht (1940); Wiegmann (1961)	X unitary $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$
For every word w, soe $W_{A}=$ soe W_{B}.	Grohe, Rattan, S. (2022)	X pseudo-stochastic $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$
For every tree t, $\operatorname{soe} t_{A}=\operatorname{soe} t_{B}$	Grohe, Rattan, S. (2022)	X doubly-stochastic $\forall i . X A_{i}=B_{i} X, X A_{i}^{*}=B_{i}^{*} X$

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism
Indistinguishability

Matrix Equations

Trees	Tinhofer (1986) Dvořák (2010); Dell et al. (2018)
$X A_{G}=A_{H} X$ X doubly-stochastic	
Paths	
$X A_{G}=A_{H} X$ Dell et al. (2018) pseudo-stochastic	

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism
Indistinguishability

Matrix Equations

Treewidth $\leq k-1 \quad$ Atserias and Maneva (2012)

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism
Indistinguishability

Matrix Equations

Trees
Paths
\longleftrightarrow

Treewidth $\leq k-1 \quad$ Atserias and Maneva (2012)
level-k Sherali-Adams non-negative solution

Pathwidth $\leq k-1$ Dell et al. (2018)

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism
Indistinguishability

Matrix Equations

Treewidth $\leq k-1$

Pathwidth $\leq k-1$

$$
\begin{gathered}
X A_{G}=A_{H} X \\
X \text { doubly-stochastic } \\
\qquad X A_{G}=A_{H} X \\
X \text { pseudo-stochastic } \\
\text { level- } k \text { Sherali-Adams } \\
\text { non-negative solution } \\
\text { level- } k \text { Sherali-Adams } \\
\text { rational solution }
\end{gathered}
$$

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs
2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs

- labels in a single bag of the tree or path decomposion.

2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs

- labels in a single bag of the tree or path decomposion.

2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs

- labels in a single bag of the tree or path decomposion.

2. Define suitable operations

- gluing, series composition

3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs

- labels in a single bag of the tree or path decomposion.

2. Define suitable operations

- gluing, series composition

3. Prove that \mathcal{F} is finitely generated under operations

- generator is not $\square-$ but basal graphs, i.e. bilabelled single bag.

4. Define representation and recover system of equations

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

1. Construct family \mathcal{F} of (bi)labelled graphs

- labels in a single bag of the tree or path decomposion.

2. Define suitable operations

- gluing, series composition

3. Prove that \mathcal{F} is finitely generated under operations

- generator is not $\square \rightarrow$ but basal graphs, i.e. bilabelled single bag.

4. Define representation and recover system of equations

- homomorphism tensors and Specht-Wiegmann

Limitations: Warped Wheel

The pieces labelling, operations, finite generation, and representation have to fit together.

Limitations: Warped Wheel

The pieces labelling, operations, finite generation, and representation have to fit together.

\odot

Limitations: Warped Wheel

The pieces labelling, operations, finite generation, and representation have to fit together.

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs
2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).
(A, α)

2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of
 equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).

2. Define suitable operations
3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of

$$
(L, \lambda) \quad \rightarrow \quad(A, \alpha)
$$

 equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).

2. Define suitable operations

- pushouts in $\operatorname{EM}\left(\mathbb{P}_{k, d}\right)$

3. Prove that \mathcal{F} is finitely generated under operations

4. Define representation and recover system of equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).

2. Define suitable operations

- pushouts in $\operatorname{EM}\left(\mathbb{P}_{k, d}\right)$

3. Prove that \mathcal{F} is finitely generated under operations
4. Define representation and recover system of equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).

2. Define suitable operations

- pushouts in $\operatorname{EM}\left(\mathbb{P}_{k, d}\right)$

3. Prove that \mathcal{F} is finitely generated under operations

- requires $\mathbb{P}_{k, d}$-specific argument

4. Define representation and recover system of equations

A Comonadic Strategy

1. Construct family \mathcal{F} of (bi)labelled graphs

- labelled coalgebras of pebbling comonad $\mathbb{P}_{k, d}$ from Dawar et al. (2021).

2. Define suitable operations

- pushouts in $\operatorname{EM}\left(\mathbb{P}_{k, d}\right)$

3. Prove that \mathcal{F} is finitely generated under operations

- requires $\mathbb{P}_{k, d}$-specific argument

4. Define representation and recover system of equations

- augmented homomorphism tensors and Specht-Wiegmann

Augmented Homomorphism Representation

Augmented Homomorphism Representation

$$
\mathcal{F} \longrightarrow \mathbb{C}^{V(G)}
$$

$\otimes \bigoplus_{(L, \lambda)} \mathbb{C}$
$\otimes \quad \ddot{u}$

Graphs admitting k-pebble forest covers of depth d

Homomorphism
Indistinguishability

Matrix Equations

Graphs with k-pebble Rattan and S. (2023) forest cover of depth d

\longleftrightarrow| Novel system of |
| :---: |
| Rattan and S. (2023) |
| equations: matrix |
| commuting with aug- |
| mented representation |

Graphs admitting k-pebble forest covers of depth d

Homomorphism
Indistinguishability

Matrix Equations

Graphs with k-pebble

forest cover of depth $d$$\longleftrightarrow$ Rattan and s. (2023) \quad\begin{tabular}{c}
Novel system of

equations: matrix
commuting with aug-
mented representation

\end{tabular}

This characterises logical equivalence over $C_{k} \cap C^{d}$, and with some modifications indistinguishability after d rounds of the k-dimensional Weisfeiler-Leman algorithm.

Towards a Theory of Homomorphism Indistinguishability

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

From Equations to Graphs

Equations

homomorphism tensors, algebraic operations

Graph Class

(bi)labelled graphs, combinatorial operations

From Equations to Graphs

Equations

homomorphism tensors, algebraic operations

Graph Class

(bi)labelled graphs, combinatorial operations

From Equations to Graphs

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class \mathcal{L}_{t} is generated by atomic graphs under

- series composition,
- parallel composition with atomic graphs,
- permutation of labels.

Syntactic Properties of the Graph Class \mathcal{L}_{t}

- $\mathcal{L}_{\mathrm{t}} \subseteq \mathcal{T} \mathcal{W}_{3 \mathrm{t}-\mathrm{T}}$,

Syntactic Properties of the Graph Class \mathcal{L}_{t}

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,

Syntactic Properties of the Graph Class \mathcal{L}_{t}

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,
- \mathcal{L}_{t} is minor-closed,

Syntactic Properties of the Graph Class \mathcal{L}_{t}

- $\mathcal{L}_{t} \subseteq \mathcal{T} \mathcal{W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,
- \mathcal{L}_{t} is minor-closed,
- \mathcal{L}_{1} is the class of all outerplanar graphs.

Syntax and Semantics: Roberson's Conjecture

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.

Syntax and Semantics: Roberson's Conjecture

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \notin \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv T W_{3 t-2} H \Longrightarrow G \equiv \mathcal{C}_{t} H$.

Syntax and Semantics: Roberson's Conjecture

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \mathcal{T}_{3 t-2} H \Longrightarrow G \equiv \mathcal{L}_{t} H$.
The homomorphism distinguishing closure of a graph class \mathcal{F} is

$$
\operatorname{cl}(\mathcal{F})=\left\{K \operatorname{graph} \mid G \equiv_{\mathcal{F}} H \Longrightarrow \operatorname{hom}(K, G)=\operatorname{hom}(K, H)\right\} .
$$

Syntax and Semantics: Roberson's Conjecture

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \mathcal{T} \mathcal{W}_{3 t-2} H \Longrightarrow G \equiv \mathcal{L}_{t} H$.
The homomorphism distinguishing closure of a graph class \mathcal{F} is

$$
\operatorname{cl}(\mathcal{F})=\left\{K \operatorname{graph} \mid G \equiv_{\mathcal{F}} H \Longrightarrow \operatorname{hom}(K, G)=\operatorname{hom}(K, H)\right\} .
$$

Conjecture (Roberson (2022))

Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

- treewidth $\leq k$,

Neuen (2023)

- planar graphs,
- essentially finite graph classes.

Roberson (2022)
S. (2023)

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

- treewidth $\leq k$,

Neuen (2023)

- planar graphs, Roberson (2022)
- essentially finite graph classes.
S. (2023)

Corollary (Roberson and S. (2023))
For every $t \geq 1$, there are graphs G and H such that $G \simeq_{3 t-1}^{S A} H$ and $G \not \chi_{t}^{L} H$.

Games for Roberson's Conjecture

Theorem (Neuen (2023))
For every $t \geq 0$, the class $\mathcal{T} \mathcal{W}_{t}$ is homomorphism distinguishing closed.

Games for Roberson's Conjecture

Theorem (Neuen (2023))
For every $t \geq 0$, the class $\mathcal{T} \mathcal{W}_{t}$ is homomorphism distinguishing closed.
Using a CFI-like construction of Roberson (2022), it suffices to show the following:

Games for Roberson's Conjecture

Theorem (Neuen (2023))
For every $t \geq 0$, the class $\mathcal{T} \mathcal{W}_{t}$ is homomorphism distinguishing closed.
Using a CFI-like construction of Roberson (2022), it suffices to show the following:

Claim

If $G \notin \mathcal{T} \mathcal{W}_{k}$ and G is connected then $G_{0} \equiv \mathcal{T W}_{k} G_{1}$.
Duplicator can play like robber evading $k+1$ cops on G.

Games for Roberson's Conjecture

Theorem (Neuen (2023))
For every $t \geq 0$, the class $\mathcal{T} \mathcal{W}_{t}$ is homomorphism distinguishing closed.
Using a CFI-like construction of Roberson (2022), it suffices to show the following:

Claim

If $G \notin \mathcal{T} \mathcal{W}_{k}$ and G is connected then $G_{0} \equiv \mathcal{T}_{k} G_{1}$.
Duplicator can play like robber evading $k+1$ cops on G.

Question

Can game comonads yield more such results?

Properties of Homomorphism Indistinguishability Relations

Let's forget about the graph class \mathcal{F} and think of the equivalence relation $\equiv_{\mathcal{F}}$!

Properties of Homomorphism Indistinguishability Relations

Let's forget about the graph class \mathcal{F} and think of the equivalence relation $\equiv_{\mathcal{F}}$! Observation ($\equiv_{\mathcal{F}}$ is preserved under categorical products) If $G_{1} \equiv_{\mathcal{F}} H_{1}$ and $G_{2} \equiv_{\mathcal{F}} H_{2}$ then $G_{1} \times G_{2} \equiv_{\mathcal{F}} H_{1} \times H_{2}$.

Properties of Homomorphism Indistinguishability Relations

Let's forget about the graph class \mathcal{F} and think of the equivalence relation $\equiv_{\mathcal{F}}$!
Observation ($\equiv_{\mathcal{F}}$ is preserved under categorical products) If $G_{1} \equiv \mathcal{F} H_{1}$ and $G_{2} \equiv_{\mathcal{F}} H_{2}$ then $G_{1} \times G_{2} \equiv \mathcal{F} H_{1} \times H_{2}$.

The $\operatorname{hom}(F,-)$-functor maps products to products.
In the language of Marsden, Jakl, Shah (2023): There is a Kleisli law for the product functor $(G, H) \mapsto G \times H$.

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.
Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors
complements

$$
G \mapsto \bar{G}
$$

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.
Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors
summands
complements
disjoint unions

$$
\begin{aligned}
& G \mapsto \bar{G} \\
& (G, H) \mapsto G+H
\end{aligned}
$$

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.

Theorem (S. (2023))

For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

\mathcal{F} is closed under	$\equiv_{\mathcal{F}}$ is preserved under	
minors	complements	$G \mapsto \bar{G}$
summands	disjoint unions	$(G, H) \mapsto G+H$
subgraphs	full complements	$G \mapsto \widehat{G}$
induced subgraphs	left lexicographic products	$H \mapsto G[H]$ for every G
contracting edges	right lexicographic products	$G \mapsto G[H]$ for every H.

Logic meets Minors

Logic meets Minors

Corollary (S. (2023))

Let \equiv be an equivalence relation between graphs.

Logic meets Minors

Corollary (S. (2023))
Let \equiv be an equivalence relation between graphs. If
$\cdot G \equiv H \Longleftrightarrow \bar{G} \equiv H$ for all G and H,

Logic meets Minors

Corollary (S. (2023))
Let \equiv be an equivalence relation between graphs. If

- $G \equiv H \Longleftrightarrow \bar{G} \equiv \bar{H}$ for all G and H,
- \equiv is a homomorphism indistinguishability relation, then

Logic meets Minors

Corollary (S. (2023))
Let \equiv be an equivalence relation between graphs. If

- $G \equiv H \Longleftrightarrow \bar{G} \equiv \bar{H}$ for all G and H,
- \equiv is a homomorphism indistinguishability relation, then
\equiv is a homomorphism indistinguishability over a minor-closed graph class.

Logic meets Minors

Corollary (S. (2023))

Let \equiv be an equivalence relation between graphs. If

- $G \equiv H \Longleftrightarrow \bar{G} \equiv \bar{H}$ for all G and H,
- \equiv is a homomorphism indistinguishability relation, then
\equiv is a homomorphism indistinguishability over a minor-closed graph class.
Examples include logical equivalences and systems of equations.

Logic meets Minors

Corollary (S. (2023))

Let \equiv be an equivalence relation between graphs. If

- $G \equiv H \Longleftrightarrow \bar{G} \equiv \bar{H}$ for all G and H,
- \equiv is a homomorphism indistinguishability relation, then
\equiv is a homomorphism indistinguishability over a minor-closed graph class.
Examples include logical equivalences and systems of equations.

Corollary (Atserias et al. (2021))

$\equiv_{\mathrm{FO}_{k}}$ is not a homomorphism indistinguishability relation.

Open Questions

Open Questions I

Open Questions II

Can matrix equations be cooked up for other graph classes?

- path-like or tree-like graph classes, e.g. bounded cutwidth

- with comonadic strategy, only finite generation seems to be an issue

Open Questions III

When is a function $h: \mathcal{F} \rightarrow \mathbb{N}$ such that $h=\operatorname{hom}(-, H)$ for some graph H ?

- Lovász and Schrijver (2009) answer this for $\mathcal{F}=\{$ all graphs $\}$ using algebras of labelled graphs

Lovász and Schrijver (2009)

Let \mathcal{C} be a category such that

- \mathcal{C} is locally finite,
- \mathcal{C} has pushouts and an initial object 0 ,
- every morphism is the product of an epimorphism and a monomorphism,
- there is a generator $G \in$ obj \mathcal{C}, i.e. $\forall F \exists n \in \mathbb{N}$. $n G \rightarrow F$.

Lovász and Schrijver (2009)

Let \mathcal{C} be a category such that

- \mathcal{C} is locally finite,
- \mathcal{C} has pushouts and an initial object 0 ,
- every morphism is the product of an epimorphism and a monomorphism,
- there is a generator $G \in \operatorname{obj} \mathcal{C}$, i.e. $\forall F \exists n \in \mathbb{N}$. $n G \rightarrow F$.

Then $h: \operatorname{obj} \mathcal{C} \rightarrow \mathbb{R}$ is of the form $h=\operatorname{hom}(-, H)$ if and only if

- $h(0)=1$,
- h is multiplicative over coproducts,
- the matrix $N(h, L)$ is positive semidefinite for every L.

Lovász and Schrijver (2009)

Let \mathcal{C} be a category such that

- \mathcal{C} is locally finite,
- \mathcal{C} has pushouts and an initial object 0,
- every morphism is the product of an epimorphism and a monomorphism,
- there is a generator $G \in \operatorname{obj} \mathcal{C}$, i.e. $\forall F \exists n \in \mathbb{N} . n G \rightarrow F$.

Then $h: \operatorname{obj} \mathcal{C} \rightarrow \mathbb{R}$ is of the form $h=\operatorname{hom}(-, H)$ if and only if

- $h(0)=1$,
- h is multiplicative over coproducts,
- the matrix $N(h, L)$ is positive semidefinite for every L.

Question

Characterise $h: \operatorname{im} U^{\mathbb{C}} \rightarrow \mathbb{R}$ of the form $h=\operatorname{hom}_{\Sigma}(-, H)=\operatorname{hom}_{E M(\mathbb{C})}\left(-, F^{\mathbb{C}} H\right)$.

Conclusion

- Matrix Equations for Homomorphism Indistinguishability

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation
- versions of Specht-Wiegmann Theorem

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation
- versions of Specht-Wiegmann Theorem
- Towards a Theory of Homomorphism Indistinguishability

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation
- versions of Specht-Wiegmann Theorem
- Towards a Theory of Homomorphism Indistinguishability
- Roberson's Conjecture

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation
- versions of Specht-Wiegmann Theorem
- Towards a Theory of Homomorphism Indistinguishability
- Roberson's Conjecture
- properties of homomorphism indistinguishability relations

Conclusion

- Matrix Equations for Homomorphism Indistinguishability
- (bi)labelled graphs, operations, finite generation, representation
- versions of Specht-Wiegmann Theorem
- Towards a Theory of Homomorphism Indistinguishability
- Roberson's Conjecture
- properties of homomorphism indistinguishability relations
- Check out Grohe et al. (2022); Rattan and Seppelt (2023); Roberson and Seppelt (2023); Seppelt (2023)!

Bibliography i

References

Atserias, A., Kolaitis, P. G., and Wu, W.-L. (2021). On the Expressive Power of Homomorphism Counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13.

Atserias, A. and Maneva, E. (2012). Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pages 367-379, New York, NY, USA. Association for Computing Machinery.

Bibliography ii

Atserias, A. and Ochremiak, J. (2018). Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem. In Dawar, A. and Grädel, E., editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 66-75. ACM.
Dawar, A., Jakl, T., and Reggio, L. (2021). Lovász-type theorems and game comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE.
Dell, H., Grohe, M., and Rattan, G. (2018). Lovász Meets Weisfeiler and Leman. In Chatzigiannakis, I., Kaklamanis, C., Marx, D., and Sannella, D., editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1-40:14. Schloss Dagstuhl -Leibniz-Zentrum für Informatik.
Dvořák, Z. (2010). On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342.

Bibliography iii

Grohe, M. (2020). word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Suciu, D., Tao, Y., and Wei, Z., editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 1-16. ACM.
Grohe, M. and Otto, M. (2015). Pebble Games and Linear Equations. J. Symb. Log., 80(3):797-844.
Grohe, M., Rattan, G., and Seppelt, T. (2022). Homomorphism Tensors and Linear Equations. In Bojańczyk, M., Merelli, E., and Woodruff, D. P., editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPICS), pages 70:1-70:20, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. ISSN: 1868-8969.
Lovász, L. (1967). Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328.

Bibliography iv

Lovász, L. and Schrijver, A. (2009). Semidefinite Functions on Categories. Electron. J. Comb., 16(2).
Mančinska, L. and Roberson, D. E. (2020). Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672.
Neuen, D. (2023). Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width. arXiv:2304.07011 [cs, math].

Rattan, G. and Seppelt, T. (2023). Weisfeiler-Leman and Graph Spectra. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268-2285. _eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch87.
Roberson, D. E. (2022). Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. Number: arXiv:2206.10321.

Bibliography v

Roberson, D. E. and Seppelt, T. (2023). Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. arXiv:2302.10538 [cs, math].
Seppelt, T. (2023). Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. arXiv:2302.11290 [cs, math].
Specht, W. (1940). Zur Theorie der Matrizen. II. Jahresbericht der Deutschen Mathematiker-Vereinigung, 50:19-23.
Tinhofer, G. (1986). Graph isomorphism and theorems of Birkhoff type. Computing, 36(4):285-300.
Wiegmann, N. A. (1961). Necessary and sufficient conditions for unitary similarity. Journal of the Australian Mathematical Society, 2(1):122-126. Edition: 2009/04/09 Publisher: Cambridge University Press.

Bibliography vi

Title Picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https:
//commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

